

Space Transportation Analysis

W. Daniel Garretson James Woolsey Bruce Harmon Emile Ettedgui Shaun McGee Marshall Kaplan Charles Cook

distribution unlimited. IDA Document D-3109 Log: H 05-000298

February 2005

Approved for public release;

INSTITUTE FOR DEFENSE ANALYSES SCIENCE & TECHNOLOGY POLICY INSTITUTE 1899 Pennsylvania Ave., Suite 520 Washington, DC 20006-3602

Approved for public release; distribution unlimited. (8 November 2005)

This work was conducted under contract OIA-0408601, Task OSTP-20-0001.01, for the Office of Science and Technology Policy. The publication of this STPI document does not indicate endorsement by OSTP, nor should the contents be construed as reflecting the official position of that Office.

© 2005 Institute for Defense Analyses (Science and Technology Policy Institute), 1899 Pennsylvania Avenue, Suite 520, Washington, DC 20006-3602 • (202) 419-3737.

This material may be reproduced by or for the U.S. Government.

SCIENCE & TECHNOLOGY POLICY INSTITUTE

IDA Document D-3109

Space Transportation Analysis

W. Daniel Garretson James Woolsey Bruce Harmon Emile Ettedgui Shaun McGee Marshal Kaplan Charles Cook

PREFACE

٠

٠

This briefing was prepared for the Office of Science and Technology Policy under a task titled "Market Structure of U.S. Civil Space Launch."

Approved for public release; distribution unlimited. (8 November 2005)			
•			
•			
	CONTENTS		
•	EXECUTIVE SUMMARYES-I		
	SPACE TRANSPORTATION ANALYSIS I		
•			
•			
•			
•			

EXECUTIVE SUMMARY

Current U.S. space launch capabilities remain both expensive and unreliable in terms of schedule and, to some extent, launch success. While much of this cost and unreliability can be traced to the risk and complexity inherent in space launch activities, it is often speculated by space launch professionals that the regulatory environment and current one-size-fits-all approach to launch systems contribute inordinate cost to civilian space activities. In addition, questions have been raised regarding the objectives and approach to assuring access to space through the use of multiple, largely redundant launch systems.

In this paper, the authors analyze the state of the current U.S. space launch industry, including the market environment, regulatory constraints, and the drivers of space launch costs and of launch vehicle reliability. The authors also conduct extensive analysis of the current policy of maintaining multiple launch vehicles in order to assure access to space as required, including evaluation of potential consolidation options and analysis of payload scheduling under multiple scenarios for maintaining U.S. space launch capabilities.

ES-1

Space Transportation Analysis

Conducted for: OSTP 2004

In the process of conducting fact-gathering interviews and data collection, the team uncovered a number of insights regarding the current regulatory environment for space launch activities.

The analysis that follows was conducted by a cross-divisional team from the Institute for Defense Analysis.

This study examined the space launch market in order to characterize demand (including commercial, civil, and military demand) for launch services through 2015, assess current launch capabilities, and evaluate trade-offs among potential options for addressing launch service demand.

This briefing is divided into 4 major sections:

- 1. Regulatory insights
- 2. Market analysis
 - a. Overview
 - b. Small launch vehicle market
 - c. Large launch vehicle market

3. Multiple EELV analysis

- a. EELV option analysis
- b. Launch delay analysis
- e. Launch delay analysis: 2% failure rate
- d. Alternative switching options
- e. EELV reliability discrimination
- 4. Launch vehicle reliability analysis

In the process of conducting fact-gathering interviews and data collection, the team uncovered a number of insights regarding the current regulatory environment for space launch activities.

6

- Insights are based on a limited number of interviews
 - Primarily commercial launch providers
 - No direct range safety or regulatory input
- Insights involve limited, if any, independent analysis – primarily reporting what was heard

The team deemed the regulatory findings from preliminary interviews interesting enough to be reported to OSTP. But because regulatory issues were outside the primary scope of the task, the team did not pursue follow-up interviews or in-depth analysis.

Interviewees made a number of observations about the global space launch market, as noted above. The principal observation reflected in multiple interviews is that most spacefaring countries see space launch capabilities as a matter of national security. As a result, countries push capability development even though launch capacity is currently more than double launch demand. Overcapacity then drives commercial launch prices down as suppliers compete for limited commercial business, limiting opportunities for companies to amortize infrastructure development and vehicle design with launch service revenues.

To ensure that suppliers maintain capabilities, government customers typically subsidize launch service providers in some form. The form of these subsidies, however, varies substantially. Based on limited open source data, the team has characterized the level of subsidies as shown; further research would be required to characterize the actual value of the subsidies.

Example of subsidization include:

- With demand down, commercial prices have decreased. To sustain launch providers, the government has increased launch service payments for government launches: a variable cost subsidy.
- US launch policy currently keeps two launchers in business in order to ensure redundancy. Overall demand, however, would likely not support even one.
- Europe directly subsidizes launch vehicle development. On February 6, 2004, the European Guaranteed Access to Space (EGAS) program provided 960M Euros for further Ariane 5 development.

Key findings from the team's interviews and research include:

- The level of government subsidies increased as the commercial market collapsed.
- Due to the significant variation in the form of subsidies, it would be very difficult to directly compare launch subsidies in order to successfully negotiate with other nations to manage/rationalize the global launch market among countries.

Launch Market Insights

	Insight	Implication
Market Elasticity	 For most products/services that rely on space, launch costs are a minor component → non-elastic markets Satellite TV Fixed communications Few potential products/services are dominated by launch costs University experiments Tourism 	 Even significant launch cost reductions may result in minimal market impact There may be no reasonable near-term prescription for launch services providers
Applications	 Applications drive (and will continue to drive) launch services demand. Possible future applications include: Mobile radio and data Broadband to rural subscribers Mobile video 	 Regulations that impact satellite-delivered services may drive launch demand Universal access
Technology Impact	 External technology changes may fundamentally alter demand picture Better transponders could make satellite-based mobile communications more competitive with ground-based mobile Micro-Electro-Mechanical Systems (MEMS) technologies may increase the satellite value without increasing weight 	 Investments that focus on external technologies may drive launch demand. However, these opportunities seem to be limited over the near term.

Despite the cost of launch services, these costs represent a relatively small fraction of satellite-based business models. In most cases, even if launch costs were zero, launch service demand would not increase significantly—almost the definition of an inelastic market.

For example: DirectTV maintains 7 satellites. But with annual costs that are >\$7 billion, satellite-related costs represent less than 5% of total costs. Clearly, satellite and launch costs do not substantively affect DirectTV's overall business.

