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1. Executive Summary

This work was performed in support of the Army Software Marketplace Acquisition 
Strategy project (DI-5-4630). The Army has “identified the need to reduce costs and 
delivery time across the enterprise related to software generation, access, management, and 
sustainment.  The envisioned solution calls for the deployment of a centralized software 
marketplace, coupled with the development of processes, procedures and governance for 
the submission and approval of new application software, and overall management of the 
software repository.” 

This work and paper partly fulfill the following paragraphs of the statement of work 
in the project description: (3g), which states the intent to “evaluate technical options and 
alternatives … for standing up an enterprise-level Army Application Development 
Environment (ADE) that supports development for the full range of software platforms…”; 
(3j), which states the intent to “investigate options for automating the application vetting 
process using commercial workflow tools and software testing best practices”; and 
deliverable (4d), “a draft report on maturity and applicability of options that can support 
the creation of an Army ADE.” 

The paper specifically discusses selected publications that relate artificial intelligence 
(AI) in general, or machine learning (ML) in particular, to cybersecurity and specifically 
to the cybersecurity of system development and life cycle environments (SDLE)1 and their 
products. Some of the papers covered in this document are surveys that provide an 
overview of the area, and the present report is a meta-analysis that relies significantly upon 
surveys of the available literature. This approach was necessary because of the very large 
volume of publications in this field of research. A few papers are cautionary, pointing out 
that systems trained via AI or ML can be fooled; one of these papers investigates methods 
for designing classifiers that exhibit resilience to adversarial actions and points to other 
literature in this emerging field. Several references provide guidance for those who might 

1 The term “system development and life cycle environment” covers the infrastructure, processes and 
procedures, tools, and personnel involved in the design, development, and maintenance of a system, 
from conceptualization or initiation to removal from final service and disposal.  NIST Special 
Publication 800-64 discusses the various phases of this life cycle (see Kissel, Richard, Kevin Stine, 
Matthew Scholl, Hart Rossman, Jim Fahlsing, and Jessica Gulick 2008).  The acronym “SDLE” is often 
used to stand for “software development and life cycle environment,” and although this report primarily 
deals with issues relating to software development, “system development…” is used herein to 
emphasize the breadth of issues related to life cycle management and to conform to the NIST 
publication. 
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be interested in further reading across the breadth of the field. A few relevant publications 
from the NIST 800 series are included to provide an appropriate setting for the discussion 
of AI/ML as applied to cybersecurity. 

The publications reviewed in this paper were found and selected using a variety of 
sources. Highly cited survey articles were found using Google Scholar,2 and the citations 
in those articles led to other works via library searches. Other articles were found using 
combinations of search terms involving cybersecurity, AI, and ML. Patents were located 
and retrieved using Google’s patent search capability.3 Relevant books were identified 
using searches of library and other databases. There is an immense body of published work 
relating to AI and ML that extends over six decades (and further back, if one considers 
publications by Turing,4 von Neumann,5 and various other researchers who had combined 
backgrounds in physics, mathematics, engineering, and the biological sciences6). Although 
the corpus of literature relating to cybersecurity has a shorter time line (about three 
decades), there can be no claim that a brief review such as this one can be exhaustive. The 
authors hope that their apology for leaving out the reader’s favorite references will be 
accepted, and that the discussions and observations that are offered can assist in 
determinations and selections of technologies, products, and methods for incorporation in 
high-quality SDLEs. 

Cybersecurity is a very broad term referring to essentially everything that has a 
bearing upon protection of cyber resources. The term artificial intelligence dates from a 
1955 proposal7 for a summer research workshop held at Dartmouth in 1956 by McCarthy, 
Minsky, Rochester, and Shannon, and there is no generally accepted definition of what 
constitutes AI. ML is a subset of AI, but again, the definition is nebulous. These three fields 
have ill-defined boundaries. 

For the purposes of this report, we define AI as heuristic methods (as opposed to 
algorithms firmly grounded in mathematics or fields such as mathematical optimization or 
nonlinear programming) designed to allow a computational system to function in a manner 

2 https://scholar.google.com/. 
3 https://www.google.com/?tbm=pts 
4 See (Turing, A. M. 2009), a reprint of Turing’s article (Mind, 59:433-460 1950). 
5 See the discussion in (Mühlenbein, Heinz 2009). 
6 See, for example, McCulloch, Warren S, and Walter Pitts (1990), reprinted from the Bulletin of 

Mathematical Biophysics, Vol. 5, pp. 115-133 (1943). 
7 See http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html for the text of the proposal.  

See also McCarthy, John, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon, “A 
Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 31, 1955.” 
2006. AI Magazine 27 (4). 

https://www.google.com/?tbm=pts
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
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similar to a skilled human practitioner.8,9 ML technologies utilize examples of the items 
one wants to categorize—whether labeled (for supervised learning), unlabeled (for 
unsupervised learning), or mixed—to train a computational system to behave in a desired 
manner. As stated earlier, ML can be viewed as a subset of AI; indeed, the definition of AI 
has continued to bloat over the decades since the 1950s to include (or at least substantially 
overlap with) fields that used to be considered distinct, such as heuristic optimization 
(simulated annealing, genetic algorithms, and genetic programming), pattern recognition, 
pattern classification, some aspects of signal processing, and image processing. Without 
arguing the merits of this point of view, this report merely considers and includes 
technologies that appear both useful and are related to AI or ML. 

This report is a partial response to the question, “Do artificial intelligence and 
machine learning technologies provide opportunities to improve the cybersecurity of 
SDLEs and their products?” This question was motivated in part by the perception that 
automation plays a very significant role in the “dark side” of cybersecurity: the tools used 
to exploit information systems and organizations and to compromise their functions and 
exfiltrate their information. The time delay from a successful exploit to utilization of the 
compromised system or information can be extraordinarily short. (Tucker 2019; 
“CrowdStrike 2018 Global Threat Report” n.d.) It has become imperative that 
organizations that manage SDLEs achieve correspondingly short threat response time 
delays. 

A. Summary of Findings
• AI/ML is viewed as a necessary response to the continuing growth in the

number and complexity of threats, the evolving nature of threats, and the need
for rapid (and therefore substantially automatic) responses to detected threats.

• It is clear from the literature that an expansive and broad definition of AI and
ML can and should be applied in this field, encompassing a variety of methods
that have developed over many decades (and in one case – naïve Bayes –
centuries), have demonstrated effectiveness, and are currently in use.

• The primary targets for AI and ML application at present are intrusion detection
(network-based attacks), phishing and spam (emails), threat detection and

8 Given the coverage of “deep learning” in both technical forums and the popular press, one might assume 
that AI and ML are deep learning.  Deep learning has earned its reputation from its recent successes in 
the fields of facial recognition, speech recognition, machine translation, and autonomous vehicles, but 
AI and ML are much broader fields.  See Appendix A for a discussion of a 2015 survey paper on deep 
learning (LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton 2015) to gain a better understanding of 
deep learning. 

9 A JASON report loosely defines AI as “the ability of machines (computers) to perform tasks that humans 
do with their brains”. (“Perspectives on Research in Artificial Intelligence and Artificial General 
Intelligence Relevant to DoD” 2017) 
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characterization (malicious code, largely because of their ability to deal with 
large number of variants of each threat), and user behavioral modeling. A 
rapidly emerging target for application is automated vulnerability testing and 
intrusion defense. 

• Intrusion detection systems typically utilize hybrid approaches that combine 
several methods: signature-based methods for rapid detection of known threats 
with low false alarm rates (FARs) and anomaly-based methods to model normal 
behaviors and to flag deviations from the model’s expectations. 

• It appears that essentially all the vendors of cybersecurity products are working 
to adopt AI/ML components in their products. 

• The paucity of datasets for research and development (R&D) in this area is a 
problem. Some vendors have large volumes of reasonably current data available 
(for example, network switch/infrastructure vendors, and providers of anti-virus 
and network/computer monitor software and systems). However, widely 
available datasets are extremely dated (DARPA 1998 and 1999, and KDD 1999 
data), and the characteristics and volume of attacks have significantly changed 
since that time. 

• There are indications that AI- and ML-based approaches may be easily spoofed 
or bypassed. Several published examples are not directly related to 
cybersecurity, but instead to spoofing systems that process image data or audio 
data, which appears to be easy. Some examples, however, are in the 
cybersecurity field. 

B. Conclusions 
Little development or customization effort is likely to be needed to apply AI and ML 

in the more mature application areas such as intrusion detection, activity modeling and 
abnormality detection, and next generation anti-virus technologies. The DoD will probably 
dictate what all systems must utilize to protect and monitor resources and users, and there 
probably will not be much flexibility. The majority of these capabilities will probably be 
deployed using commercial systems, possibly developed for government use and supported 
by large vendors. One reason for this is the rapid pace of evolution of threats. Keeping up 
with adversaries requires large and active organizations and consortia. The key will be to 
ensure that the essential bases are covered: firewall protection, including stateful inspection 
and control of network traffic across defined boundaries; intrusion detection and response; 
network, server, and endpoint monitoring, including user activity monitoring; and anti-
virus and other malware protection. 

The potentially overwhelming volume of measurement data that cybersecurity tools 
generate and the speed at which this volume grows create risks for any organization that 
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implements these protective systems. AI and ML offer some opportunities to mitigate these 
risks. Examples include intrusion detection systems that classify network traffic and 
measurements obtained from equipment connected to the network, systems that attempt to 
identify variants of known malware, and user activity monitoring systems that alert to 
anomalous behaviors. One important way in which emerging technologies such as AI and 
ML should be useful is in cutting through the volume of data and finding indicators of 
compromise using correlations across data sources. These systems would assist human 
analysts by elevating or alerting them to significant events that require responses without 
overwhelming the organization with false alarms or other spurious indicators. However, 
systems that incorporate advanced algorithms such as AI and ML must be properly 
designed to accept and process the high arrival rates of network and measurement data, as 
must the software-based sensors that collect data from hosts attached to the network, to 
ensure that the performance of both network segments and hosts is not unduly 
compromised.  

Emerging technologies, including AI/ML, should be adopted to test systems 
(software, hardware, or both). AI and ML would be useful for automating testing for 
vulnerabilities, automating patching, and helping to enforce product quality standards. The 
emerging technologies will need to be carefully integrated with other systems that support 
and enforce the SDLE, including configuration management, test management, bug 
tracking, and workflow management tools. Unlike the developed application areas, 
significant resources will probably be needed to develop and integrate tools, some of which 
are likely to be open source products, into an effective SDLE. There are already some 
emerging commercial entities and, with time, commercial products will likely mature in 
these application areas. 

C. Structure of Report
Chapter 2 of this report provides a summary of information from recently published

cybersecurity assessments, detailing where things currently stand. These assessments are 
typically provided annually by several of the major commercial vendors. 

Chapter 3 provides short discussions of several publications that relate AI or ML to 
cybersecurity in the relatively more developed contexts of intrusion detection systems 
(both signature-based and anomaly-based) and insider threats. The section begins with 
selected general-interest articles, continues with discussions of several review articles, and 
concludes with articles that address adversarial adoption of AI and ML technologies. 

Chapter 4 provides a review of the Defense Advanced Research Projects Agency’s 
(DARPA’s) Cyber Grand Challenge (a “capture the flag” (CTF) tournament), which took 
place from 2014 to 2016, and the resulting follow-on efforts. This section provides support 
for the thesis that the emerging automated testing and repair capabilities should be 
incorporated into a well-designed SDLE. 
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Chapter 5 provides brief overviews of several books covering AI and ML in the 
context of cybersecurity and is followed by a brief summary of this report in Chapter 6. 

Chapter 7 lists references, and Appendix A discusses a recent survey paper on deep 
learning. 
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2. Information from Recently Published
Cybersecurity Assessments 

Several large vendors produce annual assessments related to cybersecurity, and it is 
useful to review their findings. 

Cisco (“Cisco 2018 Annual Cybersecurity Report” 2018) has provided a concise 
summary of the current state of affairs, estimating that 53% of attacks cause damages of 
$500,000 or more: “We know that attackers are evolving and adapting their techniques at 
a faster pace than defenders. They are also weaponizing and field testing their exploits, 
evasion strategies, and skills so they can launch attacks of increasing magnitude. When 
adversaries inevitably strike their targets, will defenders in the impacted organizations be 
prepared, and how quickly can they recover? That depends largely on the steps they’re 
taking today to strengthen their security posture” (p. 46). An observation in the Cisco report 
is relevant to mobile device security: “The most challenging areas and functions to defend 
are mobile devices, data in the public cloud, and user behavior” (p. 47). Though one would 
appreciate finding a single vendor or product that can protect the environment, the reality 
according to Cisco is that in “2017, 25 percent of security professionals said they used 
products from 11 to 20 vendors” (p. 48), with “16 percent” using “anywhere from 21 to 50 
vendors” (p. 48), and that “[s]ecurity teams face challenges in orchestrating multiple 
vendor alerts.” (p. 49). 

HP Development Company, LP emphasized the importance of AI and ML in their 
2018 Cybersecurity Guide (“Hackers and Defenders Harness Design and Machine 
Learning” 2018). One point made in this report is that “[f]or every 100 lines of source code 
written … there’s typically one defect … All a hacker has to do is find a defect that gives 
them entry to the system” (p. 6). The final section of the report is titled “Through the 
Looking Glass: Machine Learning and Artificial Intelligence,” in which the authors state, 
“The days of malware scanning as the main tool against attackers are limited. … On the 
defenders’ side, data plus machine learning are starting to be leveraged for automated 
network analysis, which crunches data from the constant stream flowing into, out of, and 
across the business network, looking for anomalies. Such computing capabilities will one 
day watch for spikes in processor activity, for instance, which could signal that a problem 
is starting. On the attackers’ side, of course, machine learning can be used to automate 
network probing, scanning and scrubbing.” (p. 19) According to a person quoted in the 
report, “We’re going to live in a world of AI-enabled smart attacks.” (p. 20). 

