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Abstract—Space Fence will be a terrestrial-based radar designed 

to perform surveillance on earth-orbiting objects.  Its capabilities 
will increase the number of objects tracked from approximately 
17,000 to over 100,000.  Testing a system whose complete set of 
observations cannot be verified in a timely manner by existing 
systems presents challenges for gathering detection and accuracy 
truth data while ensuring a reasonable test duration.  We propose a 
rigorous statistical test design with candidate on-orbit test targets 
that span orbital limits defined by Space Fence operational 
requirements.   We characterize system performance across the 
entire operational envelope by using relatively small subsets 
(containing no more than 1530 satellites) of the public Satellite 
Catalog (SATCAT) grouped by altitude, inclination, and size.  We 
identify the type and number of on-orbit test targets needed for 
evaluating metric accuracy, probability of track, object correlation, 
small object sensitivity, and data latency.   Our method quantifies 
the probabilities of meeting requirements, determines how 
performance varies as a function of an object’s altitude, inclination 
and/or size, estimates a 25-day test duration, and determines that 
modeling and simulation methods may be needed to represent 125 
additional satellites. These results provide testers and users a 
mathematical basis of evaluation for Space Fence employment 
decisions.  

 
Index Terms— Analysis of variance, Operational testing, Least 

squares methods, Phased array radar, Satellite tracking, SATCAT, 
Space Fence, Statistical test design, Metric accuracy  
 

I. INTRODUCTION 
The United States is acquiring a new terrestrial space-

directed radar system to detect, track, and catalog space 
objects, including the growing population of space debris 
(“space junk”). The new system will consist of two S-Band (2-
4 GHz) phased-array radar sites, located at Kwajalein in the 
Marshall Islands and one other location (to be determined).   
The radars will autonomously perform cued and uncued 
surveillance as well as cued searches for objects in low- and 
medium-earth orbits (LEO, MEO), and higher.  Space Fence 
will provide object tracking and radar characterization data to 
the U.S. Air Force Joint Space Operations Center (JSpOC) to 
support Satellite Catalog (SATCAT) maintenance and other 
space situational awareness needs [1].   
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Space Fence’s large surveillance field of view (FOV) and 
improved small object detection sensitivity are expected to 
increase the number of orbiting objects routinely tracked from 
approximately 17,000 to more than 100,000 [1,2]. 

For the majority of objects tracked by current radars and 
optical telescopes, we lack position, velocity, and time truth 
data of sufficient accuracy to test the higher accuracy expected 
from Space Fence. Testing a space surveillance system whose 
complete set of observations cannot be verified in a timely 
manner by existing radars and optical telescopes presents 
some challenges:  (1) How do we know Space Fence is 
“seeing” all the objects it is intended to “see”?  (2) Are the 
radar measurements on all the objects “seen” by Space Fence 
of sufficient accuracy and precision to meet its requirements 
and support orbital prediction and catalog maintenance? And 
(3) can adequate testing of an operationally representative 
sample population, covering all intended object sizes, altitudes 
and inclinations, be performed in a timely manner?    

Historically, space surveillance radar performance has been 
tested by comparing radar observations against truth data for a 
small number of well-understood objects with accurately 
known positions (measured within 1 meter), determined either 
from laser ranging or onboard beacons [3-6].  Although 
valuable for initial calibration, sole reliance on such objects 
may not extrapolate to radar performance against an 
operationally representative population that includes different 
orbit types, inclinations, altitudes, sizes, shapes, or rotational 
motions that are expected to be observed by Space Fence.  

To address the issue of radar performance across the full 
operational space, we propose extending initial calibration 
tests into a broader rigorous statistical test design, using on-
orbit test targets that span orbital limits defined by Space 
Fence operational requirements.  Through this new approach, 
we characterize system performance across the entire 
operational envelope by using a relatively small subset 
(containing no more than 1530 satellites) of the nearly 17,000 
objects contained in the publically-available SATCAT [7], 
grouped by altitude, inclination, and size.   

We propose using the SATCAT because it is the largest 
database of verified earth orbiting objects, representing a wide 
range of orbit types, inclinations, altitudes, sizes, shapes, and 
rotational motions that Space Fence will track in their real-
world population frequencies.   