While new applications and technologies may drive increased demand (as indicated in the chart), the team believes these opportunities are limited and will result in minimal impact over the near term.

Many interviewees focused on the alleged detrimental effects of International Traffic in Arms Regulations (ITAR) on the commercial launch market (and the commercial satellite industry in general). Given other priorities of the study, the team did not conduct a more detailed investigation of the impact of ITAR.

Regulatory Issues – Immigration

Claim from interviews: Immigration policies and practices enable foreign technology development while limiting US companies

Issue	Claim	Implications
U.S. Work Force Limitations	 US companies face substantial barriers to hiring foreign talent 	 US companies can't hire from the broadest pool of talent
Foreign Skills Development	 Talented foreign engineers often can't pursue training in the U.S. When they can, they are often forced to return home after completing their studies 	 Launch professionals develop capabilities and technologies elsewhere Foreign nationals take US expertise home with them

11

A small number of interviewees claim that immigration policy also harms the U.S. launch industries by limiting opportunities for U.S. use of foreign labor. As a result, foreign workers who would like to work on space launch development end up supporting the development of foreign launch capabilities.

Because of study priorities, the team did not conduct further research or analysis on immigration issues.

- Launch services providers have to provide environmental certification for every launch
 - Cost impact: hundreds of thousands of dollars per launch
- Aircraft enjoy a categorical exclusion for essentially equivalent fuels

Most interviewees agree that environmental concerns add substantial cost to launch services and could be mitigated through logical exclusions, but the impact of these costs varies. For large launch providers, these costs are a nuisance, representing only a small fraction of launch costs. Small launch providers and startups, however, see these costs (and the associated approval times) as a significant barrier to innovation.

Because of study priorities, the team did not conduct further research or analysis on environmental compliance issues.

Some interviewees believe range management practices limit launch responsiveness and impose significant additional time and cost for little benefit. As with environmental protection, this is seen primarily as a nuisance issue. However, range safety regulations can drive significant cost increases for entrepreneurial launch service providers, limiting opportunities for new entrants into the launch markets.

Because of study priorities, the team did not conduct further research or analysis on range management issues.

Developing an understanding of launch markets and opportunities was a primary focus. This section provides an overview of this launch market analysis.

Three Launch "Markets"*

15

Market	Approximate Weight Range	Current U.S. Capabilities
Small Sat	 Less than ~1,200 kg to LEO Less than ~900 kg to SSO 	 Orbital Sciences Corporation Pegasus (\$23M - \$27M) Commercial Taurus (\$38M - \$46 M)
Medium Sat	 ~1,500 kg to ~4,500 kg to LEO ~1,000 kg to ~3,300 kg to SSO Less than ~2,200 kg to GTO 	 Boeing Corporation Delta II (\$50M - \$72M)
Large Sat	 ~5,000 kg to ~23,000 kg to LEO ~3,500 kg to ~21,000 kg to SSO ~2,500 kg to ~13,000 kg to GTO 	 Boeing Corporation Delta IV (\$87M - \$160M) Lockheed-Martin Atlas V (\$96M - \$124M)

*Defined by capabilities. Excludes the Shuttle

The team identified three primary launch markets and associated launch capabilities, as outlined in the chart.

As the team's interviews and analysis showed, it is difficult to overstate the complexity of space launch.

In this context, it is useful to understand the key drivers of launch costs and reliability. These include:

- Government requirements. As the primary buyer of launch services, governments determine the specifications and requirements and, as a result, key components of the costs.
- Launch vehicle reliability is highly dependent on the level of experience with the vehicle vehicles that have been in service longer have had more time for flaws to be identified and eliminated.
- High launch volume allows companies to amortize the substantial fixed costs associated with launch services and increases experience levels with launch vehicles.

- Current market provides little incentive for commercial entry
- Government has two programs to create low-cost launchers
- Several stimulus options, but significant uncertainties remain for all options

The small launch market is a particularly difficult market. Despite possible growth in demand (e.g., U.S. responsive launch needs), there is currently little commercial or government demand for small satellites. While the government has some options for stimulating the growth of the small launch vehicle market, the team identified no compelling rationale for doing so in the current demand environment.

The large launch vehicle market also poses significant challenges, but government requirements dictate that significant capabilities be maintained. However, the current approaches to maintaining the capability may not provide the benefits that government buyers believe.

Given that large launch vehicles are required, increased reliability and decreased launch costs are desirable, but few obvious mechanisms exist to create these benefits. One possibility: using existing launch services for future launches (e.g., associated with the vision for space exploration announced in January 2004).

This section provides the small launch vehicle analysis.

.

The smallsat market is extremely unattractive for both satellite manufacturers and launch service providers. As already noted, current smallsat launch options are high cost and relatively limited.

But while many entrepreneurs have tried to enter the smallsat launch service market, the business environment poses extremely large challenges. To understand the business environment, the team constructed a hypothetical business model for smallsat launch services.

Given the high risk associated with developing a new launch capability, investors would reasonably expect a minimum of a 20% to 30% rate of return. But even aggressive assumptions regarding development (e.g., R&D costs of \$50 million and a 10-year payback horizon) require extremely high launch rates relative to historical launch rates for small launch vehicles to achieve these returns. Higher development costs quickly make it virtually impossible to achieve a reasonable business case.

Increasing the payback horizon to 15 years provides only marginal improvements in the business case.

At lower prices per pound than those achieved by current providers (specifically, Orbital Sciences with the Pegasus launch vehicle), a workable business case requires extremely high demand. The team believes that such high levels of demand are very improbable at these prices.

Development of a viable small launch vehicle market would likely require significant speculation and, in particular, government interest in small launch capabilities. Some current ideas may offer promise (e.g., the push for responsive launch), but specific requirements have yet to be worked out.

- Subsidize supply
 - Subsidize launch costs
 - Develop low-cost launchers
 - Use retired ICBMs
 - Lower regulatory burdens
- Pump up demand
 - Military applications
 - Science grants and subsidies

Creating a robust small launch vehicle capability could be pursued either by subsidizing vehicle supply or driving increased demand.