The 2019 IBM X-Force Threat Intelligence report (“IBM X-Force Threat Intelligence 
Index 2019” 2019) emphasized phishing attacks, human errors and vulnerabilities, and 
threat vectors aimed at web-based email and cloud services. Automation using AI, ML, 
and more traditional methods can significantly reduce risks associated with these threats 
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through security education to standardized processes, automated tracking and reporting, 
and ML and natural language processing (NLP) for identification of phishing attempts. 

The IBM report also discussed the Spectre and Meltdown attacks, which targeted 
Intel, and later AMD, hardware and firmware vulnerabilities associated with “speculative 
execution.” (p. 5 and 27) Exploitation of hardware vulnerabilities is not new, but new 
threats in this class will continue to emerge. What has changed is the rapidity with which 
exploits are developed, deployed, and refined (Abu-Ghazaleh, Ponomarev, and Evtyushkin 
2019). It is extremely difficult to respond to this class of threats; for example, a 
comprehensive solution to Spectre and Meltdown requires replacement of computer 
equipment, and discovery of the existence of these threats requires detailed research by 
highly skilled security researchers. 

Oracle and KPMG issued a joint 2019 report that covers several themes, including 
the complexities cloud-based resources introduce to cybersecurity, the problems associated 
with patching systems to keep up with emerging threats and the potential of automation, 
multifactor authentication, and utilization of machine learning-powered analytics. (“Oracle 
and KPMG Cloud Threat Report 2019” 2019) With regard to ML, the report states the 
following: 

Advances in artificial intelligence, specifically machine learning, have had 
highly promising results in improving the efficacy of cybersecurity 
technologies such as endpoint security to detect and prevent new and 
previously unseen-in-the-wild malware. Machine learning is now 
incorporated into seemingly every new cybersecurity control intended to 
protect core-to-edge applications and data assets from compromise. In 
addition, some companies that have a requirement to train machine learning 
algorithms on industry-specific data sets, such as sensor data from smart 
automobiles, employ their own data scientist. These organic and integrated 
use cases have appreciably increased the use of machine learning for 
cybersecurity purposes over the last year. In fact, more than half of the 
respondents report they are using machine learning technology for 
cybersecurity purposes to some degree, up from 47% in 2018. North 
American companies are ahead of the curve with more intense usage of 
machine learning-based controls, per the 29% of those companies 
leveraging machine learning extensively. This level of adoption has made 
machine learning a foundational cybersecurity technology and especially 
applicable for certain use cases (p. 53).  

The respondents to a survey conducted by Oracle and KPMG indicated that ML will 
be primarily used in security analytics and operations, as part of identity and access 
management, and user behavior analytics, and as part of a cloud security strategy. The 
primary benefits the respondents anticipated were improvements to investigation of 
security alerts, improved accuracy, reduced false positive rates, the elimination of more 
compute-intensive detection techniques, detection of zero-day threats, and the ability to 
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better utilize junior analysts. (These benefits are perhaps more of a wish list than realistic 
expectations; it is important to maintain a healthy level of skepticism.) 

The following bullets summarize findings in these reports that have been discussed 
above: 

• “…attackers are evolving and adapting their techniques at a faster pace than defenders”
(Cisco, p. 46).

• “The most challenging areas and functions to defend are mobile devices, data in the
public cloud, and user behavior” (Cisco, p. 47).

• “Security teams face challenges in orchestrating multiple vendor alerts” (Cisco, p. 49).

• “[D]ata plus machine learning are starting to be leveraged for automated network
analysis” by defenders (HP, p. 19).

• “We’re going to live in a world of AI-enabled smart attacks” (HP, p. 20).

• One emphasis is upon phishing attacks, human errors and vulnerabilities, and threat
vectors aimed ad web-based email and cloud services (IBM).

• Exploitation of hardware vulnerabilities, as seen in the Spectre and Meltdown attacks,
is not new, but new threats in this class will continue to emerge. What has changed is
the rapidity with which exploits are developed, deployed – and refined (IBM).

• Cloud-based resources introduce additional complexity in cybersecurity
(Oracle/KPMG).

• Timely patching and path automation are needed to combat the growing complexity of
the threat landscape (Oracle/KPMG).

• “Machine learning is now incorporated into seemingly every new cybersecurity control
intended to protect core-to-edge applications and data assets from compromise”
(Oracle/KPMG, p. 53).

• “…more than half of the respondents [to a survey] report they are using machine
learning technology for cybersecurity purposes to some degree, up from 47% in 2018”
(Oracle/KPMG, p. 53).

• A survey indicated that the primary uses of ML will be in security analytics and
operations, as part of identity and access management, and user behavior analytics, and
as part of a cloud security strategy (Oracle/KPMG).
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3. Discussion of Referenced Papers

The following discussions summarize the findings of publications that have been 
reviewed for this report. The publications are grouped into three broad topics: 

• General-interest news articles

• Survey articles

• Cybersecurity risks associated with AI and ML and adversarial machine learning

Chapter 5 of this report provides very brief summaries of several books and reports
that were discovered as the review of the literature relating AI and ML to cybersecurity 
progressed. 

The general-interest news articles provide introductory discussions of topics relevant 
to the field and should be considered “light reading”. This report’s primary focus is a meta-
analysis of the field based upon a survey of review articles. The reliance upon review 
articles was necessitated by the very large quantity of articles in the technical literature in 
this field. The large bibliographic listings published in the review papers provide evidence 
of this explosion of literature. 

As the survey of the literature was conducted, articles were discovered that point out 
risks associated with the emerging utilization of AI and ML. Most of these articles are not 
specific to cybersecurity, but the generalization of the risks to cybersecurity applications is 
reasonably obvious. 

The articles and books within each group are discussed in alphabetical order 
according to their bibliographic entries. A complete bibliography of the reviewed articles, 
together with other articles mentioned in this report, follows. 

A. General-Interest News Articles
These are short articles from the popular and industry press that provide very brief

overviews of topics relating AI and ML to cybersecurity. 

Ciccatelli, Amanda. 2016. “Will Artificial Intelligence Revolutionize 
Cybersecurity?” Inside Counsel Breaking News, June 27, 2016. General 
OneFile. 

This is a news article that is light on details. However, it does mention an analogy of 
nature-inspired AI to a biological immune system that might detect and inoculate against 
novel threats, the potential of evolutionary computation in ML, and the possibility of 
“multi-agent AI techniques.” 
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Greengard, Samuel. 2016. “Cybersecurity Gets Smart.” 
Communications of the ACM, 59 (5): 29–31. 

This is a general interest magazine article rather than a technical research article. The 
thesis is that the “traditional approach of using signature-based malware detection, 
heuristics, and tools such as firewalls and data loss prevention (DLP) simply is not getting 
the job done. … Traditional security methods aren’t keeping up with cyberthieves” (p. 29). 
AI methods such as “big data, pattern mapping and matching, cognitive computing, and 
deep learning methods that simulate the way the human mind works” (p. 29) are being 
explored by researchers as ways to defend information resources. “The goal … is to better 
identify suspicious patterns and behavior” (p. 29). “Manual approaches and signature-
based approaches are no longer effective” because of the large and increasing number of 
threats (p. 29). Problems include the “growing prevalence of zero-day attacks …, 
polymorphous malware …, viruses, Trojan horses … and graphics processing units” (p. 
29). In addition, “firewalls have become less effective as cloud computing and APIs string 
together data across enterprise boundaries” (p. 29). “[S]ecurity threats ranging from social 
engineering … to botnet .. [are] more difficult to pinpoint and block because they use 
cloaking techniques and alias IP addresses” (p. 30). 

Techniques being explored include: 
[c]ognitive computing … using … natural language processing to analyze
code and data on a continuous basis. As a result, it is better able to build,
maintain, and update algorithms that better detect cyberattacks, including
Advanced Persistent Threats (APTs) that rely on long, slow, continuous
probing at an almost-imperceptible level in order to carry out a cyberattack.
(p. 30)

“One company at the vanguard of AI is Tel Aviv, Israel-based Deep Instinct, which 
has introduced security software that uses an artificial neural network (ANN) to digest huge 
volumes of data and put it to use quickly and effectively” (p. 30). According to the Chief 
Technology Officer of Deep Instinct, a large fraction of new malware is very similar to 
previously detected malware (i.e., there is less than 2% difference in code), but that is 
sufficient to “throw off most conventional malware detection tools” (p. 30). Deep Instinct 
utilizes deep learning and claims a 98.8% detection rate compared to a 79% detection rate 
for the next best solution.10 (Note that this is not an independent assessment.) 

Another approach developed at Georgia Tech and licensed to Symantec uses “an 
algorithm that analyzes relationships with peer files using locality-sensitive hashing and 
graph mining, which clusters risks by probability” (p. 31). “Tests show the approach 

10 Note that as impressive as these percentages may be, when dealing with large numbers of instances, 
there is still a substantive residual subset that escapes detection.  This could lead to a false sense of 
security, as one of those undetected instances of malware may be sufficient to cause severe damage to 
the organization. 
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identifies 99% of benign files and 79% of malicious files a week earlier than other 
technologies” (p. 31). 

Garlan at Carnegie Mellon University studies “how to move beyond using AI merely 
on the detection side and harness[ing] it on the repair side. … Garlan says … [m]any of the 
answers already exist, … it is simply a matter of combining data points, crunching huge 
volumes of data, and rethinking interfaces to introduce more streamlined and functional 
machine-human interaction” (p. 31). 

Hutson, Matthew. 2018. “Hackers Easily Fool Artificial Intelligences.” 
Science, 361 (6399): 215. 

This is a general interest magazine article rather than a technical research article. AI 
systems are vulnerable to spoofing, where slight changes in inputs are introduced to 
produce dramatically different outputs (for example, classifications).11 Examples include 
a modified image of a stop sign that was identified as a speed limit sign and a modified 
audio recording of a voice saying “without the data set the article is useless” that was 
identified as “OK Google, browse the evil.com.” (p. 215) Demonstrations have been 
performed with and without knowledge of the implementation of the AI system. For 
example, it is possible (though more difficult) to perform a black-box attack without a 
priori knowledge of a system’s implementation details. 

The implications for cybersecurity are that a threat could be masked to appear 
innocuous to an intrusion detection system or that classified or sensitive information 
transmitted out of a secure environment could be masked. Steganography is an example of 
this (transmission of sensitive information within an image or other document), but analysis 
may be more challenging with an AI system, because the system’s logic is not traditionally 
programmed or acquired. 

Wilkins, Jonathan. 2018. “Is Artificial Intelligence a Help or 
Hindrance?” Network Security, 2018 (5): 18–19. 

This is a news article written from the point of view of the industrial automation 
industry and the Internet of Things (IoT). The article argues that AI is beginning to be 

11 One can argue that spoofing is related to bias, which may be caused by an insufficiently robust training 
data set.  However, it is always possible to introduce inputs not represented in a training set, and 
spoofing appears to point to a more fundamental issue.  A neural network’s parameter space typically 
has a very high dimension, and the neural network functions as an interpolator for inputs not previously 
observed.  Just as in the case of interpolation of functions using orthogonal terms of a series, 
unexpected behaviors can occur between training data points, and these behaviors can grow more 
erratic as the dimension of the parameter space increases.  One example is the “ringing” behavior that 
occurs near a function’s discontinuities when the function is approximated using a Fourier series.  It is 
reasonable to expect spoofing to always be possible regardless of the size of the training data set.  A 
JASON report on artificial intelligence also discusses this issue. (“Perspectives on Research in Artificial 
Intelligence and Artificial General Intelligence Relevant to DoD.” 2017) 
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incorporated into the toolkits used by cyber attackers, which could make cyber-attacks 
more powerful and efficient. The article states that “[i]n a survey taken during the Black 
Hat USA 2017 cyber-security conference, 62% of attendees predicted that the first AI-
enhanced cyber-attack will happen in the next 12 months” (p. 18). The author advocates 
the use of AI in cybersecurity—whether or not incorporation of AI in defense strategies is 
the best solution, it is clear that it is quickly becoming part of the threat landscape. The 
author provides the example of Darktrace, a security company that “uses machine learning 
to create unique patterns of encryption for each machine and detect any abnormalities” (p. 
19). 

B. Survey Articles
These articles provide surveys of the literature and recent research results that relate

AI or ML to cybersecurity. 

Amit, Idan, John Matherly, William Hewlett, Zhi Xu, Yinnon Meshi, 
and Yigal Weinberger. 2018. “Machine Learning in Cyber-Security - 
Problems, Challenges and Data Sets.” 

This paper is not well written, but there is some value in the sections that identify ML 
challenges in cybersecurity and that discuss several data sets. Challenges include the 
perceived lack of labeled examples that can be utilized to train ML systems and the 
imbalance in the number of examples of malware to non-malware data—the latter typically 
being a much larger fraction of collected data. The latter issue imposes a large penalty upon 
false alarms produced by detection systems. 

The authors point out that the data set issues are caused by companies’ unwillingness 
to share collected data, which may also be due to privacy, contractual, damage to 
reputation, and legal constraints. Other issues include malware polymorphisms (derivative 
versions of an original malware or malware tool) and ambiguities and similarities among 
sites (IP addresses, or hosts) with which malware communicate. 

Several bibliographic references are provided, but most are only briefly mentioned in 
the body of the paper. 

Buczak, A. L., and E. Guven. 2016. “A Survey of Data Mining and 
Machine Learning Methods for Cyber Security Intrusion Detection.” 
IEEE Communications Surveys Tutorials, 18 (2): 1153–76. 

This survey paper is an excellent reference that provides a good taxonomy of data 
mining and ML methods used across the research community for intrusion detection 
systems (IDS). The authors discuss data mining and ML, but it would be more accurate to 
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describe the surveyed literature as applications of ML using acquired data. The primary 
issues are as follows: 

• the speed at which threats evolve, requiring either continuously adaptive IDS or
frequent re-training;

• the large quantity of data relevant to IDS that can be acquired and its rapid
arrival or acquisition rate; and

• the trade-offs between the level of detail in acquired data and the acquisition rate
and between detail and privacy/security concerns.

In short, data mining to extract relevant features from acquired data is necessary, but 
this is normally an integral part of ML. 