Building on recent experimental design work for assessment 
of naval surface radar performance [8], we use the target 
altitude, size, and inclination as predictor variables (also 
referred to as factors) in statistical tests of radar performance 
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requirements (e.g., range accuracy) as dependent variables.  
Our approach quantifies the probabilities of Space Fence 
meeting its requirements, determines if and how satisfaction of 
individual requirements depend on an object’s orbit and/or 
size, and estimates the sample sizes needed.  Comparing the 
resulting sample sizes with the number of currently known 
targets, we determine the areas where augmentation by 
modeling and simulation (M&S) may be needed.  Assuming a 
Kwajalein-based radar coverage and a conservative number of 
radar passes per object per day, we also estimate the test 
duration.   

This paper is organized as follows.  Section II motivates 
designing Space Fence testing in terms of the inherent 
properties of an object and its orbital characteristics.  Sections 
III and IV present test designs to evaluate metric accuracy, and 
probability of track, and object correlation.  Section V 
proposes a test approach for characterizing Space Fence’s 
detection threshold.  Section VI develops a statistical design to 
evaluate data latency.   Section VII summarizes our results.    

II. EVALUATING SPACE FENCE IN TERMS OF 
OPERATIONAL REQUIREMENTS 

We evaluate Space Fence in terms of radar performance 
parameters against the inherent orbital properties of an object 
(which determines object-to-radar geometry on specific 
passes) to characterize the system relative to its operational 
requirements.  For this paper, we illustrate our statistical 
approach by focusing on five common radar requirements, 
shown in Table I, that illustrate our statistical approach. 

Space Fence’s performance is ultimately determined by the 
radar receiver’s Signal to Noise (S/N) ratio produced when 
acquiring a target.  While S/N is a measurable quantity, it is 
not an inherent property of the object.  Instead, S/N can 
fluctuate over the same pass or over different passes based on 
factors such as the object-to-radar geometry, the object’s 
rotational motion, atmospheric and solar conditions, and 
others.  Therefore, S/N, although a key design measure, is 
difficult to use as an operational measure of radar 
performance.   

Because of this, Space Fence operational requirements are 
written terms of performance parameters that can be averaged 
over many object types and orbital/size conditions, such as 
probability of track, radar cross section accuracy, and TEARR 
accuracies. 

 
TABLE I 

SELECTED REQUIREMENTS 
Requirement Specifics 
Metric Accuracy Time, Elevation, Azimuth, Range, 

and Range Rate errors 
Probability of Track Percent of fence penetrations that 

are detected and tracked 
Object Correlation Correct matching of detected 

object with catalogued object 
Small Object Sensitivity Smallest object detected and 

tracked 
Data Latency Time from observation generation 

to receipt at forward user 
 

Our test approach evaluates operational performance 
parameters, both overall and as a function of satellite orbital 
and size aggregations identified in the requirements.  These 
aggregations include size, altitude, and inclination.  Altitude is 
important because higher altitudes generally make for longer 
range, and range appears as an inverse fourth power 
relationship in the radar equation, thus lowering S/N ratio 
(although the higher altitude is somewhat offset by longer 
track windows).  Size also affects the S/N ratio, making small 
targets more difficult to track than larger ones.   Inclination 
might be a less direct influence than altitude and size, but it 
affects the number and duration of passes across the radar’s 
FOV, indirectly affecting observation accuracy.  Additionally, 
the high object flux density in certain inclination bands might 
stress the radar’s energy management and/or data processing. 

III. TESTING METRIC ACCURACY 
Space Fence metric accuracy is stated in terms of Time, 

Elevation, Azimuth, Range, and Range Rate (TEARR) error 
variance in each of its five components: time, elevation, 
azimuth, range, and range rate.  Each component’s error 
sequence over time can be assumed to be composed of 
independent, identically distributed pulse-to-pulse errors, so 
that their distributions are approximately Gaussian, and 
requirements are specified in terms of 68% one sigma 
intervals on each component. 

A. Approach 
To set up our approach to metric accuracy testing, consider 

the vector TEARR sequence x(k,S) of radar-centered time, 
elevation, azimuth, range, and range rate at discrete times k, 
relative to a fixed location, from the track of a satellite that 
belongs to a class of satellites S.  Classes in S are defined as 
aggregations of satellites with altitudes, inclinations, or sizes 
within certain ranges to be specified below.  We can express 
radar observations of x(k,S) as 

 
 z(k,S) =  x(k,S) + ε(k,S)                                              (1) 
 

where ε(k,S) represents Gaussian metric accuracy errors 
distributed as N(υ(k,S),Σ(k,S)), so that υ(k,S) and Σ(k,S) 
represent respectively, the bias and variance/ covariance of  
TEARR errors. 