Supply-Side Subsidy Options

Option	Description	Strengths	Weaknesses
Launcher Subsidy	 Subsidize the cost of twenty 500-1,000 lb launches to create a \$3,000/lb launch price Total cost: ~\$100M-\$250M 	 Creates demand elasticity data point May create incentives for launcher innovation (if market emerges) 	 Short-lived experiment May not create demand May show demand at unrealistic cost levels
Cheap launcher development	The Federal Government foots the bill for development of a low-cost launcher	 Government takes the risk for launcher development 	 Programs of this sort (both commercial and government) have been tried regularly over the last 2 decades – and <i>none</i> so far have succeeded Significant demand to justify the investment may not exist at resulting price levels
Excess ICBM Conversion	 The Federal Government makes excess missile assets (MinuteMan and PeaceKeepers) available to industry for refurbishment and re- use as launchers 	 Takes advantage of existing assets that otherwise would be destroyed May reduce launch costs for small satellites for many years (>400 Minuteman launchers) 	 May be cost-prohibitive relative to other options If practical, would be competitive with commercial small-launcher development activities Payload capacity would be limited

27

STPI

The U.S. government has a number of options for subsidizing small launch vehicle development, but all options have significant weaknesses.

The use of excess intercontinental ballistic missile (ICBM) assets has been proposed for small launch vehicles, but this option would be unlikely to significantly reduce launch costs.

Demand Side Subsidy Options

Option	Description	Strengths	Weaknesses
Subsidize university small sat development	 Allocate funds for university small sat programs, e.g.: 10/yr at \$15M-\$20M per satellite + \$6M per launch = \$210M-\$270M 	 Provides educational opportunities for new satellite development Supports experimentation with both satellite and launch vehicle technology 	 Not likely to produce significant scientific results – focus is on education Possibility of low-cost (~\$6M) launchers remains unproven May not lead to sufficient launch rates to drive innovation
Fund ORS testing and development	 Allocate funding for ORS development Test program Satellite technology development 	 Low initial investment required to validate concepts May not require additional allocation due to DOD activities already in process 	 Not clear that satellite technologies can provide sufficient capabilities in small payloads May require significant investment to create operational capabilities

29

STPI

As with supply-side subsidies, demand-side subsidy options have significant weaknesses.

8

Some military planners deem operationally responsive spacelift to be increasingly important for future national security space capabilities. ORS requirements could conceivably stimulate the small launch vehicle market, but these requirements remain undefined at present.

Hypothetical ORS Scenarios

Program Type	Description	Examples/Example Scenarios	Launch Rate
Technology Demonstrator	Test new capabilities for possible future deployment	• TacSat	 ~1 launch/year
Asset Replacement	 Smallsat constellation replaces failed or damaged assets 	 Large, critical capabilities unexpectedly fail Adversaries disable or destroy assets on orbit 	 Rarely used surge capability of ~5-10 launches Average <5 launches/yea
Contingency Capability	 Smallsat constellation allows rapid capability deployment as needed 	 Remote sensing intelligence needed for emerging, high-priority "hot spots" Military action requires surge communication capability 	 Occasionally (~ once per year) used surge capabili of ~5-10 launches Average 5-10 launches/year
Routine Capability	 Smallsat constellation allows regular, rapid capability deployment 	 Remote sensing intelligence needed for emerging "hot spots" Military action requires surge communication capability 	 Regularly (several times per year) used surge capability of ~5-10 launches Average 10-30 launches/year

31

STPI

A number of scenarios have been proposed for ORS.

Approved for public release; distribution unlimited. (8 November 2005)

A number of programs are currently being pursued for the development of ORS capabilities.

- Government has two programs to create low-cost launchers
- Several stimulus options, but significant uncertainties remain for all options

STP

The small launch market is a particularly difficult market. Despite possible growth in demand (e.g., U.S. responsive launch needs), there is currently little commercial or government demand for small satellites. While the government has some options for stimulating the growth of the small launch vehicle market, the team identified no compelling rationale for doing so in the current demand environment.

This section provides the market analysis for large launch vehicles.

.

The market environment for large launch vehicles has soured significantly—at least relative to projections—over the last 5 years. As a result of inflated market projections in the late 1990s, launch vehicle suppliers built the capability to support high launch rates, but the projected launch rates never materialized.

In addition, foreign launch service providers significantly underprice domestic providers, with the immediate result that Boeing is not selling Delta IV services to the commercial market.

Given these conditions, there is essentially no commercial incentive for further development. Domestic launch providers are willing to supply launch services for the government only if the government covers all costs.

The primary U.S. large launch services are based on the Boeing Delta IV family of launch vehicles and the Lockheed Martin Atlas V family of launch vehicles. Together, these launch vehicle families make up the Evolved Expendable Launch Vehicle program.

When the EELV program was created in 1998, the justification rested on projections at the time of relatively high demand for launch services.

A major source of launch service demand has been the Commercial Space Transportation Advisory Committee (COMSTAC) of the Federal Aviation Administration. In 1998, COMSTAC projected average commercial launch service demand of 64 launches per year (including both geosynchronous and non-geosynchronous launches).

By 2004, the projected average was fewer than 24 commercial launches per year.

As a result of the lower demand for launch services than projected in the late 1990s, launch prices have dropped substantially.

In 1995, the U.S. signed a START I SLV (Space Launch Vehicle) Revision that limited Russia's ability to convert excess missile assets to space launch vehicles. This treaty provision has since expired, allowing Russia to increase its use of excess missile assets and thereby increase launch capacity even further.

- EELV suppliers are facing money-losing businesses
 - Boeing has already written off \$0.8 billion and declared exit from commercial launch business
- EELV launches beyond the current contract must come at higher prices
- No contractor will make investment in new or improved launch systems

As a result of these market dynamics, the EELVs have become money-losing businesses for the EELV providers. In this context, launch service providers have no incentive to make investments in the systems beyond what the government will pay for, generally through higher prices for launch services.

- Maximize reliability/availability
- Minimize cost
- One key to both: Maximize the launch rate per launcher
 - Directly impacts costs per launch
 - Indirectly impacts reliability

STP

Although launch service suppliers are reticent to invest, the U.S. government has an ongoing need for launch services. U.S. imperatives with respect to launch services are to maximize reliability and availability while minimizing cost.

But the central problem for the large launch vehicle industry in this context is that higher launch frequencies are critical to reducing costs and, ultimately, increasing reliability.