The authors define cybersecurity as “the set of technologies and processes designed 
to protect computers, networks, programs, and data from attack, unauthorized access, 
change, or destruction” (p. 1153). “Cyber security systems are composed of network 
security systems and computer (host) security systems. Each of these has, at a minimum, a 
firewall, antivirus software, and an intrusion detection system (IDS)” (p. 1153). The 
authors likely misspoke by saying “each”; the system must have, at a minimum, a firewall, 
antivirus software, and an IDS, any of which may comprise a network appliance or 
software or a component of a computer or host. A collection of components typically 
operates in a coordinated manner to implement these functions. 

The authors distinguish between three types of cyber analytics that support IDS: 
misuse-based (or signature-based), anomaly-based, and hybrid. Misuse-based analytics are 
designed to detect known attacks without having a large rate of false positive alarms. They 
are not capable of detecting zero-day (never before seen) attacks. Anomaly-based analytics 
create a model of normal behavioral patterns and attempt to detect deviations from these 
patterns. They have the potential to detect novel attacks and generate signatures that can 
be utilized to detect similar future attacks. Hybrid analytics combine these two approaches. 
The authors report that the majority of the reviewed approaches were hybrids. 

The paper discusses the two primary sources of data that can be used by an IDS: 
packet-level data, and NetFlow data. The difference between these data sets is granularity: 
The packet-level data set records information for each monitored network packet, whereas 
the NetFlow data records information for each transmitted or received data stream 
(possibly comprising many packets). Both data sources can be augmented by data collected 
from computers connected to a monitored network, including security logs and kernel 
(operating system) calls, and from network equipment (network logs). The paper makes 
strong arguments that an IDS should utilize these additional data sources, stating that “it is 
advantageous that an IDS be able to reach network- and kernel-level data. If only NetFlow 
(much easier to obtain and process) data are available for the IDS, these data must be 



16 

augmented by network-level data such as network sensors that generate additional features 
of packets or streams” (p. 1171). 

A recurring issue in this and other reviewed publications is the paucity of reference 
data sources to support IDS research and development. Data sets published by DARPA 
(DARPA 1998 and DARPA 1999) and the data set utilized for the KDD Cup challenge in 
1999 are the primary sources utilized by the majority of researchers. This is in part due to 
legal and privacy restrictions that limit the ability to collect and share network data, and in 
part due to commercial concerns (vendors that consider the data proprietary). However, 
even if data can be collected, significant resources (such as identifying and labeling packets 
or streams that are a consequence of malicious activities) are required before it can be 
useful to an IDS developer. As the paper states, “The fact that so many papers use the 
DARPA and KDD data sets is related to how difficult and time consuming it is to obtain a 
representative data set” (p. 1171). 

The paper provides a discussion of standard metrics used to judge the quality of an 
IDS, including accuracy (proportion of data that are correctly classified), sensitivity 
(probability of attack detection), and FAR. In contrast to the paper by Xin et al. (2018), 
which appears to include much of the same information, this paper does not tabulate its 
surveyed IDS methods by accuracy, sensitivity, or FAR. It does, however, provide a better 
overview of the methods utilized by the various IDS. 

The authors provide a reasonably comprehensive list of ML methods utilized in 
cybersecurity (primarily for IDS): 

• ANNs

• Association rules and fuzzy association rules

• Bayesian networks

• Clustering

• Decision trees (DTs)

• Ensemble learning

• Evolutionary computation

• Hidden Markov models

• Inductive learning

• Naïve Bayes

• Sequential pattern matching

• Support vector machines (SVMs)
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These methods have been developed over decades and applied in many fields of study 
since the 1950s (the Perceptron is an example and is the origin of ANNs), but in one case 
(naïve Bayes, which is the straightforward application of Bayes rule) dates from the 1700s. 
For each method, the authors present published applications in misuse detection, anomaly 
detection and hybrid detection, or all three together. The surveyed publications were 
selected by searches using Google Scholar for (“machine learning” AND “cyber”) or (“data 
mining” AND “cyber”), with emphasis on highly cited papers, although “it was also 
recognized that this emphasis might overlook new and emerging techniques, so some of 
these papers were chosen also” (p. 1153). 

An interesting outcome of this survey is that no method stood out as clearly the best 
approach for IDS. “Although some algorithms are accepted to be better performing than 
others, the performance of a particular ML algorithm is application and implementation 
dependent” (p. 1170). There was, however, a difference in the computational complexity 
across the methods, with clustering, nearest neighbor, and SVM methods having the lowest 
complexity. A critical issue is whether a method is “streaming capable”; that is, whether it 
can operate in real time as new data are received. Bayesian networks, clustering, naïve 
Bayes, and nearest neighbor methods were rated highly on this criterion, with ANN, 
association rules, hierarchical clustering, and sequence mining rated least capable of 
streaming. 

The authors noted that although a high percentage of the surveyed papers present 
offline methods, realistic IDS must be online and capable of processing streaming data. 
Only four of the surveyed papers described their systems as online and operating in real 
time. Given the evolving characteristics of intrusion threats, it is essential that an IDS be 
adaptive and able to learn and respond to emerging threats. The authors state that “an online 
suitable method addresses, at a minimum, three factors: time complexity, incremental 
update capability, and generalization capacity. … A method should be close to roughly O(n 
log n) to be considered a streaming algorithm. … For the incremental update capability, 
the clustering algorithms, statistical methods … and ensemble models can easily be 
updated incrementally. … However, updates to ANNs, SVMs, or evolutionary models may 
cause complications. … A good generalization capability is required so that the trained 
model does not drastically deviate from the starting model when new input data are seen. 
Most of the state-of-the-art ML and DM methods have very good generalization ability” 
(p. 1170). 

A final observation in the paper is the importance of access to reference data and the 
type of IDS that results: “…categorizing the studies with respect to the authors’ affiliations 
reveals studies that built actual IDSs and employed real-world data captured from campus 
networks or Internet backbones. All of these studies appear to have used systems integrated 
with more than one ML method and several modules related to attack signature capture, 
signature database, etc.” (p. 1171). In other words, an effective and functional IDS is most 
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likely not constructed using a single method or technique, but rather is a hybrid of multiple 
subsystems utilizing multiple data sources. 

In their recommendations, the authors state the following: 

IDSs are usually hybrid and have anomaly detection and misuse-detection 
modules. The anomaly detection module classifies attack patterns with 
known signatures or extracts new signatures from the attack-labeled data 
comping from the anomaly module. Often, an anomaly detector is based on 
a clustering method. Among clustering algorithms, density-based methods 
… are the most versatile, easy to implement, less parameter or distribution 
dependent, and have high processing speeds. In anomaly detectors, one-
class SVMs also perform well … . Among misuse detectors, because the 
signatures need to be captured, it is important that the classifier be able to 
generate readable signatures, such as branch features in a decision tree, 
genes in a genetic algorithm, rules in Association Rule Mining, or sequences 
in Sequence Mining. Therefore, black-box classifiers like ANNs and SVMs 
are not well suited for misuse detection. Several state-of-the-art ML and 
DM algorithms are suitable for misuse detection. Some of these methods 
are statistical such as Bayesian networks and HMMs; some are entropy-
based such as decision trees; some are evolutionary such as genetic 
algorithms; some are ensemble methods like Random Forests; and some are 
based on association rules. … methods like Bayesian networks or HMMs 
may not be the strongest approach because the data do not have the 
properties that are the most appropriate for them. Evolutionary computation 
methods may take a long time to run and therefore may not be suitable for 
systems that train online. If the training data are scarce, Random Forests 
might have an advantage. If the attack capture is important, decision trees, 
evolutionary computation, and association rules can be useful. (p. 1173) 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep 
Learning.” Nature, 521 (7553): 436–44. 

This paper provides a survey and overview of deep learning research results and 
applications up to about 2015. A review of the paper is provided in Appendix A because 
of its value to a reader who needs a fairly detailed introduction to deep learning. 

“Perspectives on Research in Artificial Intelligence and Artificial 
General Intelligence Relevant to DoD.” 2017. JSR-16-Task-003. 
McLean, VA: The MITRE Corporation, JASON Program Office. 

This report is the result of a JASON study sponsored by DoD/OSD/ASD(R&E). The 
study appears to have been triggered by the successes of multi-layer neural networks since 
the year 2000. The report states in its overview that this “phase-change re-energizing of a 
particular area of AI is the result of two evolutionary developments that together crossed a 
qualitative threshold: (i) fast hardware Graphics Processor Units (GPUs) allowing the 
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training of much larger—and especially deeper (i.e., more layers)—networks, and (ii) large 
labeled data sets (images, web queries, social networks, etc.) that could be used as training 
test-beds. This combination has given rise to the ‘data-driven paradigm’ of Deep Learning 
(DL) on deep neural networks (DNNs), especially with an architecture termed
Convolutional Neural Networks (CNNs)” (p. 1). While acknowledging the successes
attributed to deep learning, the authors are skeptical of its importance relative to other AI
technologies:

Deep Learning, based on DNNs trained on Big Data, is a tipping point in 
AI, evangelized by many fervent supporters. As a “dogma”, DL has these 
beliefs: (i) Use of DNNs, often convolutional, at scale. (ii) Flat, numerical 
data representations. Inputs are vectors of reals. Internal data 
representations are tens to hundreds of millions of real-valued activations. 
(iii) Desirability of training on Big Data with few hard-wired model
assumptions. DL seeks to learn everything from the data, believing that
“data is where truth lies”. (iv) The strong belief that an approximate answer
is good enough. When a solution works, use it and don’t ask too many
questions about how it works.

Nevertheless, the very real successes of the DL revolution may be 
overshadowing some other rapidly advancing areas in AI. The report 
discusses the successes of reinforcement learning (RL, which can be applied 
both to DL and other paradigms); graphical and Bayes models, especially 
with probabilistic programming languages; generative models that may 
allow training with much smaller data sets; and other kinds of probabilistic 
models such as those that have shown remarkable successes in question 
answering (e.g., IBM’s Watson), machine translation, and robotics. While 
DL will certainly affect all of these fields, it is not the only or final answer. 
More likely, DL will become an essential building block in more 
complicated, hybrid AI architectures.  
… 

The so-called “ilities” are of particular importance to DoD applications: 
reliability, maintainability, accountability, verifiability, evolvability, 
attackability, and so forth. As a generalization, DL—in its current state of 
development—is weak on the “ilities”. The full report discusses why, at a 
fundamental level, this is the case: DNNs are function approximators in 
very high dimensional spaces (e.g., millions of dimensions). The manifolds 
whose shape and extent they are attempting to approximate are almost 
unknowably intricate, leading to failure modes for which—currently—there 
is very little human intuition, and even less established engineering practice. 
(p. 2) 

The report places deep learning methods within a historical context of AI and ML, 
which the report states “enjoys a special relationship with AI. It provides the foundational 
mathematical and statistical algorithms that are used in AI’s application areas” (p. 5). The 
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report mentions specific ML algorithms, placing them in a “pre-modern” era, a “dawn of 
the modern” era, a “modern” era, and a “post-modern” era as follows (paraphrased from 
the report): 

• Pre-modern era

– Perceptrons

– Expert systems

• Dawn of the modern era

– Gaussian mixture models

– k-mean clustering

– Hidden Markov models (HMMs)

• Modern era

– SVMs

– Kernel methods

– Ensemble methods such as “random forest”

– Regularization methods based on Bayes priors

– Hierarchical Bayes models

• Post-modern era

– Deep neural networks (DNNs), including convolutional neural networks,
when combined with big data (yielding so-called deep learning)

– Graphical Bayes models, including statistical inference on large Bayes nets

– Reinforcement learning (RL)

The report provides a good discussion of the technological components of deep 
learning, including its roots with the perceptron of the 1950s, the generic multi-layered 
neural network architecture, the use of nonlinearities such as the sigmoid function, training 
with back-propagation, and convolutional neural networks and pooling layers. Other 
detailed technical aspects of DNNs are discussed, including stochastic gradient descent, 
dropout methods, transfer learning, data augmentation, autoencoders, and recurrent neural 
networks using long- and short-term memory cells or gated recurrent unit cells, with 
references for additional information. The discussion of deep learning concludes with a 
summary of “the Big Data Deep Learning ‘Dogma’”: 

Use deep (where possible, very deep) neural nets. Use convolutional nets, 
even if you don’t know why … . Adopt flat numerical data representations 
… Avoid the use of more complicated data structures. The model will 
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discover any necessary structure in the data from its flat representation. 
Train with big (really big) data. … An approximate answer is usually good 
enough. When it works, it is not necessary to understand why or how. (p. 
25)  

Section 4 of the report discusses “Deep Learning and the ‘Ilities’”: 

… as an important caveat, the current cycle of progress in BD/DL has not 
systematically addressed the engineering ‘ilities’: reliability, 
maintainability, debug-ability, evolvability, fragility, attackability, and so 
forth. Further, it is not clear that the existing AI paradigm is immediately 
amenable to any sort of software engineering validation and verification. 
This is a serious issue, and is a potential roadblock to DoD’s use of these 
modern AI systems, especially when considering the liability and 
accountability of using AI in lethal systems. (p. 27)  

This section provides an analysis not only of these shortcomings of deep learning but also 
of why addressing these shortcomings may be difficult, along with a few examples to 
illustrate this point. 

The remaining sections of the report discuss other promising areas of AI and the use 
of hardware acceleration for deep learning. The report concludes with a brief discussion of 
considerations specific to DoD and lists of findings and recommendations. 

This report is well worth the effort necessary to read it. It can also serve as a 
counterpoint to the excellent review article on deep learning (LeCun, Yann, Yoshua 
Bengio, and Hinton 2015) discussed in Appendix A. 

Taleqani, A. R., K. E. Nygard, R. Bridgelall, and J. Hough. 2018. 
“Machine Learning Approach to Cyber Security in Aviation.” 

The Taleqani paper discusses cyber risks to aviation operations and safety and the 
possibility that ML approaches can address these risks. The paper states that “… the 
aviation industry is highly susceptible to cyber-attacks. … According to the Directory of 
Strategy and Safety Management at the European Safety Agency, aviation systems were 
subject to an average of 1,000 attacks each month” (p. 147). Risks are associated with 
computer systems such as reservation systems, customer facing websites, and 
communications systems, including the aircraft communications addressing and reporting 
system (ACARS), next-generation air traffic control, and aircraft and air traffic control 
systems. 