Space Fence is required to provide estimates of z(k,S) along 
with υ(k,S) and Σ(k,S) [9].  At initial acquisition, υ and Σ  will 
have initial values υ(0,S) and Σ(0,S) that, for stable orbits 
(e.g., non-maneuvering) should converge to steady state 
values υ(S) and Σ(S) as the tracking filter converges.  Space 
Fence will use a systematic error model to determine and 
correct for bias error [9] so that, under steady state operations, 
it can be assumed that υ(S) = 0.  The requirements assume that 
Σ is constant over classes of satellites and, although the radar 
is required to provide the full Σ, metric accuracy requirements 
are only specified on the variance of individual TEARR 
elements σqq, q = 1,..,5 (the diagonal elements of Σ and not on 
their covariance σqr for q≠ r).   

We propose a two-tier approach in which metric accuracy is 
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first tested against satellites with accurately known ephemeris 
(as in the traditional approach), then against the broader set of 
objects as described earlier.  By using the traditional approach 
we provide for estimation and removal of bias errors, and an 
estimate of σqq for addressing metric accuracy in the narrow 
manner in which requirements are stated. 

Following this, we expand our estimate of metric accuracy 
and test the dependence of Σ on the satellite aggregations in S 
by considering if and how Σ may vary over classes of satellites 
with different orbital and size characteristics.   

B. Evaluation of TEARR Requirements against Satellites with 
Accurate Ephemeris 

1) Statistical Approach 
We first consider the sample size of satellite tracks needed 

to estimate metric accuracy for individual TEARR parameters, 
which we calculate via chi-square hypothesis tests on their 
error variance, σqq, using the sample variance reported by the 
radar as a test statistic.  The null hypotheses would be that 
each TEARR parameter meets the threshold requirement (Ho: 
σqq ≤ σ∗qq), versus the alternate hypothesis that the parameter 
exceeds the threshold by a given amount, or effect size, (H1: 
σqq > σ∗qq + δ). The resulting sample size depends on the 
effect size δ, the desired statistical power (the probability of 
correctly rejecting the null hypothesis when it is false), and the 
significance level, referred to as α error (the probability of 
incorrectly rejecting a null hypothesis whose thresholds are 
met) [10].  At a  δ = 10 percent effect size and an α error of 5 
percent, sample sizes of 300, 400, and 600 yield power levels 
of 76, 86, and 95 percent, respectively. Because Space Fence 
will operate in a “target rich” environment for cataloged 
objects where the number of targets is generally not 
constraining, we choose the higher level of 95 percent 
statistical power with 600 tracks.   

 
2) Effect Size Justification 

The effect size should be sufficiently large to detect 
significant improvement above that of existing radars. While 
the effect sizes could be adjusted for each requirement, we 
choose a uniform 10 percent effect size, unless otherwise 
noted.  The choice of effect size is driven by comparing Space 
Fence's required capabilities with other phased array radars.  
For a theoretical example, if a  legacy radar and Space Fence 
had tracking bandwidths around 5 mega Hertz and radar S/N 
of 10 and 25 decibels, respectively, their range one-sigma 
errors would be approximately 7 and 4 meters. A 10 percent 
effect size would detect Space Fence range one-sigma errors 
of 4.4  meters, larger than the 4 meters, but less than the 
legacy 7 meters. 
 
3) Candidate Test Targets 

Two candidate accurate ephemeris subsets are the 
International Laser Ranging Service (ILRS) satellites (for 
which less than one-meter accuracies are possible) and the 
High Accuracy Satellite Drag Model (HASDM) satellites 
[11,12]1.   Assuming that only half of the HASDM/ILRS 
 

1 HASDM satellites are tracked multiple times per day to improve orbital 
predictions in high drag regions.  Accurate orbital ephemerides could be 

satellites are available (60 such satellites) with a conservative 
number of two acceptable passes2  per day over a Kwajalein-
based radar, 600 data points (tracks) could be obtained in as 
few as 5 test days.   

C. Evaluation of TEARR Requirements against satellites that 
span the operational envelope 

We now extend tests of Σ(S) to explore the effect of satellite 
grouping factors, S, of altitude, inclination, and size, on metric 
accuracy.  Using the methodology described in section IIIA, 
and omitting subscripts for simplicity, we entertain the 
analysis of variance (ANOVA) model [13] 

σ(i,j) = σ + S (i) + e(i,j)                                               (2) 

where σ(i,j) is the observed variance for the j-th track of the i-
th satellite grouping for each of the five TEARR parameters, 
σ is the overall metric accuracy error for that TEARR 
parameter,  S (i) is the effect of the i-th satellite grouping, and 
e(i,j) represents random error. 