Options for Increasing EELV Volume

Option	Description	Strengths	Weaknesses
Consolidate Delta II Volume on EELVs	 Encourage NASA to develop future payloads for EELVs – not the Delta II 	 Increases launch volumes for the EELV May bring launch costs for medium EELV in line with Delta IIs Excess EELV capacity may allow: Additional science opportunities on NASA missions Piggyback payloads at low incremental costs 	 The Delta II has proven to be extremely reliable – payload costs are such that the risk of using an unproven launcher is seen to outweign the benefit Excess capacity may lead to scope (and budget) creep, outweighing cost savings Science missions are one of a kind – may be difficult to coordinate multiple payloads
Keep exploration missions in the EELV payload range	 Direct NASA to size exploration missions for current EELV capacity 	 Increases launch volumes for the EELV Reduce costs for EELV launches Increase experience (and, thus, reliability) with EELV system May accelerate development of technologies/capabilities required for sustainable exploration infrastructure 	 Requires multiple launches for placing required infrastructure in space (even for lunar landing) Requires new (undemonstrated) staging capabilities in orbit (LEO or other appropriate altitude)
Use EELV for ISS support	 Modify EELV launchers to support cargo lift Possibly develop down-mass capabilities for the EELV 	 Increases launch volumes for the EELV Reduce costs for EELV launches Increase experience (and, thus, reliability) with EELV system May accelerate development of technologies/capabilities required for sustainable exploration infrastructure Already under consideration by NASA 	 Requires modifications to the EELV Requires new (undemonstrated) robotic docking capabilities

41

 ∞

STPI

The team evaluated a number of options for increasing EELV launch volume, but all options come with significant drawbacks. The options identified generally rely on NASA to move launches onto the EELV, but this approach may not fit with NASA priorities for a variety of reasons (as identified above).

In sum, the large launch vehicle market, like the small launch vehicle market, poses significant challenges, but government requirements dictate that significant capabilities be maintained in this market.

Given that large launch vehicles are required, increased reliability and decreased launch costs are desirable, but few obvious mechanisms exist to create these benefits. One possibility: using existing launch services for future launches (e.g., associated with the vision for space exploration announced in January 2004).

STPI evaluated launch vehicle reliability trends over time to try to understand the effect of launch experience on reliability.

Reliability Comes With Experience

Fleet Mishap Rate

STPI

The historieal launch vehicle mishap rate closely follows a standard learning curve: the mishap rate has fallen steadily over time from over 50% failures in the late 1950s to around 5% starting in the 1980s. The mishap rate has not noticeably decreased since then.

Approved for public release; distribution unlimited. (8 November 2005)

Further analysis of launch statistics revealed that the learning curve also appears to apply to separate launch vehicle families, indicating that launch vehicle operators also follow a learning curve as they gain experience with the vehicle.

To understand the learning curve within families, STPI sorted launch failures from vehicle families according to total launches since the beginning of the vehicle program. While the failure statistics do not decrease monotonically with launch number, the overall trend of decreasing failure rates with launch number is apparent.

- There may not be a lot to gain from simplicity
- Starting a new launch vehicle program solely to develop a simple, reliable rocket appears to be misguided

47

STPI

This analysis strongly indicates that failure rate is much more readily explained by experience than by any inherent simplicity of a given launch vehicle. As a result, it may be misguided to try to increase reliability by beginning a new program to design a "simpler" launch vehicle.

٠

٠

One objective of the study was to understand the current approach to maintaining large launch vehicle capabilities and to evaluate the benefits. This section outlines that analysis.

Based on multiple interviews with DoD stakeholders and launch service providers, the team identified the primary objective as stated above. This objective is often referred to as an objective of maintaining "assured access" to space.

The critical assumption implicit in this rationale is that, in the event of a failure in one launch system, a secondary launch system will allow launch service buyers to shift their payload to the alternate system and thereby eliminate launch delays associated with the failure.

The core requirement for achieving assured access is to maintain multiple launch vehicles. This approach is realized in the current EELV program and its push to maximize the independence of both launch vehicles.

In addition to maintaining two independent systems, the current approach focuses on U.S.-based production of all critical subsystems in order to minimize dependence on foreign sources. Such dependence, possibly resulting from political instability or the reduced ability to influence foreign suppliers relative to domestic suppliers, could result in supply disruptions.

The third major component of the multiple launch vehicle approach to achieving assured access is maximizing the ability to shift payloads between EELV systems by focusing on creating comparable payload environments and requirements across the launch vehicles and through "dual integration," as appropriate. However, the team determined that, at this time, there does not exist a uniform approach to dual integration across DoD payloads.

Integration time and cost is highly dependent on

- How much integration has been accomplished prior to the switch decision
- Availability of launch vehicles

Integration Scenario	Description	Time	Additional Cost
Dual- integrated payload	 All necessary integration work (loads analysis, etc.) has been carried out for both launch vehicles 	 As little as 45 days (assumes launch vehicle, fairing, and adapter are available at the launch site) 	 Essentially the cost of a full, additional launch service
Previously integrated payload	 An equivalent payload has previously been integrated on the other system (e.g., DSCS) 	• 12-24 months	 \$10 million (could be greater, depending on the complexity of the payload), but assumes that additional launch hardware is available
No prior integration work	 No effort has previously been expended to integrate the payload to the other system 	• 24 months	 Minimal, assuming that the primary launch hardware is not yet paid for or reserved (consistent with the fact that launch hardware commitment usually occurs about 24 months prior to launch)
	•	•	51

The team investigated the ease of shifting payloads from one EELV to the other. While integration scenarios vary considerably in practice, they can be roughly divided into three categories:

- 1. If payloads are dual-integrated and additional launch hardware is available at the launch site, payloads can be shifted in as little as 45 days, but this requires an investment that is roughly equal to the cost of a full, additional launch service.
- 2. If payloads have been previously integrated on the secondary system, the payload can typically be shifted to the secondary system for an investment of an additional \$10 million over the basic launch costs (for carrying out the coupled loads analysis, primarily). This approach requires significant lead time for launch hardware acquisition and launch slot availability, resulting in 12-24 month lead times (in some cases, this could be as little as 6 months if hardware is readily available).
- 3. If there has been no prior integration work, payloads can be shifted from the primary system to the secondary system at minimal cost *if* the decision is made at least 24 months prior to launch. To the extent that any additional integration work has already been carried out on the primary system or launch hardware has been acquired, this investment will be lost.

The extra capability gained by maintaining multiple launch vehicles does, of course, come with additional cost. These include the costs outlined above.