The paper divides air safety cybersecurity threats into two categories: phishing and 
network attacks; network attacks are further divided into eavesdropping, denial of service 
(DoS), man in the middle (MITM), and spoofing. 

The paper referenced an interesting article (Whittaker, Ryner, and Nazif 2010) that 
“described the characteristics of a scalable classifier based on online gradient descent 
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logistic regression to detect phishing websites. It analyzed millions of pages a day to 
maintain Google’s phishing blacklist automatically and finally generated on average a false 
positive rate below 0.1%” (p. 148). The approach described by Whittaker is implemented 
at scale; the article states: “During the first six months of 2009, our classifier evaluated 
hundreds of millions of pages, automatically blacklisting 165,382 phishing pages” (p. 2). 
At the time the paper was written, Google was using this technology to maintain the 
blacklist it published, which was utilized by the Firefox, Chrome, and Safari web browsers. 
The classifier is trained offline using a rolling window of data from the past three months. 
A proprietary ML system was used for training, but the authors compared the results to 
results obtained using a random forest approach. The authors stated their findings “suggest 
that both random forests and other online learning implementations would adequately 
substitute for our proprietary learning systems” (p. 6). The article references a patent that 
describes the ML method (Bem, Harik, and Levenberg 2007); note that there are a large 
number of subsequent patents, many assigned to Google, that cite this patent. Some of these 
provide enhanced methods for model generation using ML. 

The Taleqani paper describes two other methods for detection and classification of 
phishing emails, but neither appears to perform as well as the method published by 
Whittaker. One uses a standard “Term Frequency-Inverse Document Frequency” (TF-IDF) 
method, while the other uses a combination of standard decision tree methods (inductive 
inference) and k-nearest neighbor (KNN) classification. 

The Taleqani paper discusses various ML approaches for network-based attacks and 
references (Buczak and Guven 2016), which was discussed earlier in this paper. 

Xin, Y., L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and 
C. Wang. 2018. “Machine Learning and Deep Learning Methods for
Cybersecurity.” IEEE Access, 6: 35365–81.

This article is a survey of ML and deep learning for network analysis of intrusion 
detection. “[C]ommonly used network datasets” are also discussed. The paper categorizes 
attack types into three categories: misuse-based, anomaly-based, and hybrid detection. 
According to the authors, misuse-based attack detection relies upon attack signatures, does 
not generate excessive false alarms, requires frequent updates to signature databases, and 
cannot detect zero-day attacks. The authors say anomaly-based techniques have the 
capacity to detect zero-day attacks because they monitor for anomalous behaviors and can 
be used to profile normal activities and generate signatures for new attacks, but they have 
the potential for high FARs. The authors state that hybrid detection methods are 
combinations of the first two methods, are used to increase detection rates of known 
intrusions and reduce false positive rates, and that most ML/deep learning methods are 
hybrids. 
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This paper contains material that appears similar to an earlier survey paper (Buczak 
and Guven 2016), but more recent results have been added. 

ML and deep learning algorithms discussed include SVMs, KNN, DT algorithms 
including those based upon Quinlan’s ID3 and C4.5 and Breiman’s CART, deep belief 
networks (DBN), recurrent neural networks (RNN), and convolutional neural networks 
(CNN). A selection of recent papers is discussed for each algorithm. Datasets discussed 
include the DARPA Intrusion Detection Data Sets, the KDD Cup 99 Dataset, the NSL-
KDD Dataset, and the ADFA Dataset. All of these datasets except for the ADFA Dataset 
are based upon network traffic logs. The ADFA Dataset provides system call data for two 
operating systems, Windows and Linux. The list of references is reasonably extensive. 

The results summarized in this survey article provide detection rates in the 80–100% 
range, with FARs from tenths of a percent to 10%. Of the 34 IDS methods that reported 
accuracy cited in this article, 28 reported accuracies of 90% or better, and 11 reported 
accuracies of 99% or better.  

(Accuracy is defined as the percentage of classifications (positive or negative threats) 
that are correct. Note that if true positives—threats—are rare relative to benign items, 
accuracy can be misleading in that a highly accurate system can still have a large FAR.)  

Only 16 studies reported precision (the percentage of alarms that were not false 
positives); 11 reported precisions of 90% or better, with 2 reporting 99% or better. The 
methods that utilized neural networks did not exhibit clear superiority (99% accuracy or 
precision, or better) to other methods; however, hybrid methods (using multiple detection 
technologies) appeared to have an advantage. 

This paper did not point out the importance of having very high precision (or very 
low FARs) to the extent that it should. In a typical IDS installation on a network protected 
by one or more firewalls, malicious transactions are an extremely low percentage of total 
transactions. In this scenario, even quite small FARs (0.1% or less) may generate excessive 
false alarms. Only two of the 18 studies that reported FARs cited rates of 0.1% or less, and 
one of these is suspect (reporting 100% accuracy and 0% FAR). Three of the studies 
reported FARs near 10%—a level that is clearly unacceptable in a realistic setting. Of the 
three studies reporting the lowest FARs, two utilized DTs, and one utilized a convolutional 
neural network—not an impressive showing for neural network technologies. 

C. Cybersecurity Risks Associated with AI and ML, and Adversarial
Machine Learning
These articles address the potential for adversaries avoiding detection, causing

misclassification, or posing other threats to systems that incorporate AI and ML by 
exploiting features of the AI/ML algorithms. 
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Brundage, Miles et al. 2018. “The Malicious Use of Artificial 
Intelligence: Forecasting, Prevention, and Mitigation.”  

This 100-page report is a result from a workshop held February 19-20, 2017, in 
Oxford, UK. Miles Brundage of the Future of Humanity Institute (FHI) and Shahar Avin 
of the Centre for the Study of Existential Risk (CSER) co-chaired the workshop. The focus 
of the workshop was the dual-use nature of AI and ML and on the implications this should 
have to the research and development community, the policy and political communities, 
and commercial and defense establishments. “The workshop was co-organized by FHI, 
CSER, and the Leverhulme Centre for the Future of Intelligence (CFI).” (Brundage, Miles 
et al. 2018, p. 75) Participation was broad, with attendance by individuals from OpenAI, 
University of Cambridge, University of Bath, Princeton University Center for Information 
Technology Policy, Yale Law School, Yale University, Electronic Frontier Foundation, 
University of Oxford, University of California at Berkeley, Microsoft Research, Google, 
DeepMind, Arizona State University, and University of Louisville, among others. 

The report examines adversarial scenarios relating to digital security, physical 
security, and political security. The aspect of the work most relevant to the context of this 
review involves digital security. The report is written at a high level but provides references 
into the technical and policy literature. The primary take-away is that AI is a dual-use 
technology: “AI systems and the knowledge of how to design them can be put toward both 
civilian and military uses, and more broadly, toward beneficial and harmful ends” (p. 16). 
The report points out many issues, but one stands out: “Today’s AI systems suffer from a 
number of novel unresolved vulnerabilities. These include data poisoning attacks 
(introducing training data that causes a learning system to make mistakes), adversarial 
examples (inputs designed to be misclassified by machine learning systems), and the 
exploitation of flaws in the design of autonomous systems’ goals” (p. 17). The implications 
for the threat landscape are summarized: “…we expect attacks to typically be more 
effective, more finely targeted, more difficult to attribute, and more likely to exploit 
vulnerabilities in AI systems” (p. 18). In particular, “…if an actor begins to deploy novel 
AI systems, then they may open themselves up to attacks that specifically exploit these 
vulnerabilities. … we expect the attacks supported and enabled by progress in AI to be 
especially effective, finely targeted, difficult to attribute, and exploitative of vulnerabilities 
in AI systems” (pp. 20–21). One example discussed was spear phishing: “spear phishing is 
more effective than regular phishing, which does not involve tailoring messages to 
individuals, but it is relatively expensive and cannot be carried out en masse. More generic 
phishing attacks manage to be profitable despite very low success rates merely by virtue of 
their scale. By improving the frequency and scalability of certain attacks, including spear 
phishing, AI systems can render such trade-offs less acute. The upshot is that attackers can 
be expected to conduct more effective attacks with greater frequency and at a larger scale. 
The expected increase in the effectiveness of attacks also follows from the potential of AI 
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systems to exceed human capabilities” (p. 21). The authors expect increased automation 
and complexity of social engineering attacks; for example, “[a]s AI develops further, 
convincing chatbots may elicit human trust by engaging people in longer dialogues, and 
perhaps eventually masquerade visually as another person in a video chat” (p. 24). 

The report also focuses upon the potential for AI and ML to introduce new 
vulnerabilities in systems they are designed to protect: “…we should expect attacks that 
exploit the vulnerabilities of AI systems to become more typical” (p. 22). The authors 
expect “[a]utomation of vulnerability discovery” and “[m]ore sophisticated automation of 
hacking” (p. 25). The availability of large datasets used to identify victims offers the 
opportunity to prioritize targets for cyber attacks using ML, and the AI used in applications, 
“especially [applications] in information security,” may be exploited via data poisoning to 
“surreptitiously maim or create backdoors in consumer machine learning models,” while 
black-box methods may be used to extract proprietary AI system capabilities, where “[t]he 
parameters of a remote AI system are inferred by systematically sending it inputs and 
observing its outputs” (p. 26). 

The authors note that “[c]ybersecurity is an arena that will see early and enthusiastic 
deployment of AI technologies, both for offense and defense … AI is already being 
deployed for purposes such as anomaly and malware detection” (p. 31) The report states 
that important IT systems have often evolved into “sprawling behemoths, cobbled together 
from multiple different systems, under-maintained and – as a consequence – insecure. 
Because cybersecurity today is largely labor-constrained, it is ripe with opportunities for 
automation using AI. Increased use of AI for cyber defense, however, may introduce new 
risks… .” (p. 31). “To date, the publicly-disclosed use of AI for offensive purposes has 
been limited to experiments by ‘white hat’ researchers, who aim to increase security 
through finding vulnerabilities and suggesting solutions. However, the pace of progress in 
AI suggests the likelihood of cyber attacks leveraging machine learning capabilities in the 
wild soon, if they have not done so already” (p. 32). The report quotes Admiral Mike 
Rogers: “Artificial Intelligence and machine learning – I would argue – is foundational to 
the future of cybersecurity […] it is not the if, it’s only the when to me” (p. 32). 

The authors briefly mention the DARPA Cyber Grand Challenge contest of 2014–
2016 (discussed in section 4 of this report) and state that “…the application of AI to the 
automation of software vulnerability discovery, while having positive applications … can 
likewise be used for malicious purposes to alleviate the labor constraints of attackers” (pp. 
32–33). AI can be utilized to avoid detection, according to the authors, citing works that 
create “a machine learning model to automatically generate command and control domains 
that are indistinguishable from legitimate domains”, use “reinforcement learning to create 
an intelligent agent capable of manipulating a malicious binary with the end goal of 
bypassing [next generation anti-virus] detection”, and use “adversarial machine learning to 
craft malicious documents that could evade PDF malware classifiers” (p. 34). Large efforts 
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that utilize ML to identify threats and develop signatures for intrusion detection systems 
can also be used to generate malware; the authors cite “…services like Google’s VirusTotal 
file analyzer [that] allows users to upload variants to a central site and be judged by 60+ 
different security tools. This feedback loop presents an opportunity to use AI to aid in 
crafting multiple variants of the same malicious code to determine which is most effective 
at evading security tools” (p. 34). The report states that “[w]hile the specific examples of 
AI applied to offensive cybersecurity … were developed by white hat researchers, we 
expect similar efforts by cybercriminals and state actors in the future as highly capable AI 
techniques become more widely distributed…” (p. 34). 

Katzir, Ziv, and Yuval Elovici. 2018. “Quantifying the Resilience of 
Machine Learning Classifiers Used for Cyber Security.” Expert Systems 
with Applications 92 (February): 419–29. 

This paper models the susceptibility of a classifier to manipulation by an adversary 
as a mathematical game. An adversary incurs costs for manipulation, and that cost is 
balanced against the performance penalty a classifier incurs by utilizing less susceptible 
means of threat assessment. Classifiers are modeled as operations on features that can be 
measured and describe various aspects of potential threats, and each feature is assigned a 
cost that an adversary would incur in modifying that feature’s measurement. Classifiers are 
designed by selecting features and applying one of several ML methods using a set of 
examples. One valuable lesson learned from this research is the suggestion that ensemble-
based classifiers appear to be more resilient to adversarial actions than other classifier 
types. The paper has a fairly extensive bibliography referencing recent publications 
addressing the need to design classifiers for cybersecurity applications that take explicit 
account of the potential disruptions of adversarial activities. 

Two feature selection algorithms are described: the adversary resilient algorithm and 
the k-relaxed feature selection algorithm. Adversary resilient algorithms utilize only 
features where an adversary would incur an unacceptably high cost to modify it, modeled 
as a cost greater than a threshold parameter’s value. The k-relaxed feature selection 
algorithm allows additional features to be utilized by the classifier as long as the combined 
cost incurred by an adversary to modify those features is no greater than the value of the 
parameter k. As expected, an optimal (non-resilient) algorithm will perform best if no 
adversarial action is present, whereas the k-relaxed feature selection algorithm will produce 
a classifier that performs less well, and the adversary resilient algorithm will produce a 
classifier that performs least well. However, the non-resilient algorithm produces 
classifiers that more quickly lose effectiveness due to increased adversarial action. 

The authors utilized a reasonably up-to-date collection of executables collected 
during November 2015 from Malwr (https://malwr.com, which is now defunct) to train and 
evaluate classifiers. The data set included “4312 executable analysis reports, including 

https://malwr.com/
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1110 malware and 3202 benign samples” (p. 423). Malwr’s cloud-based malware detection 
service was based upon the Cuckoo sandbox for malware analysis (“Cuckoo Sandbox – 
Automated Malware Analysis” n.d.), which is an open source dynamic analysis platform. 
According to the authors of the present paper, the “framework is based on a virtual machine 
that is used to run the tested executable and a host machine that manages the analysis 
process and collects relevant sensor readings” (p. 423). The dataset was labeled using 
VirusTotal (“VirusTotal” n.d.), and “a process was deemed malicious if one or more anti-
virus engines classified it as such” (p. 423). Malwr was a “powerful, free, independent and 
non-commercial service to the security community, independent of academic researchers” 
(p. 423). Some alternatives to Malwr appear to be available (“Malwr Alternatives and 
Similar Websites and Apps - AlternativeTo.Net.” n.d.). 