Consistent with groupings found in the requirements, for 
altitude we choose four levels: 250 to 600 kilometers, 600 to 
2,000 kilometers, 2,000 to 6,000 kilometers, and 6,000 to 
22,000 kilometers.  For inclination we choose three levels: 
high (80-171 degrees, representing near-polar and retrograde 
orbits), mid (45-80 degrees, centered on the highly populated 
mid-60 degree inclination band), and low (9-45 degrees).  For 
size we choose two levels: ≥ 10 centimeters (approximate 
tracking limit of current space radars) and <10 centimeters (to 
capture sensitivity improvements from Space Fence). While 
results for alternative levels might differ, the approach is valid 
generally for any aggregation structure. 
 
1) Statistical Approach 

We approach the problem as a 4×2×3 full factorial ANOVA 
design in which the three continuous factors of altitude, size, 
and inclination are grouped into levels [14].  This approach 
preserves the operational significance of the altitude, 
inclination, and size bands stated in the requirements while 
exploring how the radar’s metric accuracy is affected from any 
of the three factors or their interactions. 

In approaching this problem as an ANOVA, it is important 
to verify that the key statistical assumptions for this model are 
justified: normality of observations, homoscedasticity, and 
randomization.  The normality assumption was previously 
justified by radar precision errors being the result of 
independent, identically distributed, pulse to pulse variation. 
Homoscedasticity, or equality of variance within groups, is 
considered sufficiently met if the largest variance within a 
group is no larger than twice that of the group with the 
smallest variance within a group.  A difference in variance this 
large would be unlikely, but it could be identified as part of 
the test on accurate ephemeris objects and, if observed, could 
be addressed through methods such as logarithmic data 
transformations.  Concerning randomization, although objects 
to be tracked cannot be randomly assigned to altitude, 
inclination, or size factors and levels, the total number of 
                                                                                                     
generated by fusing the data from their frequent tracking, making them useful 
as calibration targets for Space Fence metric accuracy. 

2 By an acceptable pass we mean a pass of sufficient elevation and length 
of track to allow the radar to gather sufficient data to generate observations. 
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objects needed for testing (under 1,000) is a small fraction 
(1/20 or less) of the cataloged orbital population.  This allows 
random selection of objects for the radar to track within each 
factor level combination and provides for a test that 
“elucidates cause-effect relationships,” as referred to by 
Cochran [15], between the factors and radar performance. 
 
2) Candidate Test Targets 

For this ANOVA approach, we have calculated the tracks 
likely to be available from all cataloged objects passing 
through Space Fence Kwajalein coverage in the same way as 
we did with the HASDM/ISLR satellites.  For this calculation 
we assume a conservatively low number of one acceptable 
pass per day for altitudes less than 600 kilometers, and two 
acceptable radar passes per day for all targets above 600 
kilometers. In the ANOVA design, the 600 tracks needed to 
test the radar calibration can be evenly divided across all 
factor-level combinations to ensure that all combinations are 
tested.   

 
TABLE II3. 

 NUMBER OF AVAILABLE SATCAT OBJECTS ORDERED BY INCLINATION, 
ALTITUDE, AND SIZE.   

Incli- 
nation  
(deg) 

Altitude 
(km) 

SATCAT 
Objects of 
Size (cm) 

Real Tracks/ 
Min Test Days 

M&S 
Tracks 
Needed 

<10 ≥10 <10 ≥10 <10 ≥10 

9 
≤ 

I ≤
 4

5 

250-600 1 32 25/25 25/1 0 0 

600-
2,000 4 101 25/4 25/1 0 0 

2,000-
6,000 0 6 0 25/3 25 0 

6,000-
22,000 0 2 0 25/7 25 0 

45
 <

 I 
≤ 

80
 

250-600 16 85 25/2 25/1 0 0 

600-
2,000 534 2498 25/1 25/1 0 0 

2,000-
6,000 0 10 0 25/2 25 0 

6,000-
22,000 1 246 25/13 25/1 0 0 

80
 <

 I 
≤ 

17
1 

250-600 28 276 25/1 25/1 0 0 

600-
2,000 1,372 5728 25/1 25/1 0 0 

2,000-
6,000 0 89 0 25/1 25 0 

6,000-
22,000 0 2 0 25/7 25 0 

Total 1,956 9,075 175/25 300/7 125 0 

 
3 The columns labeled “Real tracks/Min test days” are shaded green or red 

depending on whether 25 tracks can be obtained within one month, with 
“25/nn” indicating that 25 tracks can be obtained in a minimum of nn days. 
The columns labeled “M&S Tracks Needed” represent the number of M&S 
tracks that would be needed to augment the real track to meet the 25-track 
limit. 