•

Benefits and Weaknesses

Issue	Benefits	Weaknesses
Launch Vehicle Backup	 Limits impact of launch vehicle failure to the fraction of the launch manifest scheduled on the failed system Allows payloads to be shifted from one vehicle to the other if necessary If the failed vehicle is down for an extended time period, payloads can, in principle, be moved to the alternate vehicle 	 Integration times limit the ability to shift payloads from one vehicle to the other
Launch Vehicle Independence	 Limits US exposure to launch vehicle failure Assuming the failed subsystem(s) isn't (aren't) common to both vehicles, only payloads scheduled for launch on the failed vehicle will be delayed 	 Exposure isn't eliminated Systems aren't completely independent – common subsystems (such as the RL-10) remain

53

 ∞

STPI

To summarize, maintaining multiple launch vehicles does bring some benefits but the benefits are limited. Because of redundancy, additional challenges include:

1. Integration times

•

2. Residual system commonality

Benefits and Weaknesses – Continued

Issue	Benefits	Weaknesses
Manufacturing Redundancy	 Limits the ability of natural or man-made disaster to wipe out US launch capability at the manufacturing source (however, there is a fairly low probability of long- term factory destruction) 	 The U.S. government is bearing the full overhead cost of supporting two separate launch vehicle manufacturing capabilities Minimal demand provides little opportunity to recover fixed costs through commercial sales
Launch Operations Redundancy	 Limits the ability of natural or man-made disaster to wipe out U.S. launch capability at the launch site (however, there is a low probability of long-term launch pad or launch operations center destruction) 	 The U.S. government is bearing the full overhead cost of supporting two separate launch operations

54

 ∞

STPI

D

With regard to operations and manufacturing, benefits are limited primarily because the government is bearing the full cost of supporting both launch vehicles. This drawback should be weighed against the generally low probability of long-term manufacturing or launch operations destruction.

Benefits and Weaknesses – Continued

Issue	Benefits	Weaknesses
Workforce Management	 Maintaining multiple launch vehicles increases demand for technical workforce May help ensure a large skilled workforce is retained as future needs emerge 	 May result in substantial extra cost if multiple launch operations lead to significant workforce redundancy
Industrial Base Management	 Having multiple providers supports increased competition May reduce launch services prices May drive increased innovation in capability and reliability 	 Foreign competition may already provide the desired price pressure on U.S. providers The U.S. government may be able to create the same benefits as competition by appropriately managing the single source Indeed, the U.S. already manages single suppliers for other major defense systems and may be able to apply leaming from these programs to managing launch service providers

55

 ∞

STPI

Additional considerations pertain to workforce and industrial base management. While maintaining multiple launch vehicles may help to ensure retention of a large skilled workforce and allow multiple companies to participate, these benefits, again, should be weighed against the cost and the fact that the U.S. government does have experience managing workforce and industrial base issues with sole-source suppliers.

Approved for public release; distribution unlimited. (8 November 2005)

In addition to conducting the high-level benefits analysis, the team attempted to lay out the range of options for reducing the cost and scope of the EELV program.

Options for EELV

Option	Description
Maintain two EELV Iaunchers	Retain both Lockheed Martin and Boeing as EELV providers
Consolidate EELV launch operations	 Combine Delta IV and Atlas V launch operations Absorb EELV launch operations under a single contractor Turn EELV operations over to the United Space Alliance or a similar joint entity
Consolidate EELV manufacturing capabilities	 Relocate vehicle manufacturing from both contractors to the same (probably existing) facility Close existing excess manufacturing facility
Downselect to one EELV launcher	 Select a single launch vehicle and launch-services provider for all EELV class payloads

The team identified the following primary options:

- 1. Status quo: maintain two EELV systems
- 2. Consolidate launch operations

- 3. Consolidate manufacturing capabilities
- 4. Downselect from two EELVs to one

The team believes that a full downselect would bring several benefits, including:

1. Lower prices for the remaining system

2. Higher reliability on the remaining system in a shorter time

These benefits must, of course, be weighed against the aforementioned benefits of maintaining two systems.

Consolidation

- Consolidation would combine as much of the two EELV operations (including manufacturing and launch operations) as possible, while retaining launch vehicle redundancy
- Opportunities for consolidation include:
 - Factory operations
 - Launch operations

But the government can pursue more limited options than a full downselect. The team believes that there may be opportunities to consolidate factory operations and/or launch operations and thereby achieve at least some of the savings of a full downselect.

A detailed analysis of plant closure was beyond the scope of this study. However, there are a number of sources of savings from such a closure and these savings can be analyzed in detail. The savings come, primarily, from the fact that some (probably significant) fraction of the fixed costs at one plant can be eliminated by closing the plant and combining its operations with the manufacturing operations of the alternate system.

Reliability Impact from Consolidation

 Consolidated Ops and Manufacturing Launch teams gain launch experience more quickly Launch and engineering teams can more easily apply lessons learned across systems Fewer up/down workload cycles for both launch and engineering workforces Maintain redundant manufacturing and ops – reduce exposure to infrastructure damage Avoid potential system confusion errors (e.g., workforce errors due to switching between systems) Decrease likelihood of mistakes due to common processes/suppliers 	Scenario	Advantages	
Ops and Manufacturing• Launch and engineering teams can more easily apply lessons learned across systems • Fewer up/down workload cycles for both launch and engineering workforcesUnconsolidated Ops and Manufacturing• Maintain redundant manufacturing and ops – reduce exposure to infrastructure damage • Avoid potential system confusion errors (e.g., workforce errors due to switching between systems) • Decrease likelihood of mistakes due to common processes/suppliers	Consolidated	Launch teams gain launch experience more quickly	
 Fewer up/down workload cycles for both launch and engineering workforces Unconsolidated Ops and Manufacturing Maintain redundant manufacturing and ops – reduce exposure to infrastructure damage Avoid potential system confusion errors (e.g., workforce errors due to switching between systems) Decrease likelihood of mistakes due to common processes/suppliers 	Ops and Manufacturing	Launch and engineering teams can more easily apply lessons learne across systems	
 Unconsolidated Ops and Manufacturing Maintain redundant manufacturing and ops – reduce exposure to infrastructure damage Avoid potential system confusion errors (e.g., workforce errors due to switching between systems) Decrease likelihood of mistakes due to common processes/suppliers 		 Fewer up/down workload cycles for both launch and engineering workforces 	
 Avoid potential system confusion errors (e.g., workforce errors due to switching between systems) Decrease likelihood of mistakes due to common processes/suppliers 	Unconsolidated Ops and	 Maintain redundant manufacturing and ops – reduce exposure to infrastructure damage 	
 Decrease likelihood of mistakes due to common processes/suppliers 	Manufacturing	Avoid potential system confusion errors (e.g., workforce errors due to switching between systems)	
		Decrease likelihood of mistakes due to common processes/suppliers	
Decrease likelihood of surge workloads		Decrease likelihood of surge workloads	

61

 ∞

STPI

In addition to affecting cost, consolidation has potential implications for reliability that flow primarily from the experience of the launch teams. While there are definite advantages to consolidation, from the standpoint of reliability there are also significant advantages to keeping launch and manufacturing operations unconsolidated. Assessing the full impact of either option would require substantial additional analysis.