Costs of designing an exploit that avoided detection yet had the same key features of 
each malware example in the data set were estimated by four independent content experts, 
each with at least 10 years of experience in the field. The costs were on a scale of 1-5, “with 
one denoting a minimal amount of effort, and five meaning ‘practically impossible’” (p. 
424). A threshold cost of 3.75 was used, and features with detection avoidance strategies 
with costs above this value were deemed infeasible and therefore safe for adversary 
resilient (most pessimistic) classifiers to use. A total of 52 features were available for use 
by the classification algorithms. 

The classifier design and analysis approach described in this paper ignored the 
potential of cross-feature interactions (or correlations); each feature was either utilized, or 
not, by a specific classifier. This ignores the potential for both improved adversarial 
resilience and performance gains that might be achieved by optimization over a mixed 
feature strategy—for example, utilizing partial least squares to reduce the dimension of the 
feature space. Although the outcomes of this research are somewhat expected (decreased 
sensitivity to adversarial actions when classifiers utilize a reduced set of features that are 
difficult for an adversary to exploit, with a concomitant performance penalty when no 
adversarial action is present), there is still value in the findings. The authors state:  

Multisensor fusion is the basis of most modern cyber defense systems in 
which a variety of sensors are deployed throughout the defending 
organization, and the sensors’ readings are analyzed collectively in an 
attempt to identify attacks. … We also explored the inherent resilience of 
different classification algorithms. The random forest classifier 
demonstrated superior resilience in all cases, suggesting that ensemble 
based classifiers are inherently more resilient to adversarial attacks. … Our 
work suggests that ensemble based classifiers are inherently more resilient 
than simple classifiers. (p. 428)  
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Klarreich, Erica. 2016. “Learning Securely.” Communications of the 
ACM 59 (11): 12–14. 

Klarreich discusses the possibility of “adversarial ML” or poisoning an ML system 
so that it makes incorrect decisions or classifications. She points out that this can be done 
with little knowledge of the structure of the ML algorithm. Examples include work by N. 
Carlini at UC Berkeley, “who has crafted audio files that sound like white noise to humans, 
but like commands to speech recognition algorithms” (p. 12) and work by I. Goodfellow 
at OpenAI, who was an author of the 2013 paper that modified an image of a stop sign so 
that it was classified as a yield sign. She states that it also has been shown that inputs 
designed to fool one ML system can also fool others:  

In a paper posted online in May [2016], Goodfellow … [and his co-authors] 
showed that adversarial examples transfer across five of the most commonly 
used types of machine learning algorithms: neural networks, logistic 
regression, support vector machines, decision trees, and nearest neighbors. 
The team carried out ‘black box’ attacks … on classifiers hosted by Amazon 
and Google. They found after only 800 queries to each classifier, that they 
could create adversarial examples that fooled the two models 96% and 89% 
of the time, respectively. (p. 14).  

See (Papernot, McDaniel, and Goodfellow 2016) for details; a second paper (Carlini and 
Wagner 2017) explores the construction of adversarial examples in greater detail. See also 
the paper by Yuan (Yuan, He, Zhu, and Li 2019). 

As ML algorithms become better able to perform unsupervised ML and are used to 
implement systems that adapt dynamically to changing conditions—for example, as an 
adaptive intrusion detection system—fields related to construction of adversarial ML 
examples will most likely become critically important. An adaptive ML system designed 
to detect threats might be re-trained by incoming examples to ignore a specific class of 
threats, poisoning the system to allow malware to escape detection. 

Yampolskiy, Roman V., and M. S. Spellchecker. 2016. “Artificial 
Intelligence Safety and Cybersecurity: A Timeline of AI Failures.” 
ArXiv:1610.07997 [Cs], October. 

Yampolskiy discusses artificial intelligence safety, emphasizing that “[f]ully 
autonomous machines can never be assumed to be safe” (p. 8). Numerous historical 
examples are provided. The paper is a warning that complex systems have vulnerabilities 
and can have unintended consequences. 
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4. DARPA’s Automated “Capture the Flag”
Experiment 

The vendors’ reports on cybersecurity issues highlight two points that should be 
common knowledge in the cybersecurity field. First, both the number of attempted attacks 
on computers and networks and the speeds of execution of attacks continue to increase. 
Several factors drive this, including the potential rewards for success, the rich environment 
in which tools and capabilities can be shared or rented (such as within the so-called “dark 
web”), automation (including ML and AI), and harnessing of large collections of resources 
(examples include bot-nets used for distributed denial of service attacks and hijacked cloud 
instances). Second, defenders must effectively utilize automation to keep up with the 
attackers. 

CTF events have been utilized in professional and educational settings to teach 
cybersecurity techniques – both defensive and offensive – for many years. In one form, 
players both attack competitors’ systems and defend their own systems, according to 
specified ground rules, and they amass points by achieving goals such as gaining access to 
or retrieving information from targets. DARPA organized, funded, and ran a Cyber Grand 
Challenge in 2014–2016 that pitted machines and algorithms, rather than human players, 
against each other to explore the potential of automated discovery of and defense against 
information system vulnerabilities. 

The competition began in 2014 with 104 teams. Through a series of 
qualifying events that required teams to demonstrate technical excellence, 
the number of teams was narrowed to 28 for the main qualifying event held 
in June 2015. Seven teams advanced to the finals. They were: 

University of Idaho (System Name: Jima) 
University of California, Santa Barbara (System Name: Mechaphish) 

University of California, Berkeley (System Name: Galactica) 
Raytheon, Inc. (System Name: Rubeus) 

University of Virginia and Grammatech, Inc. (System Name: Xandra) 
ForAllSecure, Inc. (System Name: Mayhem) 

Disekt (System Name: Crspy) 

In August 2016 at DEF CON 24, the seven teams faced off in a final contest. 

(Davidson 2017, p. 1) [minor reformatting was performed] 

The DARPA Cyber Grand Challenge (CGC) is of interest for a couple of reasons. 
First, it is reasonably clear that cyber defense must, to a significant degree, be automated, 
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if for no other reason than to rapidly trigger and alert human response teams and to help to 
prioritize their responses to attacks. Without automation, the amount of information that 
must be monitored is overwhelming. Second, the CGC’s CTF design is a good way to 
evaluate the relative merits of different technologies (or algorithms) and different mixes of 
these technologies in a somewhat realistic scenario. Defensive strategies such as automated 
mitigation or patching may be directly applicable, and although offensive strategies are 
unlikely to be of use in most situations, these strategies are the same strategies that may be 
utilized during software or system development to test and evaluate implementations. 

DARPA stated its justification of the CGC as follows: 

The need for automated, scalable, machine-speed vulnerability detection 
and patching is large and growing fast as more and more systems—from 
household appliances to major military platforms—get connected to and 
become dependent upon the internet. Today, the process of finding and 
countering bugs, hacks, and other cyber infection vectors is still effectively 
artisanal. Professional bug hunters, security coders, and other security pros 
work tremendous hours, searching millions of lines of code to find and fix 
vulnerabilities that could be taken advantage of by users with ulterior 
motives. (Fraze n.d., p. 1)  

Anticipated future benefits of the CGC listed on this web page included: 

• “Expert-level software security analysis and remediation, at machine speeds on
enterprise scales,

• Establishment of a lasting R&D community for automated cyber defense, and

• Creation of a public, high-fidelity recording of real-time competition between
automated cyber defense systems.” (p. 1)

Mayhem, the system developed by ForAllSecure, Inc. won the DARPA CGC; the 
strategy is partially described by Brumley (2019). AI and ML are described only once in 
the last paragraph of the article:  

Right now, ForAllSecure is selling the first versions of its new service to 
early adopters, including the U.S. government and companies in the high-
tech and aerospace industries. At this stage, the service mostly indicates 
problems that human experts then go in and fix. For a good while to come, 
systems like Mayhem will work together with human security experts to 
make the world’s software safer. In the more distance future, we believe 
that machine intelligence will handle the job alone. (p. 35) 

The technology used by ForAllSecure appears to depend upon work performed by 
three of its founders (Avgerinos, Brumley, and Rebert) and S. K. Cha at Carnegie Mellon 
University and described in four U. S. Patents (Brumley, Cha, and Avgerinos 2015; 
Brumley, Cha, Avgerinos, and Rebert 2015; Avgerinos, Rebert, and Brumley 2017; 
Brumley, Cha, Avgerinos, and Rebert 2017), cited in order of their filing dates. None of 
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these patents mentions artificial intelligence or ML. The specifications of these patents 
indicate that the methods utilize symbolic execution of portions of target software (which 
may be source code, an intermediate representation such as a byte code, or machine level 
instructions) combined with logic (using function representations of the portion’s actions) 
to limit the size of the search space and heuristics to prioritize searches to find 
vulnerabilities in the software. Both dynamic and static symbolic execution can be used; a 
bibliography of papers related to symbolic execution is available on GitHub (Anand n.d.). 
A module is then utilized to generate code to exploit each generated vulnerability, which 
is subsequently tested using a verification module. The Mayhem system subsequently 
generates a patch, which must also be tested and then applied to its executing software to 
protect itself against the competitors in the competition. The most recent patent (Brumley, 
Cha, Avgerinos, and Rebert 2017) appears to describe aspects of the Mayhem system. 

The Mayhem system implemented by ForAllSecure thus appears to utilize symbolic 
execution of target software combined with a heuristic search strategy and a substantial 
amount of parallelization (using the hardware provided by DARPA for the CGC). Although 
heuristic search is also a feature of AI systems, this does not mean Mayhem qualifies as an 
AI system (though it does not exclude the possibility). The other popular method used to 
find vulnerabilities in software is fuzzing, which exercises the target software using 
randomly generated inputs. Vulnerabilities are found when an input causes the software to 
misbehave or crash. An open source project that implements fuzzing is American Fuzzy 
Lop (Zalewski n.d.), which also uses various heuristics to attempt to more quickly find 
vulnerabilities. 

Xandra, the system developed by GrammaTech and the University of Virginia, placed 
second in the DARPA CGC. Xandra utilized “fuzzing pods capable of 1.8M fuzzing ops 
per second” and binary code analyzers, combined with patch generators to repair binaries. 
(“GrammaTech’s Team TECHx Places Second in DARPA’s Cyber Grand Challenge.” 
n.d., p. 1). According to an article in Wikipedia (not considered authoritative),
GrammaTech is a spin-off from Cornell University, and their current research focuses on
static and dynamic analysis of source code and binaries. (“GrammaTech” 2019). Their
products include CodeSonar (“CodeSonar” 2015) and CodeSonar/x86 (“Binary Static
Analysis with CodeSonar” 2015).

Mechaphish (Mechanical Phish), developed by the team from the University of 
California, Santa Barbara, placed third in the DARPA CGC. The team, now known as 
Shellphish, has published their software as open source. The software relies in part upon 
binary code analysis using a framework called “angr” (“DARPA CGC ~ Shellphish” n.d.). 
The research group has published several papers that document their work. (“Cyber Grand 
Shellphish” n.d.; Shoshitaishvili et al. 2016, 2018; Stephens et al. 2016; Wang et al. 2017;) 
The Driller component of Mechaphish (Stephens et al. 2016) is described as an 
augmentation of fuzzing methods using selective concolic execution to enable deeper 
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exploration of target software. The term “concolic” execution refers to a combination of 
concrete and symbolic execution, where variables are selectively instantiated to concrete, 
or non-symbolic, values. See “Concolic Testing” (2019) for a brief discussion of concolic 
testing and several references, including some references to commercial systems. 

Rubeus, the system developed by Raytheon, placed fourth in the DARPA CGC. 
(“Raytheon: The Bot Defenders — Humans and Machines Team up to Defeat Cyber 
Attacks” n.d.). Rubeus utilized static analysis tools and symbolic execution, and a cyber 
reasoning system that “used advanced analytics, autonomous reverse engineering software, 
and continuous machine learning.” (“Cyber-Physical Systems and Autonomy — 
Highlighting Raytheon Company’s Work” 2017, p. 2). 

Galactica, the system developed by CodeJitsu at the University of California, 
Berkeley, CA, Syracuse, NY, and Lausanne, Switzerland, placed fifth in the DARPA CGC. 
Galactica utilized coverage-based “graybox” fuzzing based upon AFLfast, a fork of the 
AFL open source project described above (Zalewski n.d.). The technology is described by 
Böhme (Böhme, Pham, and Roychoudhry 2018), and the AFLfast software is available on 
GitHub (Böhme n.d.). Although Galactica placed fifth in the CGC, it placed second in the 
number of bugs found. 

Jima, the system developed by the Center for Secure and Dependable Systems 
(CSDS) at the University of Idaho in Moscow, ID, placed sixth in the DARPA CGC. The 
system was developed by a two-person team (Drs. Jia Song and Jim Alves-Foss) and 
utilized a black-box fuzzing approach to detect vulnerabilities and static analysis of the 
target binaries. Some documentation of the techniques used is available in two published 
articles, but both were written before the final competition. (Song and Alves-Foss 2015, 
2016). 

Crspy, the system developed by Disekt at the University of Georgia in Athens, GA, 
placed seventh in the DARPA CGC. No published information was located that describes 
this system. 

The following bullets summarize findings from this evaluation of the published 
artifacts from the DARPA Cyber Grand Challenge: 

• Automated discovery and correction of vulnerabilities (or defects of specific types) in
software is not only possible; it has been demonstrated.

• Automated discovery of vulnerabilities can be accomplished using fuzzing. See, for
example, the listing of vulnerabilities discovered using AFL at (Zalewski n.d.). See
also the AFLfast fork of AFL at (Böhme n.d.; Böhme, Pham, and Roychoudhry 2018).