As shown in Table II, there are a total of 24 combinations, 
so that each combination requires 25 data points.  Table II also 
contains the number of tracks expected to be available from 
the SATCAT4  over an approximate one-month test period5  
for each factor-level combination, compared with the 25 tracks 
needed.  Tracks from objects in the SATCAT would be 
available in all inclination, altitude, and size regimes, except 
for objects smaller than 10 centimeters at altitudes between 
2,000 and 22,000 kilometers.   

Of the 600 tracks required, 475 could be obtained within 25 
days from real objects, leaving 125 to be met through M&S, 
should the entire trade space be explored.  This is intended to 
illustrate the approach for identification of M&S needs, not to 
infer that Space Fence could track objects that small at that 
range.   

If M&S demonstrates that such targets are beyond Space 
Fence range, the balanced ANOVA we propose with equal 
sample per factor-level combination would become 
unbalanced.  In this case, the ANOVA could still proceed with 
unbalanced methods, for example, through merging of some 
factor-level combinations [16]. 

By choosing a factorial ANOVA design, we can estimate 
the statistical power to differentiate between levels of a factor, 
or in other words, estimate the probability of detecting 
whether differences in satellite orbits or sizes affect the 
observation accuracy.   

Using the JMP program [17] to calculate power at a 5 
percent α error, Table III shows the statistical power achieved 
in differentiating between levels of the main factors of 
Inclination (I), Altitude (A), and Size (S) or the interactions of 
I × A, I × S, and A × S, at various levels of statistical signal to 
noise ratio6  (S-SNR), using 24 replicates.   

For example, if the difference in mean predicted range 
accuracy going from level to level is one-quarter of the radar’s 
precision in measuring range accuracy (S-SNR = 0.25), the 
power to differentiate I, A, S, I × A, I × S, and A × S will be at 
least 70.4%, 62.5%, 86.4%, 46.0%, 70.4%, and 62.5%, 
respectively.   

Given the multiple factor levels, the statistical power cited 
is a conservative estimate of the actual power achieved, 
estimated at the worst possible S-SNR from the various 
combinations.   

 
TABLE III. 

POWER AT SPECIFIC S-SNR, ORGANIZED BY INCLINATION (I), ALTITUDE (A), 
SIZE (S) AND THEIR INTERACTIONS 

Factor Power at Statistical SNR 
0.25 0.3 0.375 0.5 

Inclination 70.4 % 85.0% 96.3% 99.9% 
Altitude  62.5% 78.1% 92.8% 99.5% 
Size  86.4% 95.6% 99.6% 99.9% 
I × A 46.0% 60.7% 79.7% 96.1% 
I × S 70.4% 85.0% 96.3% 99.9% 
A × S 62.5% 78.0% 92.8% 99.5% 

 
4 The publicly available SATCAT, as of June 2013, contains 16,845 

objects, of which 15,842 are in Earth orbit and have complete data. 
5 A one-month test period is consistent with historical cost-effective 

operational test periods that allows for schedule flexibility. 
6 In JMP, the full factorial design SNR is the ratio of the difference in 

mean predicted response going from level to level to variation in the response 
variable due to random events. 
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Similar results can be obtained on other radar requirements 
specified in terms of continuous variables, such as radar cross-
section accuracy.  For the sake of brevity, those results are not 
presented here. 

IV. TESTING PROBABILITY OF TRACK AND OBJECT 
CORRELATION 

Unlike metric accuracy, which is expressed in measurement 
errors, probability of track and object correlation requirements 
are stated in terms of binomial responses.  As such, we 
propose statistical hypothesis tests on binomial outcomes to 
assess the system against the letter of the system requirements.  
We then apply logistic regression methods to determine if 
system performance varies with an object’s altitude and 
inclination. 