To understand the benefits of two launch vehicles vs. one launch vehicle, the team modeled the impact of maintaining two launch vehicles on the possibility of launch delay as a result of launch vehicle failure.

The team developed a launch scheduling simulation to estimate the probability that a given launch would be delayed because of launch vehicle downtime. The simulation included:

- 1. Launch scheduling for one or more vehicles, incorporating overall launch rate and launch rate constraints by vehicle.
- 2. Random launch failures with an associated recovery time during which no subsequent launches were allowed to occur. The simulation adjusted the launch scheduling as necessary to account for these delays (ensuring that subsequent launch rates do not exceed constraints).
- 3. Switching between launch vehicles as allowed by launch rate constraints. The simulation included delays to account for integration requirements on the new vehicle and allowed for reworking the launch queue to allow for high-priority payloads.
- 4. Switching to auxiliary (e.g., foreign) launch capabilities, as appropriate. Once again, this switching incorporated integration delays and accounted for payload sensitivity (i.e., the notion that sensitive payloads may not be allowed to switch to auxiliary vehicles), as appropriate.

- Simulates single-vehicle and dual-vehicle operations
- Inputs include average monthly launch rate, launch capacity, and failure rate
- Simulations cover >80,000 missions
- Each mission is assigned a planned launch date
- Missions fail at random
- Following a failure, the launch site temporarily shuts down
- Missions queue up until the launch site becomes available
- Simulation compares actual launch date with planned launch date to determine delay

The simulation is intended to create a reasonable model of launch scheduling while incorporating appropriate constraints. Typical simulation runs cover more than 80,000 missions in order to develop a reasonably accurate profile of launch delay statistics.

A number of key assumptions, as outlined above, are made in the operation of the simulation. In addition to making the analysis tractable within the time constraints of the study, these assumptions provide "best case" results in terms of the usefulness of maintaining multiple launch vehicles. In general, removing any of these assumptions will reduce the positive impact of maintaining a second launch capability.

As indicated, the simulation used an exponential distribution to model vehicle downtime following a failure. This distribution makes sense from queuing theory and, despite the limited statistics available for launch failures, delays during actual launch failures appear to be consistent with the distribution (see next page).

The exponential distribution appears to be generally consistent with actual delay statistics.

- Two launch lines with the same launch rate capacity as a single launch line provide more on-time launches
 - Splitting a launch line into two independent launch lines reduces the number of delayed launches by half
- Switching missions between two launch lines during downtime improves on-time launches, but only marginally compared with the impact of splitting one launch line into two

- Very few missions (<3%) actually cross over

The largest impact from maintaining two launch vehicles comes from the ability to split the manifest into two independent launch manifests rather than from the ability to switch payloads between launch vehicles. Simply stated, the impact of two manifests is that half of the overall manifest is not affected by a launch failure in one of the vehicles.

This does assume that the launch vehicles are independent. If the launch vehicles are not, in fact, independent, then a failure in a common component may delay launches on both vehicles.

Scenario Description

Parameter	One Launch Vehicle	Two Systems	Two Systems with Switching
Launch Capacity	17 launches/year	~10 launches/year (varies by system)	~10 launches/year (varies by system)
Launch Volume	10 launches/year	5 launches/year each	5 launches/year each
Failure Rate	5%	5%	5%
Switching Allowed	N/A	No	Yes, based on capacity availability
Integration Time	N/A	N/A	 Probabilistic: 3 months (20% of the time) 6 months (60% of the time) 18 months (20% of the time)
Priority	N/A	N/A	N/A

The above table summarizes the scenarios used to model launch scheduling. For the initial analysis, we analyzed three basic scenarios:

- 1. Maintaining a launch schedule of 10 launches per year on a single launch vehicle.
- 2. Maintaining two launch vehicles and splitting the manifest in half, with 5 launches per year on each vehicle. Payloads on 1 vehicle cannot be switched to the other vehicle.
- 3. Same as (2), except that payloads can be switched from one vehicle to the other if launch capacity is available.

The critical parameters for our simulation are the annual launch capacity of each vehicle, the annual launch volume, and the launch failure rate. For these scenarios, we assumed an overall annual launch volume of 10 launches and an overall failure rate of 1 out of every 20 launches.

In the above chart, the vertical axis gives the probability that a given payload will be delayed by the number of months indicated on the horizontal axis. Thus, roughly 65% of all launches are expected to be delayed with only one launch vehicle, and any given payload has only a 50% chance of being launched within 3 months of the scheduled launch date.

With two launch vehicles, the probability that any given launch will be delayed falls significantly from about 65% to about 30%, even without allowing payloads to switch from one launch vehicle to the other.

While simply splitting the launch manifest onto two vehicles provides the greatest improvement in launch timeliness, allowing payloads to switch also provides modest improvement in statistics. Thus, while approximately 11% of payloads will be delayed 6 months with a split manifest, only about 7% of payloads will experience a 6-month delay when payloads are allowed to switch vehicles.

- A subset of missions becomes high priority
- High-priority missions move past low-priority missions whenever they are in a queue together
- Sensitivity:
 - Simulated schedule impact for a range of assumptions about the percentage of missions that are considered high priority
 - Increasing percentage of missions that are considered high priority had minimal impact up to 25% of missions

STP

While prior simulation results assume a first-in-first-out queue, we also model the impact of payload prioritization on launch scheduling. In these scenarios, we designate a specific percentage of overall payloads as "high priority". These missions are then allowed to launch before low priority missions when in a queue together.

The percentage of high priority payloads is varied between 0% and 25% of total payloads, but, in general, variations in this percentage have only a minor impact on the overall trend with prioritization (as discussed on the next several charts).

Scenario Description

Parameter	One Launch Vehicle	One Launch Vehicle with Prioritization	Two Launch Vehicles with Prioritization
Launch Capacity	17 launches/year	17 launches/year	~10 launches/year (varies by system)
Launch Volume	10 launches/year	10 launches/year	5 launches/year each
Failure Rate	5%	5%	5%
Switching Allowed	N/A	N/A	N/A
Integration Time	N/A	N/A	N/A
Priority	N/A	Percentage of missions that are deemed high- priority missions = 5% of total missions	Percentage of missions that are deemed high- priority missions = 5% of total missions

We first modeled a comparison between a single launch vehicle without prioritization and a single launch vehicle with prioritization. The results that follow assume that high-priority payloads represent 5% of missions.