• Static software analysis and dynamic execution of software (using instrumentation,
symbolic execution, or a combination of the two) are also viable technologies for
vulnerability discovery.
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• Symbolic execution provides the opportunity to utilize automated theorem provers to
test a vulnerability (proof by construction) and guide automated code patching.

• These methods can be applied to either source code or binary executables and should
be independent of the implementation language.

• Open source tools are available, and some commercial products are either available or
under development.

• The value of these technologies is two-fold. First, they can be incorporated in the
testing (verification and validation) phases of software life cycle processes. Second,
they offer ways to test and patch third-party software that is being incorporated into
another system or software during development.

• The DARPA Cyber Grand Challenge’s primary focus was upon cybersecurity, and
these technologies not only have obvious utility in this context but are also in active
use. However, the same technologies have the potential for much broader applicability
to software and system testing, and there are indications that they are being adopted.

DARPA held a proposers’ day for a new program on April 19, 2018. The program is 
called Computers and Humans Exploring Software Security (CHESS) and is managed from 
the DARPA Information Innovation Office (I2O); a broad agency announcement (BAA – 
funding opportunity number HR001118S0040)12 was released on April 18, 2018. This 
program is a logical successor to the DARPA Cyber Grand Challenge. The BAA states that 
the “goal of the CHESS program is to develop computer-human systems to rapidly discover 
all classes of vulnerability in complex software. These novel approaches for the rapid 
detection of vulnerabilities will focus on identification of system information gaps that 
require human assistance, generation of representations of these gaps appropriate for 
human collaborators, capture and integration of human insights into the analysis process, 
and the synthesis of software patches based on this collaborative analysis” (“Computers 
and Humans Exploring Software Security (CHESS).” Broad Agency Announcement 
HR001118S0040 2018, p. 4). 

The introductory section of the BAA makes clear that the automated vulnerability 
analysis and patching systems of the DARPA Cyber Grand Challenge are not sufficient. 
According to the BAA, automated tools must (a) be able to find and reason about 
significantly more types of vulnerabilities than were addressed by prior automation and (b) 
be able to collaborate with human analysts to address these vulnerabilities. These goals can 
be interpreted as a desire for a more automated and “intelligent” security information and 
event managers SIEM. Quoting from the introduction: 

12 See “Computers and Humans Exploring Software Security (CHESS).” Broad Agency Announcement 
HR001118S0040. DARPA. April 18, 2018, and “Computers and Humans Exploring Software Security 
(CHESS) - DARPA-SN-18-40 (Archived) - Federal Business Opportunities: Opportunities” n.d. 
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The Department of Defense (DoD) maintains information systems that 
depend on Commercial off-the-shelf (COTS) software, Government 
off-the-shelf (GOTS) software, and Free and open- source (FOSS) 
software. Securing this diverse technology base requires highly skilled 
hackers who reason about the functionality of software and identify 
novel vulnerabilities. This process requires hundreds or thousands of 
hours of manual effort per discovered vulnerability and does not scale 
sufficiently to secure the continuously growing technology base. 

Hackers use program analysis techniques and tools to identify and 
mitigate vulnerabilities, but this process requires considerable 
expertise, manual effort, and time. These techniques include dynamic 
analysis, static analysis, symbolic execution, constraint solving, data 
flow tracking, and fuzz testing. Automated program analysis 
capabilities can reason over only a few vulnerability classes without 
human involvement, such as memory corruption or integer overflow, 
but cannot address the majority of vulnerabilities. These unaddressed 
vulnerability types depend on subtle semantic and contextual 
information, which is beyond the grasp of modern automation. Scaling 
up existing approaches to address the size and complexity of modern 
software packages is not possible given the limited number of expert 
hackers in the world, much less the DoD. 

The CHESS program will develop capabilities to discover and address 
vulnerabilities of all types in a scalable, timely, and consistent manner. 
DARPA believes that achieving the necessary scale and timelines in 
vulnerability discovery will require innovative combinations of 
automated program analysis techniques with support for advanced 
computer-human collaboration (CHC). Due to the cost/scarcity of 
expert hackers, such capabilities must be able to collaborate with 
humans of varying skill levels, even those with no previous hacking 
experience or relevant domain knowledge. (pp. 4-5) 

The BAA includes Figure 1 (p. 6) to illustrate the CHESS concept. The blue boxes in 
the figure represent the automation, which is to be used to discover vulnerabilities in either 
source code or binaries and generate a representation of the discovered information and 
provide context for human analysts. Proof of detected vulnerabilities may be a 
collaborative activity involving both automation and humans. 
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Figure 1. CHESS System Overview. 

Proposers were allowed to suggest work in five technical areas: human collaboration, 
vulnerability discovery, “voice of the offense,” control team, and integration, test, and 
evaluation (p. 8). The proposed work was to be applicable to at least one of the C/C++, 
Python, and JavaScript programming languages and either the Linux or Windows operating 
system environment. The CHESS program is designed to target the vulnerability classes 
listed in Table 1 (p. 7), using the Common Weakness Enumerations (CWEs) defined in 
MITRE’s CWE List Version 3.0.13 

Table 1. Target Vulnerability Classes. 

13 See https://cwe.mitre.org/data/index.html. 
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Recent announcements indicate that DARPA has awarded at least one contract to a 
group that includes members of the Shellphish team. (“Bianchi Co-PI in $11.7 Million 
DARPA CHESS Grant | Department of Computer Science” n.d.; “CHECKMATE! SecLab 
Receives $11.7 Million Grant from DARPA CHESS Program | UCSB Computer Science” 
n.d.)

Two other DARPA programs are of possible interest for automated testing of 
software: the VET program (“Vetting Commodity IT Software and Firmware (VET)” n.d.) 
and the APAC program (“Automated Program Analysis for Cybersecurity (APAC)” n.d.). 
According to the archived information about the VET program,  

DARPA created the Vetting Commodity IT Software and Firmware (VET) 
program to address the threat of hidden malicious functionality in COTS IT 
devices. VET’s goal is to demonstrate that it is technically feasible to 
determine that the software and firmware shipped on commodity IT devices 
is free of broad classes of hidden malicious functionality. (“Vetting 
Commodity IT Software and Firmware (VET)” n.d., p. 1).  

DARPA’s description of the APAC program follows: 

The Automated Program Analysis for Cybersecurity (APAC) program aims 
to address the challenge of timely and robust security validation of mobile 
apps by first defining security properties to be measured against and then 
developing automated tools to perform the measuring. APAC will draw 
heavily from the field of formal-methods program analysis (theorem 
proving, logic and machine proofing) to keep malicious code out of DoD 
Android-based application marketplaces. (“Automated Program Analysis 
for Cybersecurity (APAC)” n.d., p. 1).  

Thus, the VET program focuses upon commodity hardware, while the APAC program’s 
focus is upon mobile apps. Both of these programs warrant additional exploration to 
determine their relevance to the current task. 
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5. Books and Reports Covering AI and ML in
the Context of Cybersecurity 

Bowen, Pauline, Joan Hash, and Mark Wilson. 2007. “Information 
Security Handbook: A Guide for Managers.” NIST Special Publication 
(SP) 800-100. Gaithersburg, MD: National Institute of Standards and 
Technology.  

This handbook is part of the NIST Special Publication 800 series of documents 
relating to information system security and provides high-level guidance for managers. It 
is referenced here as an overview of the various issues surrounding information system 
security, and particularly, cybersecurity. From the Introduction:  

This Information Security Handbook provides a broad overview of 
information security program elements to assist managers in understanding 
how to establish and implement an information security program. … The 
purpose of this publication is to inform members of the information security 
management team (agency heads; chief information officers [CIOs]; senior 
agency information security officers [SAISOs], also commonly referred to 
as Chief Information Security Officers [CISOs]; and security managers) 
about various aspects of information security that they will be expected to 
implement and oversee in their respective organizations. In addition, the 
handbook provides guidance for facilitating a more consistent approach to 
information security programs across the federal government. (p. 1).  

The handbook provides an overview of the system development life cycle and 
includes chapters on security awareness and training, capital planning and investment, 
interconnecting systems, performance metrics, security planning including personnel roles 
and responsibilities and the system security plan, contingency planning, risk management, 
certification, accreditation, security assessments, security services and products, incident 
response, and configuration management. 

Chio, Clarence, and David Freeman. 2018. Machine Learning and 
Security: Protecting Systems with Data and Algorithms. O’Reilly Media, 
Inc. 

The publisher’s description14 of the book begins with two questions: 

Can machine learning techniques solve our computer security problems and 
finally put an end to the cat-and-mouse game between attackers and 
defenders? Or is this hope merely hype? Now you can dive into the science 
and answer this question for yourself. With this practical guide, you’ll 

14 See https://learning.oreilly.com/library/view/machine-learning-and/9781491979891/#toc. 

https://learning.oreilly.com/library/view/machine-learning-and/9781491979891/#toc
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explore ways to apply machine learning to security issues such as intrusion 
detection, malware classification, and network analysis. 

The first chapter addresses the question: “Why machine learning and security?” It provides 
a discussion of the cyber attacker’s economy and the marketplace for hacker skills, and 
some brief comments on how adversaries are using ML. The chapter concludes with an 
example that constructs a spam filter using the Natural Language Toolkit (NLTK)15 in 
Python and the 2007 TREC Public Spam Corpus data set16. An iterative approach is used 
that adds a hashing scheme to generate signatures and achieves an 88.6% classification 
accuracy on the test data set. 

The second chapter provides an overview of classification methods, including the 
logistic regression, DT, decision forest, SVM, naïve Bayes, KNN, and neural network 
methods of supervised classification, followed by a discussion of training set construction, 
feature selection, over/under fitting, and receiver operating characteristic (ROC) curves. 
Clustering methods are then discussed, including k-means, hierarchical clustering, locally 
sensitive hashing, k-d trees, and density-based spatial clustering of applications with noise 
(DBSCAN). A good bibliography is included. 

Subsequent chapters discuss anomaly detection in intrusion detection systems, 
malware analysis, network traffic analysis, protecting the consumer web, production 
systems (scalability), and adversarial ML. The book’s examples assume some knowledge 
of programming languages, with examples that use Python, C, and Java, and some 
knowledge of assembly language code and executable file formats, as well as an 
acquaintance with web and other network protocols, UNIX shell commands and a 
debugger. The chapter on network traffic analysis assumes some knowledge of firewalls 
or other packet filtering technologies. 

The book provides an excellent overview of several aspects of both the problems 
faced by those charged with protecting cyber infrastructure and of the technologies that can 
be used to address these problems. The book contains sufficient details to gain an 
understanding of the methods that are discussed with references to the literature for more 
details. 

Fazeldehkordi, E., O. A. Akanbi, and Iraj Sadegh Amiri. 2014. A 
Machine-Learning Approach to Phishing Detection and Defense. 
Syngres. 

This publication is a research report that compares the performance of four types of 
classifiers—DTs, KNN (with multiple values of k), SVM, and linear regression—as they 

15 See https://www.nltk.org/. 
16 See https://plg.uwaterloo.ca/~gvcormac/spam/.  See also the NIST web site that describes the Text 

Retrieval Conference (TREC) series and available data: https://trec.nist.gov/. 

https://plg.uwaterloo.ca/%7Egvcormac/spam/


39 

are used to detect phishing web sites. Performance was assessed using accuracy and FARs 
on a validation subset of the collected data. The data set used to train, test, and validate the 
classifiers was constructed using 3,611 phishing web sites collected during 2008–2012 and 
documented in the Phishtank open source repository17 and an additional 1,638 non-
phishing web sites. Only web sites that were active at the time of the study were included. 
This dataset is divided into three parts for training, testing, and validation. 

The report provides a good description of the process used to construct and test 
classifiers for phishing web sites, including information about features extracted from the 
web sites and normalization of the feature data prior to building classifiers. Features 
include information extracted from the URL of each web site such as URL length, whether 
a numeric or hexadecimal IP address is embedded in the URL, whether encryption is 
utilized (HTTPS), and the number of periods present in the URL. Features from the web 
site include the presence of embedded forms with submit buttons, the presence of links that 
include an “at” symbol, and the presence of empty pages. 

The reported accuracies of the constructed classifiers were above 98.5% with low 
FARs in all cases. However, there were some flaws in the research that call these results 
into question. Primary among these is the failure to choose multiple randomly selected, 
disjoint subsets of the data set for training and test and report results over multiple runs, a 
lack of a description of how non-phishing web sites were selected, and the small size of 
the data set. The authors acknowledged the limitations due to the small size of the data set. 

Although the report does not provide classifiers that could be generalized and used in 
realistic scenarios, its description of the data set curation, feature extraction, and classifier 
generation and test processes should be valuable to a reader interested in learning more 
about the technology. 

Gil, Laurent, and Allan Liska. 2019. Security with AI and Machine 
Learning. Sebastopol, CA: O’Reilly Media, Inc. 

The publisher’s description of this book18 states: “For security professionals seeking 
reliable ways to combat persistent threats to their networks, there’s encouraging news. 
Tools that employ AI and ML have begun to replace the older rules- and signature-based 
tools that can no longer combat today’s sophisticated attacks. In this ebook, Oracle’s 
Laurent Gil and Recorded Future’s Allan Liska look at the strengths (and limitations) of 
AI- and ML-based security tools for dealing with today’s threat landscape. This high-level 
overview demonstrates how these new tools use AI and ML to quickly identify threats, 
connect attack patterns, and allow operators and analysts to focus on their core mission. 

17 See https://www.phishtank.com/. 
18 See https://learning.oreilly.com/library/view/security-with-ai/9781492043133/. 

https://www.phishtank.com/
https://learning.oreilly.com/library/view/security-with-ai/9781492043133/
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You’ll also learn how managed security service providers (MSSPs) use AI and ML to 
identify patterns from across their customer base.” 