A. Probability of Track 
Probability of track, pt, is defined as the probability of 

keeping track of the position and velocity of a given object 
that penetrate the radar's surveillance volume. Assuming that 
the conditions under which objects are tracked remain 
constant, pt can also be considered constant over random fence 
penetrations.  Under these assumptions, consider a Bernoulli 
random variable, T, which takes values T=1 (object tracked) 
with probability pt or T=0 (object not tracked) with probability 
1- pt.  Assuming independence between tracking attempts, pt 
can be estimated by the average p̂t (n) = (Σn

i=1 Ti / n) of a series 
of n tracking attempts.  We develop our approach for pt = 0.5 
because the associated probability distribution leads to the 
largest possible sample size.   

We define a null hypothesis Ho: pt ≥ 0.5 versus the 
alternative H1: pt < 0.5 – δ for an effect size δ.  Using exact 
methods as implemented in the R programming language 
using the binom.power function, Table IV lists sample sizes 
for 5 percent α, 3 values of statistical power, and 2 effect 
sizes.   

Choosing 95 percent statistical power, for example, we 
conclude that we need 268 data points (candidate objects to be 
tracked) to meet the desired power for a 10 percent effect size 
at the 5 percent α error. 

 
TABLE IV. 

POWER AND SAMPLE SIZE FOR PROBABILITY OF TRACK 
Probability 
to Track Effect Size Power Alpha 

Sample 
Size 

 

 

pt =0.5 

10%  

(pt ≤0.40) 

95% 5% 268 

80% 5% 153 

70% 5% 116 

5% 

( pt ≤0.45) 

95% 5% 1081 

  80% 5% 617 

  70% 5% 469 
 

 
Because T is a binary random variable with parameter pt, 

the effects of altitude, and inclination on pt cannot be 

conducted in the same way as for the continuous TEARR 
variables [19].  To analyze this binary response design, we use 
the logit transformation ln (pt / (1- pt)).  As an illustration, for 
the Altitude (A) and Inclination (I) factors, the regression 
model follows the form 
 

ln (pt / (1- pt)) = β0 + β1 A + β2 I                                      (3) 
 
where βi are the regression coefficients.  Once the regression 
coefficients are estimated, the probability of an object being 
tracked for a given altitude and inclination, and the statistical 
significance of those factors, can be calculated from the 
reverse logit transformation as: 
 
pt = exp (β0 + β1 A + β2 I) / (1 + exp (β0 + β1 A + β2 I)).      (4) 
 

We estimated the sample sized needed to determine whether 
altitude or inclination are statistically signification factors by 
running a Monte Carlo simulation of the logistic regression 
model with 1,000 iterations.  The null hypothesis assumed that 
the factors did not significantly affect pt, versus the alternative 
that the factors were significant for various simulated values 
of pt.  The power of the test, or the probability of identifying a 
statistically significant effect for altitude or inclination given 
that there really is an effect, was calculated on a post-hoc basis 
as the percent of iterations where the significance level was 
less than α.  Unlike for metric accuracy, where the sample size 
from the hypothesis test was sufficient to examine the effects 
of altitude and inclination in the full factorial ANOVA design, 
the logistic regression model requires larger sample sizes than 
the hypothesis test for the same values of α, power, and effect 
sizes.   

A total of 1,530 data points, or 170 evenly divided  over 9  
factor/level combinations, are needed to achieve a post-hoc 
power of 90 percent at the 5 percent α error using a simulated 
probability of track of 0.5, 0.45, and 0.4 for the high, mid, and 
low levels of altitude or inclination, respectively.   

Table V contains the number of objects expected to be 
available from the SATCAT over an approximate one- month 
period, compared with 170 tracks needed per factor-level 
combination. The 1,530 samples can be collected in 8 days 
with real tracks assuming one acceptable pass per day for 
altitudes less than 550 kilometers, and two acceptable radar 
passes per day for all targets above 550 kilometers. 
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TABLE V. 
THE NUMBER OF AVAILABLE SATCAT OBJECTS TO TEST PROBABILITY OF 

TRACK, ORDERED BY INCLINATION AND ALTITUDE.7 

Inclination 

(degrees) 

Altitude 

(km) 
Quantity 

Real Tracks/ 

Min Test Days 

9 < I ≤ 45 

250-550 22 > 170/8 

550-800 60 > 170/2 

800-3,000 37 > 170/3 

45 < I ≤ 80 

250-550 67 > 170/3 

550-800 1,094 > 170/1 

800-3,000 1,536 > 170/1 

80 < I ≤ 171 

250-550 156 > 170/2 

550-800 1,356 > 170/1 

800-3,000 4,039 > 170/1 

Total 8,367 >1,530/8 

 