For high-priority payloads, preferential treatment significantly reduces the probability that the payload will be delayed from roughly 65% of payloads to 25% of payloads. Low-priority payloads, on the other hand, experience a slightly increased probability of delay. The probability that a low-priority payload will be delayed at least 6 months, for example, rises from 40% without prioritization to 45% with prioritization.

Prioritization also reduces the probability of delay for high-priority payloads with 2 launch vehicles. The probability that high-priority payloads will experience some delay fell from 30% without prioritization to 14% with prioritization, with minimal impact on delay statistics for low priority payloads.

As the graphic shows, allowing high-priority payloads to switch between launch vehicles had only a minor additional impact on delay probabilities. In general, the percentage of payloads delayed by a given amount of time shifted by less than 2%.

.

Impact of Auxiliary Launch Capacity

- Approach:
 - "Sensitive" missions remain with original launch facility and are given high priority
 - "Nonsensitive" civil and commercial missions can shift to auxiliary launch system
- Provides significant improvement in timeliness of nonsensitive missions
- Does not affect sensitive (high-priority) missions

STPI was also asked to analyze the impact of making use of alternative launch capabilities (e.g., foreign launch capability) while maintaining one EELV.

The primary assumption is that "sensitive" government payloads will not be placed on the auxiliary launch capability (indeed, this is how sensitive missions are defined for the purposes of this analysis). Instead, this launch capability will be used for "nonsensitive" missions, allowing the primary launch capability to work off a backlog faster in the event of an extended downtime after a catastrophic failure. A secondary assumption is that sensitive missions are high priority and thus will be moved first in the queue after a failure.

As the following charts demonstrate, this auxiliary launch capacity has a significant impact on the timeliness of nonsensitive missions but has no impact on sensitive missions (as should be expected).

Scenario Description

Parameter	Primary Launch Vehicle	Auxiliary Capacity
Launch Capacity	17 launches/year	7 launches/year
Launch Volume	10 launches/year	N/A
Failure Rate	5%	5%
Switching Allowed	N/A	Yes, based on capacity availability
Integration Time	N/A	Probabilistic: - 3 months (20% of the time) - 6 months (60% of the time) - 18 months (20% of the time)
Priority	N/A	5% of payloads are sensitive (i.e., <i>can't</i> be switched)

In this scenario, the primary launch vehicle is configured as in prior scenarios with a capacity of 17 launches per year and a failure rate of 5%. The expected launch volume is 10 launches per year.

In the event of a failure, scheduled payloads are considered for switching to the auxiliary launch capacity if:

- I. The mission is not sensitive
- 2. Capacity is available on the auxiliary launch capability
- 3. Expected integration time is less than the expected downtime for the primary launch vehicle

Note that 5% of all payloads are considered sensitive and thus are not eligible for switching to auxiliary capacity.

The chart above shows the delay statistics for a single launch vehicle compared with the delay statistics for both sensitive and nonsensitive payloads when making use of auxiliary launch capacity. For sensitive missions, the delay statistics are the same as for a single launch vehicle where 5% of missions are considered high priority (see page 74). For nonsensitive missions (i.e., not high priority in this context), the use of auxiliary launch capability substantially improves timeliness.

The conclusions of the queuing analysis are summarized above.

0

This section repeats selected simulations from the previous section with a 2% failure rate (recall that a failure rate of 5% was used in the previous section).

Scenario Description

One Launch Vehicle

Parameter

 ∞

Launch Capacity	17 launches/year	~10 launches/year (varies by system)	~10 launches/year (varies by system)
Launch Volume	10 launches/year	5 launches/year each	5 launches/year each
Failure Rate	2%	2%	2%
Switching Allowed	N/A	No	Yes, based on capacity availability
Integration Time	N/A	N/A	 Probabilistic: 3 months (20% of the time) 6 months (60% of the time) 18 months (20% of the time)
Priority	N/A	N/A	N/A

The above table summarizes the scenarios used to model launch scheduling. For the initial analysis, we analyzed three basic scenarios:

- 1. Maintaining a launch schedule of 10 launches per year on a single launch vehicle.
- 2. Maintaining 2 launch vehicles and splitting the manifest in half, with 5 launches per year on each vehicle. Payloads on 1 vehicle cannot be switched to the other vehicle.
- 3. Same as (2), except that payloads can be switched from one vehicle to the other if launch capacity is available.

The critical parameters for our simulation are the annual launch capacity of each vehicle, the annual launch volume, and the launch failure rate. As in the last section, we assumed an overall annual launch rate of 10 launches per year. However, we reduced the assumed failure rate from 1 out of every 20 launches to 1 out of every 50 launches.

The above chart plots the delay probabilities both for a single launch vehicle and for two launch vehicles (without and with switching). For a single launch vehicle, roughly 27% of all launches are expected to be delayed (compared with 65% when we assumed a 5% failure rate) and only 17% of payloads are expected to be delayed more than 3 months after the scheduled launch date (compared with about 50% when we assumed a 5% failure rate).

With two launch vehicles, the probability that any given launch will be delayed falls significantly, from about 27% to about 13%, even without allowing payloads to switch from one launch vehicle to the other.

Similar to the situation with a 5% failure rate, while simply splitting the launch manifest onto two vehicles provides the greatest improvement in launch timeliness, allowing payloads to switch also provides modest improvement in statistics. Thus, while approximately 4% of payloads will be delayed 6 months with a split manifest, only about 2% of payloads will experience a 6-month or greater delay when payloads are allowed to switch vehicles.

Scenario Description

Parameter	One Launch Vehicle	One Launch Vehicle with Prioritization
Launch Capacity	17 launches/year	17 launches/year
Launch Volume	10 launches/year	10 launches/year
Failure Rate	2%	2%
Switching Allowed	N/A	N/A
Integration Time	N/A	N/A
Priority	N/A	5% of total missions tare deemed high priority missions

As before, we also modeled scheduling delays when payloads were prioritized.

Once again, preferential treatment significantly reduces the probability that high-priority payloads will be delayed—from 27% of payloads to 10% of payloads. Low-priority payloads again experience only a modestly increased probability of delay. The probability that a low-priority payload will be delayed at least 6 months, for example, rises from 9% without prioritization to 10% with prioritization.

STPI evaluated alternative launch providers as potential auxiliary launch capabilities.

STPI focused on three primary options, as outlined above.

- Eases pressure on the launch manifest in the event of a failure
 - Commercial satellites can be readily moved to other systems for nominal cost
 - U.S. Government payloads can be more easily scheduled post-recovery even without switching to secondary launch vehicles
- Provides possible launch alternative in the event of a long-term failure
The potential benefits of developing launch relationships with alternate providers are outlined above. Note that, if EELV manifests include commercial payloads, the use of foreign backup can provide benefits *even if* U.S. Government payloads are not allowed to switch (as outlined above).