The focus of the book is upon threats posed by bots and botnets. In chapter 3, a bot is 
defined as “a piece of code that automates and amplifies the ability of an attacker to exploit 
as many targets as possible as quickly as possible.” Botnets are distributed collections of 
computer processors running bots that operate in a coordinated fashion to perform attacks. 
An example is a botnet used to perform a distributed denial of service (DDoS) attack by 
flooding a site with network traffic. Other botnets implement online fraud schemes and 
ransomware used to encrypt information in a target’s system and extort funds from the 
victim. The book discusses the three functions of bots and botnets: scanning, exploitation, 
and command, communications, and control. The use of AI and ML to detect anomalies in 
network traffic is discussed as a method of countering the threats posed by bots and botnets. 

The authors discuss the potential use of AI and ML in other security applications, 
including identification of insider threats via “user and entity behavior analytics,” security 
information and event managers (SIEMs), and next generation anti-virus products. 

Unfortunately, although this book does provide a very high-level description of uses 
and opportunities for future use of AI and ML in cyber security, few specifics are offered. 
The book may serve as a quick introduction to cyber security as it relates to bots and 
botnets, but a reader who is looking for details about how AI and ML are used should look 
elsewhere. 

Cylance Data Team. 2017. Introduction to Artificial Intelligence for 
Security Professionals. Irvine, CA: The Cylance Press. 

This book provides an excellent introduction to clustering, classification, probability, 
and deep learning, with examples and accompanying sample software and data sets.19 The 
authors describe two algorithms for each topic in sufficient detail that the reader can 
implement and test them for simple scenarios. 

The k-means and DBSCAN clustering algorithms are described, along with 
discussions of “data selection and sampling, feature extraction, feature encoding and 
vectorization, model computation and graphing, and model validation and testing” (p. xvi). 
A discussion of principal component analysis (PCA) for data reduction is included in the 
description of the k-means algorithm—a critically important algorithm in ML that is not 
described in most of the other references reviewed in this report. A “hands-on learning 
section showing how k-means and DBSCAN models can be applied to identify exploits 
similar to those associated with the Panama Papers breach” (p. xvii) is used to illustrate the 
algorithms. 

19 See https://www.cylance.com/intro-to-ai. 
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Logistic regression and the CART decision tree algorithms are described in the 
chapter on classification, which also includes a discussion of differences between 
supervised and unsupervised learning and between linear and non-linear classifiers. The 
model training, validation, testing, and deployment phases of classifier construction are 
covered. The discussion of logistic regression includes concepts such as regression 
weights, regularization and penalty parameters, decision boundaries, and fitting data, and 
the discussion of the CART algorithm includes node types, split variables, benefit scores, 
and stopping criteria. Assessment and validation using confusion matrices and precision 
and recall metrics are also covered. The hands-on learning material shows “how logistic 
regression and decision tree models can be applied to detect botnet command and control 
systems that are still in the wild today” (p. xviii). 

The chapter on probability discusses its use for predictive modeling and includes 
descriptions of naïve Bayes classification and Gaussian mixture model clustering. 
Concepts including random trials, outcomes, and events; joint and conditional 
probabilities; prior and posterior probability; the Gaussian (normal) density; expectations; 
and maximum likelihood  techniques (called “expectation maximization optimization”) are 
discussed. A small flaw in the treatment of these subjects is the use of the term “likelihood,” 
which is a synonym for “probability” in this context; methods that utilize likelihood ratios 
do not appear to be covered. The hands-on learning material shows “how [naïve Bayes] 
and [Gaussian mixture] models can be applied to detect spam messages sent via [short 
message system (SMS)] text” (p. xviii). 

Convolutional neural networks and long short-term memory are covered in the 
chapter on deep learning. Concepts discussed include feedforward and recurrent neural 
networks, and neural network “nodes, hidden layers, hidden states, activation functions, 
context, learning rates, dropout regularization, and increasing levels of abstraction” (p. 
xix). The chapter concludes with a demonstration of “how LSTM [long short-term 
memory] and CNN models can be applied to determine the length of the XOR key used to 
obfuscate a sample of text” (p. xix). 

Kissel, Richard, Kevin Stine, Matthew Scholl, Hart Rossman, Jim 
Fahlsing, and Jessica Gulick. 2008. “Security Considerations in the 
System Development Life Cycle.” NIST Special Publication (SP) 800-64 
Rev. 2. Gaithersburg, MD: National Institute of Standards and 
Technology. 

The Executive Summary in this publication states that it “has been developed to assist 
federal government agencies in integrating essential information technology (IT) security 
steps into their established IT system development life cycle (SDLC). This guideline 
applies to all federal IT systems other than national security systems. The document is 
intended as a reference resource rather than as a tutorial and should be used in conjunction 



42 

with other NIST publications as needed throughout the development of the system. … To 
be most effective, information security must be integrated into the SDLC from system 
inception” (p. 1). The document assumes a waterfall SDLC process, but the information 
should be easily adaptable to other process models. 

The guide provides an overview of key security roles and responsibilities necessary 
in most software life cycle processes. An overview of the (waterfall) SDLC follows. 
Chapter 3 provides guidance on incorporation of security into each phase of the SDLC, and 
Chapter 4 “highlights security considerations for development scenarios, such as service-
oriented architectures and virtualization, for which the approach to security integration 
varies somewhat from that of traditional system development efforts” (p. 3). 

Several of the appendices in this report should prove valuable. Appendix D maps 
NIST publications to SDLC activities. Appendix E provides an overview of other SDLC 
methodologies. Appendix G presents a graphical view of security integration into a SDLC. 

Pino, Robinson E., Alexander Kott, and Michael Shevenell, (Eds). 2014. 
Cybersecurity Systems for Human Cognition Augmentation. Advances in 
Information Security 61. New York, NY: Springer. 

This book is an edited volume of 13 chapters, each written by a different set of 
authors. Thus, it represents a snapshot of research efforts circa 2014 that relate emerging 
fields of AI and ML to cybersecurity. One emphasis of the collection of papers is the 
emerging field of neuromorphic computing (NC).20 NC researchers have proposed several 
novel computing architectures inspired by biological neural tissues in the brain. NC 
architectures can operate using spiking signals rather than continuous or logic level-based 
signals, and thus hold the potential for extremely low power operation. The novel 
architectures also offer the potential for doing more with less—implementing useful 
systems using less complex hardware and algorithms than, for example, systems based 
upon more traditional neural networks and deep learning methods. A second emphasis in 
this collection is the use of novel semiconductor components, such as memristors, that 
exhibit programmable variable resistivity. 

Several chapters in this work are of potential interest. Chapter 4 discusses classifier 
methodologies for use in intrusion detection systems, including KNN, SVMs, ANNs, self-
organizing maps, DTs, naïve Bayes, genetic algorithms, and fuzzy logic. Other topics 
discussed in this chapter include cyber situational awareness and malicious code detection. 
However, although the listed references are of use, the discussion is at a fairly high level 
and is light on details. 

20 For a recent survey of the neuromorphic computing literature, including literature describing the 
implementation of neural networks in hardware, see (Schuman, Catherine D. et al. 2017). 
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Chapter 7 discusses the use of neural network-based malware detection on Android 
mobile devices. Detection systems based upon an app’s use of permissions and upon 
system call patterns are compared, with some experimental results. This chapter’s 
bibliography provides pointers to other works in this field. 

Chapters 9–12 discuss various properties and uses of memristor devices in ANNs and 
neuromorphic architectures, with some discussion of their potential use in intrusion 
detection systems. 

Chapter 13 discusses cyber security issues for systems with reconfigurable hardware 
and for embedded systems, as well as the possibility of designing such systems for 
resilience. 

This book provides perspectives on the potential of emerging technologies but most 
likely does not provide information that would prove useful in the near to medium term. It 
should be noted, however, that adoption of emerging technologies may become essential 
in some scenarios because of continuing increases in communications data rates or power 
limitations. 

The first-listed editor of this volume, Dr. Robinson E. Pino, is at present the Director 
(Acting) of the Research Division of Advanced Scientific Computing Research (ASCR) at 
the Department of Energy. 

Scarfone, Karen and Peter Mell. 2012. “Guide to Intrusion Detection 
and Prevention Systems (IDPS).” NIST Special Publication (SP) 800-94 
Rev. 1 (Draft). Gaithersburg, MD: National Institute of Standards and 
Technology. 

This is a draft report that provides a guide to intrusion detection and prevention 
systems (IDPS). This is a 2012 revision in progress of the first edition of NIST Special 
Publication 800-94, dated February 2007. These comments apply to both versions. Chapter 
2 discusses principles of IDPS, covering signature-based and anomaly-based detection, as 
well as stateful protocol analysis. Chapter 3 provides an overview of IDPS technologies, 
including the components and architectures, security capabilities, and management of these 
technologies. Chapters 4 and 5 provide overviews of network-based and wireless IDPS, 
respectively, and Chapters 6 and 7 discuss network behavior analysis systems and host-
based IDPS. The use and integration of multiple IDPS technologies is discussed in Chapter 
8, while Chapter 9 provides guidance on IDPS product selection. 
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Tamburello, Paul, and Peter Guerra. 2018. Modernizing Cybersecurity 
Operations with Machine Intelligence. Sebastopol, CA: O’Reilly Media, 
Inc. 

This book provides a very high-level view of the potential utility of machine 
intelligence in cybersecurity. The book is worth reviewing but is not detailed. It is not an 
unbiased or critical review of this area. 
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6. Summary

This work and paper partly fulfill the following paragraphs of the statement of work 
in the project description: (3g), which states the intent to “evaluate technical options and 
alternatives … for standing up an enterprise-level Army Application Development 
Environment (ADE) that supports development for the full range of software platforms…”; 
(3j), which states the intent to “investigate options for automating the application vetting 
process using commercial workflow tools and software testing best practices”; and 
deliverable (4d), “a draft report on maturity and applicability of options that can support 
the creation of an Army ADE.” 

This paper provides a partial response to the question: “Do technologies related to AI 
and ML provide opportunities to improve the cybersecurity of SDLEs and their products?” 
This question was motivated in part by the perception that automation plays a very 
significant role in the “dark side” of cybersecurity as tools used to exploit information 
systems and organizations, compromise their functions, and exfiltrate their information. 
The time delay from a successful exploit to utilization of the compromised system or 
information can be extraordinarily short. It has become imperative that organizations that 
manage SDLEs achieve correspondingly short threat response time delays. 

The report discusses selected publications that relate AI or ML to cybersecurity, and 
specifically to the context of cybersecurity of SDLE and their products. Publications were 
selected for review using a variety of sources, as described in the Executive Summary. The 
cited publications are not necessarily good sources of information. The report’s summary 
of each publication can be viewed as an indication of merit as well as content, allowing the 
reader to allocate time to those of most interest while avoiding those from which little 
insight might be gained. This may be of particular use with the cited books. 

There is an immense body of published work relating to AI and ML that extends over 
at least six decades. Although the corpus of literature relating to cybersecurity has a shorter 
time line (about three decades), there can be no claim that a brief review such as was 
undertaken here can be authoritative. Nevertheless, the authors hope that the discussions 
and observations that are offered can assist in determinations and selections of 
technologies, products, and methods for incorporation in high-quality SDLEs. 
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Appendix A. Comments on “Deep Learning” 

The following are brief comments on an influential paper by three of the primary 
architects of deep learning (LeCun, Bengio, and Hinton 2015). The focus of these 
comments is on the potential of deep learning approaches in methods to automatically 
comment source code or, put another way, to translate computer source code into 
descriptive text. 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep 
Learning.” Nature 521 (7553): 436–44. 

This paper provides a survey and overview of deep learning research results and 
applications up to about 2015. The authors are well-known researchers21 in the deep 
learning community representing Facebook and NYU (LeCun), Université de Montréal 
(Bengio), and Google and University of Toronto (Hinton). The paper has significant value, 
though the authors should not be considered completely objective. The bibliography, in 
particular, is quite good, although the authors extensively quote their own work. 

Although the source data are different, several of the topics and research results 
discussed in this paper appear to be relevant to analysis tools such as vulnerability 
assessment and the possibility of automatic comment generation from source code. Note 
the following in particular: 

1. Convolutional neural networks and pooling (aggregation) can localize features in input
examples (multiple locations in the paper).

2. Very promising results have been published on the automatic captioning of images
using deep learning structures with convolutional neural networks (p. 440, Figure 3).

3. Specific features of neural network architectures and training methods that have
improved learning rates and accuracy are listed, including:

a. The use of the half-wave rectifier (ReLU) function speeds up training using
back propagation (p. 438).

b. The use of stochastic gradient methods is prevalent (p. 438).

c. Gradient descent (back propagation) methods tend to be effective because of
the prevalence of more or less equivalent local minima in the cost function (p.
438).

21 The authors received the Turing award in 2019 for their work in deep learning. See: “A.M. Turing 
Award.” n.d. Accessed April 9, 2019. https://amturing.acm.org/. 

https://amturing.acm.org/
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d. The use of dropout methods has been beneficial to keep training procedures
from over-fitting the data (p. 440).

e. The combination of LSTM with recursive neural networks facilitates learning
of sequence information; this is of primary interest in natural language and
source code processing (p. 442).

4. The availability and applicability (via CUDA and OpenCL) of graphic processing units
(GPUs) prompted a revival in deep learning research and development activities (p.
439) This appendix provides some background, which indicates a roughly order of
magnitude speed-up in computations (measured by floating point operations per
second, or FLOPS) using GPUs.

5. A discussion is provided of neural networks’ ability to learn similarities among words
in a dictionary of words, and emerging technologies’ applicability to natural language
processing, including the Neural Turing Machine and Memory Networks is discussed.

This being said, the authors perhaps over-sell the potential of deep learning methods 
while downplaying their disadvantages. Primary among the disadvantages are their 
complexity (measured by both the number of layers in these networks and the number of 
network parameters that must be trained), the need to hand-design the overall structure of 
deep learning networks (the functions and types of the layers), and the black-box nature of 
computational structures built using deep learning (difficulty of explaining why a specific 
result is reached). However, modern computer hardware and GPUs in particular have made 
deep learning technologies feasible, and emerging toolsets (such as TensorFlow, Keras, 
and PyTorch) and cloud service providers (such as Google Cloud, Amazon Web Services, 
and Microsoft Azure) have made their application accessible to a wide audience of 
developers. Although cost can still be an issue, the cost of entry is much lower than it was 
only a few years ago. 