B. Object Correlation 
Object correlation is defined as the process of associating 

detected objects with known SATCAT object to determine if 
an object being tracked is known or newly discovered.  As 
with probability of track, object correlation can be expressed 
in terms of a Bernoulli random variable, allowing the use of 
the same binomial methods previously described.  In this case, 
we replace pt, with the probability of correlation, pc, and set it 
equal to 0.97 to illustrate the dependency of sample size on 
different probabilities.  Following the same procedures as used 
for probability of track, we generate Table VI. The higher 
requirement threshold (0.97 for correlation versus 0.5 for 
probability of track) leads to much smaller sample size needs 
(81 versus 268) for the same 5 percent effect size, 5 percent α 
error, and 95 percent power.   

We used the logistic regression / Monte Carlo method 
described in the previous section to estimate the sample size 
needed to determine whether altitude or inclination are 
statistically significant factors.   A total of 540 data points, or 
60 evenly divided  over 9 factor/level combinations, are 
needed to achieve a post-hoc power of 95 percent at the 5 
percent α error using a simulated probability of correlation of 
0.97, 0.92, and 0.87 for the high, mid, and low levels of 
altitude or inclination, respectively.   

 
TABLE VI. 

POWER AND SAMPLE SIZE FOR OBJECT CORRELATION 

Operational 
Requirement Effect Size Power Alpha 

Sample 
Size 

Object 
Correlation 
(pc=0.97) 

10% (pc ≤ 0.87) 95% 5% 81 

95% 1% 118 

5% (pc ≤ 0.92) 95% 5% 228 

95% 1% 335 

 
7 The column labeled "real tracks/min test days" indicates the number of 

days needed to obtain 170 tracks. 

V. SMALL OBJECT SENSITIVITY 
The International Space Station is shielded to withstand the 

impact of debris as large as 1 centimeter in diameter [20]. 
Therefore, the protection of manned space flight will depend 
on Space Fence’s ability to track space debris in the 1-10 
centimeter size regime, with 10 centimeter being the lower 
limit for routine tracking by the current space surveillance 
system.  Objects at these small sizes present a particular 
challenge to detection and tracking because their irregular 
shape and motion might cause the radar to miss them on any 
particular pass. However, small spheres present a repeatable, 
constant signal level to the radar and thus are ideal objects to 
test sensitivity without the effects of shape or motion  

Unfortunately, there are no spherical dedicated objects on-
orbit under 10 centimeters and only a few at 10 centimeters 
[21].  One approach is to track existing small spherical debris 
that are not readily tracked by the current space surveillance 
network.  A family of possible objects includes sodium-
potassium (NaK) ejecta debris from inactive Soviet Radar 
Ocean Reconnaissance Satellite (RORSAT) satellites.  A 
Haystack debris campaign detected many objects in that size 
regime that are believed to be spherical, based on Mott 
Polarization analyses [22].   

Because the mission of that debris campaign was to 
establish debris flux rather than to catalog debris objects, we 
suspect that there are numerous small spherical objects on 
orbit, even though that campaign did not provide their orbital 
elements. There are two potential approaches to this problem: 
(1) another small debris campaign could be initiated to 
identify and catalog 1- to 10- centimeter class NaK debris 
targets or (2)  Space Fence could participate in its own debris 
campaign by initially detecting candidate objects and handing 
them off to specialized sensors, such as the Haystack radars, 
for verification. 

Table VII shows the number of 1- to 3-centimeter NaK 
debris objects detected in the Haystack debris campaign, 
organized by inclination, in the 250 to 600 kilometers altitude 
band.  

A Monte Carlo logistic regression test of the effect of 
inclination on tracking these potentially spherical objects 
indicates that such a test would have 88 percent post-hoc 
power of detecting a 10 percent effect at a 5 percent α error 
with 175 targets. Should Space Fence attempt to detect and 
track these objects, there would be a sufficient number of 
targets above 45 degrees inclination, but M&S would be 
necessary for targets at inclinations between 9 and 45 degrees, 
which were not surveyed in the debris campaign. 
Alternatively, the test could just comprise debris targets in the 
two inclination bands of 45 to 80 and 80 to 171 degrees. Those 
targets could be tracked over 13 days. 