Commercial Backup Arrangements

- Arianespace/Sea Launch
 - Offers mission assurance clause. Pays for:
 - Coupled loads analysis on both the primary and secondary launch vehicles
 - Reservation in secondary launch manifest
 - Allows customers to switch payloads up to
 - ≻6 months prior to launch
 - >3 months prior to launch (higher fee)
 - Executed for May 5, 2004, DirectTV launch (switched from Ariane to Zenit (Sea Launch))

Use of foreign backups can follow models already used for backing up the launch of commercial payloads. Arianespace and Sea Launch offer mission assurance clauses as outlined above.

- ILS (Atlas V/Proton)
 - Offers mission assurance clause. Pays for:
 - Coupled loads analysis on both the primary and secondary launch vehicles
 - Reservation in secondary launch manifest
 - Allows commercial customers to switch payloads up to
 - >12 months prior to launch
 - Could switch in as little as 6 months if a standard bus is used

STP

Similarly, ILS offers mission assurance clauses for backup between the Atlas V and the Proton launch vehicles.

.

•

٠

٠

STPI also estimated the number of flights required to determine which EELV is more reliable (assuming that one is, in fact, more reliable).

.

- Ingoing hypothesis: both launch vehicles have equivalent reliability
- Question: If one has 98% reliability and the other has only 95% reliability:
 - → How many launches would be needed to tell the systems apart?
- Answer: it depends ...

92

To evaluate the question of distinguishing reliability, the team posed the question as follows:

- 1. If we assume that both vehicles have the same level of reliability, but ...
- 2. In reality, one vehicle is 98% reliable while the other is only 95% reliable ...
- 3. How many launches would it take to determine that our ingoing assumption is incorrect?

As shown in the following charts, the answer depends on understanding exactly what we want to know.

Several potential outcomes must be understood, as outlined above. As posed on the preceding chart, we are primarily concerned with the situation in which one system is more reliable than the other. As a result, we wish to minimize the probability of making a type II error (i.e., concluding that both systems have equivalent reliability when, in fact, one system is more reliable) and are willing to accept a higher probability of making a type I error (i.e., concluding that one system is more reliable than the other when, in fact, they are both equally reliable).

Assume reliabilities, if different, are 98% and 95%

Probability of false positive	Probability of false negative	Number of tests (each system)	
50%	10%	~350 launches (~70 years at current launch rates)	
50%	20%	~235 launches (~47 years at current launch rates)	
50%	33%	~150 launches (30 years at current launch rates)	
20%	20%	~400 launches (~80 years at current launch rates)	

94

STPI

For the first three entries in the above table, we are willing to accept a 50-50 chance that we incorrectly conclude one vehicle is more reliable than the other when, in fact, they are both equally reliable (the probability of a false positive).

However, we want to minimize the probability that we conclude they are equally reliable when, in fact, one is more reliable than the other (specifically, we assumed that, if they are different, one has a 98% reliability while the other has a 95% reliability). The results are shown above. As can be seen, even if we allow only a one in three chance of a false negative, it will take about 150 launches (or 30 years at current launch rates) before we determine if one is more reliable than the other.

In short, we will not have enough data to prefer one launch vehicle over the other based solely on launch reliability in any reasonable time frame.

Approved for public release; distribution unlimited. (8 November 2005)

.

۲

۲

۲

-

۲

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188		
Public reporting burde gathering and maintain collection of informatic Reports (0704-0188), shall be subject to any TO THE ABOVE ADD	n for this collection of inf ning the data needed, ar on, including suggestions 1215 Jefferson Davis Hi y penalty for failing to cor RESS.	ormation is estimated to ad completing and review of reducing this burden ghway, Suite 1204, Arling nply with a collection of i	average 1 hour per responsion ing this collection of infor- to Department of Defension, VA 22202-4302. Re- information if it does not compared by the second second compared by the second second second second second second second second second second second second seco	onse, including th rmation. Send co se, Washington I espondents shoul display a currently	e time for reviewing instructions, searching existing data sources, mments regarding this burden estimate or any other aspect of this leadquarters Services, Directorate for Information Operations and d be aware that notwithstanding any other provision of law, no person valid OMB control number. PLEASE DO NOT RETURN YOUR FORM		
1. REPORT DAT	E	2. REPORT TYPE		3	DATES COVERED (From-To)		
4. TITLE AND SUBTITLE				5	5a. CONTRACT NUMBER OIA-0408601		
Space Transportation Analysis			Ę	b. GRANT NUMBER			
				5	c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5	d. PROJECT NUMBER		
W. Daniel Garretson, James Woolsey, Bruce Harmon, Emile Ettedgui, Shaun McGee, Marshall Kaplan, Charles Cook				e 5	e. TASK NUMBER OSTP 20 0001.01		
					f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8	PERFORMING ORGANIZATION REPORT		
Institute for Defense Analyses Science and Technology Policy Institute 1899 Pennsylvania Avenue, Suite 520 Washington, DC 20006-3602					IDA Document D-3109		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)				(ES) 1	0. SPONSOR/MONITOR'S ACRONYM(S)		
Office of S	cience and Tech	nology Policy					
Executive Office of the President Washington, DC 20502				1	1. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. (8 November 2005)							
13. SUPPLEME	NTARY NOTES						
14. ABSTRACT							
The autho capabilities (ind the sources of maintaining mu payload sched	rs review the cu cluding commerc launch reliabilit ultiple launch ve uling implications	urrent state of U. cial, civil, and de y. In addition, th hicles in order t s.	S. launch capab fense markets), e authors evalua o assure access	bilities, inclu regulatory ate the stre s to space	iding the market environment for space launch constraints and their impact on the market, and ngths and weaknesses of the current policy of when necessary by examining both policy and		
15. SUBJECT TERMS							
Space Laun	ch, Launch Vehi	cles, Evolved Ex	pendable Launc	h Vehicle (B	EELV), Small satellite (smallsat)		
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBE OF PAGES	R 19a. NAME OF RESPONSIBLE PERSON Mr. William Jeffrey		
a. REPORT Uncl.	b. ABSTRACT Uncl.	c. THIS PAGE Uncl.	SAR	193	19b. TELEPHONE NUMBER (include area code)		
					202-456-6034		
					Standard Form 298 (Rev. 8-98)		

Prescribed by ANSI Std. Z39.18