Deep learning refers to computational structures that incorporate multiple layers of 
neural networks that can be trained using back propagation (a gradient-based optimization 
method that operates on the weights of the neural network(s)). Each layer can have a 
different purpose, and alternating structures of RNNs, CNNs, and aggregators (such as max 
pooling, or computation of a maximum over a set of outputs from a previous neural network 
layer to reduce dimensionality) are often used. The combination of a CNN and an 
aggregation operation (referred to as pooling in the paper) is called a ConvNet in the paper. 

An RNN incorporates memory whose values are fed back to the inputs of the network 
and updated by the network’s outputs. A CNN is a type of finite impulse response filter 
that convolves a finite set of weights (in 1, 2, or 3 dimensions) with the inputs and combines 
with a nonlinear output function to produce the CNN’s output. 
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Deep learning usually utilizes supervised learning, but can perform unsupervised 
learning, for example by optimizing over the weights of a CNN in a ConvNet – possibly 
with some assistance from other algorithms such as clustering (e.g., K-means). Deep 
learning structures have proved effective in diverse areas including speech processing, 
image recognition, handwritten digit classification, natural language processing, and 
translation. 

In addition to the extensive bibliography in this paper, there are several takeaways 
that should be of interest. These are listed below, with short comments, in no particular 
order. 

1. Neural networks are typically composed of elements that compute a weighted sum
of selected inputs followed by a limiter function that limits the elements’ outputs to a finite 
range. Most research over the first few decades of interest in neural networks utilized a 
sigmoid, or S-shaped, nonlinearity for the limiter. Part of the reasoning for this was its 
differentiability and the fact that gradients of the output values provided information to 
influence the directions of changes for all of the network’s weights during back 
propagation. The authors note that “[a]t present, the most popular non-linear function is the 
rectified linear unit (ReLU), which is simply the half-wave rectifier f(z)=max(z,0)” (p. 
438). When the weighted sum is non-negative, the gradient provides no information 
(because the derivative is zero), which effectively turns off changes to a subset of weights, 
so this observation is somewhat surprising. However, the rectifier also probably serves to 
“sparsify” the network’s weights, at least with respect to back propagation, and that may 
lead to the improved training characteristics the authors cite: “…the ReLU typically learns 
much faster in networks with many layers, allowing training of a deep supervised network 
without unsupervised pre-training” (p. 438). 

2. The authors note (correctly) that “… it was commonly thought that simple gradient
descent would get trapped in poor local minima – weight configurations for which no small 
change would reduce the average error[,]” but that “[i]n practice poor local minima are 
rarely a problem with large networks” (p. 438). Back propagation is a first order 
optimization algorithm (depending only on the gradient, or first derivatives), which makes 
it both robust (reliably converging to a local optimum) and slow (with long training times). 
It is also a local optimization algorithm, as opposed to stochastic optimization methods 
such as simulated annealing and genetic programming, which explore much more diverse 
areas of the parameter space. Birdwell et al. (1990, 1992) found that overparameterization 
could introduce a large number of more or less equivalent local minima, as the authors 
state, so the observation is not surprising, although it is still possible for any local 
optimization algorithm to converge to a poor local minimum. 

3. The authors note that “most practitioners use a procedure called stochastic gradient
descent (SGD)” (p. 437) to train networks from examples. As described, this is the 
repetitive random selection of small sets of examples from the training set, followed by 
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computation of gradients and update of weights via back propagation using only each small 
set, and resulting in a decision whether to terminate training with a solution. In traditional 
optimization methods (examples include linear programming, nonlinear programming, and 
convex programming), algorithms are used to select a direction of descent or ascent (for a 
minimization program or a maximization problem, respectively) without explicitly 
computing a gradient or Hessian (matrix of second order derivatives).22 As described in 
this article, random selection of examples is one approach to use when computing the 
gradient using a training set. Random selection does not guarantee descent, which is always 
desirable; however, on average, the SGD method does move weights toward a lower cost 
(or higher reward) value of the objective function. 

4. One criticism of deep learning methods is that they are primarily utilized for
supervised learning (using labeled or classified training data). The authors point to work 
from 2005–2006 where unsupervised learning was performed using multi-layer networks 
and “pre-training.” Although this is interesting, it should also be noted that the authors are 
quoting their own work. 

5. The authors provide a good discussion of CNNs and the combination of CNNs and
aggregation (pooling) used to identify features for further processing and classification (p. 
439). They provide references to the similarities between these structures and the structures 
of the visual cortex from the neuroscience literature. Finally, they provide references to 
early applications of CNNs in speech recognition (starting in the 1990s), in document 
reading (including handwriting recognition), and in object detection and image recognition. 

6. The paper includes a section on the use of deep ConvNets for image understanding,
with a primary application to vision systems for transportation. The authors state that 
“ConvNets were largely forsaken by the mainstream computer-vision and machine-
learning communities until the ImageNet competition in 2012. When deep convolutional 
networks were applied to a data set of about a million images from the web that contained 
1,000 different classes, they achieved spectacular results, almost halving the error rates of 
the best competing approaches” (p. 440). The authors claim the success depended upon the 
“efficient use of GPUs [graphics processing units], ReLUs, a new regularization technique 
called dropout, and techniques to generate more training examples by deforming the 
existing ones”, and that “ConvNets are now the dominant approach for almost all 
recognition and detection tasks” (p. 440). 

Figure 3 on p. 440 is relevant to source code comment generation. The images in the 
figure have been automatically captioned using a ConvNet approach. Two references in 

22 See, for example, (Bertsekas 1999). 
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the bibliography (Xu et al.23 and Vinyals et al.24) refer to caption generation in their titles. 
Figure 3 is a copy of Figure 4 from another paper found on the Web, which is related to 
these papers but has a slightly different title.25 Note that an author, Bengio, is also an author 
of all of these papers. A library search located a 2018 journal paper surveying recent results 
in automatic caption generation.26 

GPUs and ReLUs are discussed elsewhere in these notes. The dropout method (p. 
440) was developed by Srivastava et al. (including G. Hinton), and, according to the
referenced paper,27 the key idea “is to randomly drop units (along with their connections)
from the neural network during training. This prevents units from co-adapting too much”
(p. 1929). The deformation of existing examples in a training set to create new examples,
and other methods such as random modifications and cross-overs, are now widely known.

A final note of use from this section relates to the size and complexity of ConvNet 
architectures in use by the date of the paper: “Recent ConvNet architectures have 10 to 20 
layers of ReLUs, hundreds of millions of weights, and billions of connections between 
units. Whereas training such large networks could have taken weeks only two years ago, 
progress in hardware, software and algorithm parallelization have reduced training times 
to a few hours” (p. 440). Hardware issues are discussed below. Current algorithm 
parallelization methods now play a large role in the application of deep learning networks, 
including TensorFlow28, PyTorch29, and Keras30. (There are others; see 
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software for a listing and 
comparison of features. However, note that this Wikipedia page also lists software 
packages that are no longer maintained, so caution is warranted.) 

7. The article implies that deep learning approaches might have died out (p. 439)
because of the complexity of their training algorithms (due to their extraordinarily large 
parameter spaces) if not for the discovery that these algorithms could be implemented using 
graphic processor units (GPUs), the rapid evolution of GPU hardware, and the use of 
parallel computer architectures. The following information is from a variety of sources, 
provided to supplement the perspectives of the article’s authors. 

23  Xu, K. et al. Show, attend and tell: Neural image caption generation with visual attention. In Proc. 
International Conference on Learning Representations http://arxiv.org/abs/1502.03044 (2015). 
[reference 86 in the paper] 

24 See (Vinyals, Toshev, Bengio, and Erhan 2014). [reference 102 in the paper] 
25 See (Xu, Lei, Kiros, Cho, Courville, Salakhutdinov, Zemel, and Bengio n.d.). 
26 See (Liu, Xu, and Wang 2018).  
27 See (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov 2014). 
28 See https://www.tensorflow.org/.  
29 See https://pytorch.org/.  
30 See https://keras.io/.  

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
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The present generation of GPUs offer roughly one order of magnitude improved 
performance (decreased training time) over CPUs, but there are many variables that affect 
performance. GPUs operate in combination with at least one CPU (and possibly many CPU 
cores). A typical configuration combines one or two GPUs (often as PCIe daughterboards 
to the computer’s motherboard) with a conventional (CPU-based) computer having one to 
four CPUs, each having 2-32 (or possibly more) cores. There are many opportunities for 
bandwidth limitations to create communications bottlenecks between the CPUs, GPUs, 
memories, and input/output devices, and these bottlenecks can limit performance. Multiple 
copies of this configuration can be grouped into a parallel computer using a high-bandwidth 
interconnect such as the various types of Infiniband or Ethernet, scaling to the (currently) 
fastest computers in the world. A researcher or developer using deep learning technologies 
has many choices including either GPU-enabled technologies or more conventional 
computer architectures. However, current “conventional wisdom” appears to favor using 
computers with GPUs to train and test deep learning algorithms. 

GPUs currently enable peak performance per GPU of roughly 8 teraflops (1 TFLOPS 
= 1012 floating point operations per second, or FLOPS),31,32 and, when combined with 
parallel processing methods, peak performance in excess of a hundred petaflops (1 
PFLOPS = 1015 FLOPS).33 By way of comparison, the dual Xeon 2690v4 Intel Core i9 
processor with 28 cores (not virtualized) has been benchmarked at 1.123 TFLOPS.34 More 
traditional (affordable) computer processor units (CPUs) provide a few to several hundred 
gigaflops (1 GFLOPS = 109 FLOPS) per CPU, scaling to tens of TFLOPS to (perhaps) the 
low PFLOPS in large parallel computers. 

It is possible to utilize cloud resources to develop deep learning models and 
applications, and these resources are likely to be utilized by most members of the deep 
learning research and development community. For example, Amazon Web Services 
(AWS) offers the PC2 P3 compute instances, each with up to 8 NVIDIA V100 GPUs,35 

31 All floating point performance figures are for double precision computations.  Single precision 
performance will be higher.  Note that computational performance for computers (including those with 
attached GPUs) and CPUs are measured using the high-performance Linpack benchmark, while 
computational performance for stand-along GPUs are theoretical maximum values provided by the 
manufacturers that are likely not fully realized using the Linpack benchmark. 

32 The NVIDIA Tesla V100 GPU has a claimed performance of 7.8 TFLOPS. See (“Tesla V100 
Application Performance Guide: Deep Learning and HPC Applications” 2018). 

33 The fastest computer in the world at present is Summit at Oak Ridge National Laboratory (USA), with a 
peak performance of 143.5 PFLOPS on the high-performance Linpack benchmark using 2.4 million 
cores and NVIDIA Volta GV100 GPUs, according to the November, 2018 TOP500 list 
(https://www.top500.org/lists/2018/11/).  

34 See https://www.pugetsystems.com/labs/hpc/Intel-Core-i9-7900X-and-7980XE-Skylake-X-Linux-
Linpack-Performance-1059/. 

35 See https://aws.amazon.com/ec2/instance-types/p3/. 

https://www.top500.org/lists/2018/11/
https://www.pugetsystems.com/labs/hpc/Intel-Core-i9-7900X-and-7980XE-Skylake-X-Linux-Linpack-Performance-1059/
https://www.pugetsystems.com/labs/hpc/Intel-Core-i9-7900X-and-7980XE-Skylake-X-Linux-Linpack-Performance-1059/
https://aws.amazon.com/ec2/instance-types/p3/
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providing a theoretical peak performance of over 60 TFLOPS. Google Cloud36 and 
Microsoft Azure37 provide similar capabilities. 

8. The last substantive section of the paper discusses applications of deep learning to
language processing. The first example the paper discusses work by one of the authors 
(Bengio) that uses a multi-layer neural network to predict the next word in a sequence of 
words. Words are represented as binary vectors (each element of which corresponds to a 
word in a dictionary) with a single non-zero element (that is unity) corresponding to each 
word. A note in the paper’s bibliography states that “[t]his paper introduced neural 
language models, which learn to convert a word symbol into a word vector or word 
embedding composed of learned semantic features in order to predict the next word in a 
sequence” (p. 443). The authors are somewhat disingenuous because binary encoding of 
words in sentences (along with the use of principal component analysis, or PCA), was 
utilized at least as far back as the 1980s with the introduction of latent semantic analysis 
(LSA) for text search. Admittedly, however, the objective at that time was search and 
retrieval rather than next word prediction. What is interesting, however, in the authors’ 
discussion is the use of vectors representing probabilities (or, more accurately, estimated 
or predicted frequencies of occurrence) of dictionary words to discover associations or 
patterns among the words. See, for example, Figure 4 of the paper. (p. 441) 

This section of the paper continues with a discussion of RNNs and training of such 
networks and the introduction of LSTM networks to facilitate training for remembering 
information over a long time delay38. The authors state: “LSTM networks have 
subsequently proved to be more effective than conventional RNNs, especially when they 
have several layers for each time step, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the transcription. LSTM 
networks or related forms of gated units are also currently used for the encoder and decoder 
networks that perform so well at machine translation” (p. 442). The authors reference, 
among others, Sutskever’s paper on sequence to sequence learning.39 

Finally, the authors discuss recently developed methods to incorporate memory in 
RNNs, including a Neural Turing Machine (NTM)40 and Memory Networks.41 An NTM 
was shown capable of learning and performing an algorithm (sorting numbers), and a 
Memory Network was able to correctly answer the question “Where is Frodo now?” after 

36 See https://cloud.google.com/products/ai/.  
37 See https://azure.microsoft.com/en-us/overview/ai-platform/. 
38 See (Hochreiter and Schmidhuber. 1997). 
39 See (Sutskever, Vinyals, and Le 2014).  
40 See (Graves, Wayne, and Danihelka 2014). 
41 See (Weston, Chopra, and Bordes 2015). 

https://cloud.google.com/products/ai/
https://azure.microsoft.com/en-us/overview/ai-platform/
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being trained on a 15-sentence version of The Lord of the Rings. These approaches appear 
to show promise, but further investigation is necessary to assess their potential. 
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