TABLE VII. 
NAK DEBRIS DETECTED BY HAYSTACK 

Inclination 
(degrees) 

NaK 1-3 
centimeter 
quantity 

Tracks/ min 
test days 

45-80 14 >175/13 

80-171 26 >175/7 

Total 40 350/13 
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VI. TESTING DATA LATENCY 
Data latency is defined as the time from the end of sensor 

collects to the moment the data is received by the user, in this 
case the JSpOC.  For Space Fence, we assume data latency is 
to be no more than 2 minutes, 99 percent of the time.   

Historically, for other fence-style radars, radar message 
latency times cluster around a time well away from zero and 
close to the requirement, suggesting modeling latency time, L, 
as a normal random variable with mean µ and standard 
deviation σ rather than the exponential or lognormal that may 
be more common in other applications.  The upper 99 
percentile for L satisfies P {[(L - µ) / σ] ≤ 2.33} = .99, and a 
statistical test of the requirement is equivalent to testing the 
null hypothesis that µ + 2.33 σ ≤ 2.  

Since µ and σ are not known, we use an Upper Tolerance 
Interval (UTI) random variable Tu, defined as Tu = m + ku * s, 
where ku is a function of the sample size, and m and s are 
estimates of the unknown µ and σ that incorporate their 
uncertainty. There are various methods in the literature to 
determine ku for specified percentiles, sample size, and α [23]. 

Figure 1 shows the value of ku for 99 percent/alpha UTIs 
with alpha at 0.01, 0.05, and 0.1 as a function of sample size 
for data from a standard normal distribution based on Monte 
Carlo simulations of various sample sizes.  This data was 
generated using the R function normtol.int [24], and the Howe 
method [25].  For alpha = 0.05, ku is converging to the 
percentile value of 2.33 of known µ and σ from above, 
because m and s are converging to µ and σ as sample size 
increases. 

Sample sizes above 1,000 are beyond the “knee” of the 
curve, and the difference between the UTI and the upper 
percentile point will be relatively minor.  This large sample 
behavior is of particular benefit to Space Fence and most 
radars because message latency is not typically sensitive to 
target characteristics.  As such, sample sizes of thousands of 
messages per day should be routine, from which reliable UTI 
estimates could be made. 

Power analyses for tolerance intervals can be challenging 
because of the complexity of alternative hypotheses and 
distribution assumptions.  The problem is simplified under the 
assumption that L is normally distributed with an unknown µ 
and a known σ, say σo, obtainable either from history or from 
estimates from precursor tests.   

 
Fig. 1.  Upper 99%/95% Normal Tolerance Interval versus Sample Size. 
 

Under this approach, the power of the test can be stated in 
terms of an alternative hypothesis on the mean, H1:  µ < µo (1+ 
d), where d > 0 is the percent effect size in terms of the known 
σo.  Using the R pwr.norm.test function, for a 10% effect size 
and a 5% α, power levels of 70, 80, and 90% can be achieved 
with sample sizes of 471, 618, and 856, respectively.   

A 10 percent effect size is selected because it corresponds 
to a 12 second delay in the 2 minute latency threshold.  This 
delay might be significant for certain conjunction alerts and 
consequent collision avoidance maneuvers.  For the 
International Space Station, with a 0.5 to 1 m/s collision 
avoidance maneuver velocity [26], a 12 second delay 
translates to being 6 to 12 meters closer to a potential 
conjunction. 

VII. SUMMARY 
We presented a statistical methodology, using both well-

understood satellites and a larger subset of SATAT objects as 
target sources to ascertain the probabilities of meeting the 
Space Fence requirements written in terms of measurement 
errors, binomial responses, and percentiles. Our approach 
quantified the chances of determining whether Space Fence 
meets its intended metric accuracy, tracking, correlation, and 
data latency performance and if the individual performances 
(except for data latency) depends on an object’s altitude, 
inclination, and/or size.  Based on these results, we identified 
the type and minimum number of on-orbit test targets, 
determined that 125 orbital tracks may require M&S within 
specific orbital regimes, and estimated the test duration of 
approximately 25 days to evaluate the effectiveness of the 
system.  Additionally, we suggest an approach to test Space 
Fence against small objects not readily tracked by the current 
space surveillance network.  These results provide testers and 
users a mathematical basis for evaluation and acceptance 
decisions based on timely prediction of its operational 
effectiveness against the complete set of observations.  
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