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Executive Summary 

Developments in biotechnology domains such as genetics, pharmacology, biomarker 
identification, and medicine reveal an increased focus on treatment strategies that are based on, 
and act upon, an individual's unique biological characteristics. Theoretically, all clinical 
decisions should be “personalized” in order to enable better outcomes for individual patients, but 
advances in the biosciences have only recently begun to develop precise approaches.  

With omics1 data, such as genomics, becoming more readily available, we now have a greater 
understanding of population-scale variation. The implementation of precision medicine concepts 
can help translate medical and biological data into actionable clinical decisions. Precision medicine 
is defined as the “tailoring of medical treatment to the individual characteristics of each patient…to 
classify individuals into subpopulations that differ in their susceptibility to a particular disease or 
their response to a specific treatment.”2 

Given the specificity and adaptability of precision medicine concepts, it is reasonable to think 
that these concepts could help bring clarity to the field of chemical and biological (CB) diagnosis 
and treatment in the military. The increasing amount of omics data could allow for enhancements 
to employed diagnostic systems and medical countermeasures for CB agents to improve clinical 
outcomes in the future. The Defense Threat Reduction Agency (DTRA) Research and 
Development (R&D) Directorate has been tasked with maintaining the U.S. military’s 
technological superiority in countering weapons of mass destruction (WMD) and emerging threats. 
In turn, the directorate’s Detection and Diagnostics Division tasked the Institute for Defense 
Analyses (IDA) to analyze how precision medicine technologies and concepts could be integrated 
with future chemical and biological diagnostics systems. 

The IDA team performed a literature review to identify recent advancements made in 
precision medicine related to chemical and biological diagnostics. The literature review identified 
a number of studies outlining various precision medicine concepts and technologies, including 
omics analytical techniques, the applicability of precision medicine to biological and chemical 
agents, and state-of-the-art technologies. The research team also identified representative 
companies and products currently on the market to gauge the state of precision medicine. 

1  In this paper, the term “omics” refers to a broad panoply of technologies, including domains such as genomics, 
proteomics, and metabolomics. 

2  President's Council of Advisors on Science and Technology, Priorities for Personalized Medicine (Washington, 
DC: Executive Office of the President, September 2008), 
https://scholarship.rice.edu/bitstream/handle/1911/113024/pcast0036.pdf?sequence=1. 
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We found that the majority of clinical implementations of precision medicine concepts are 
focused on non-communicable diseases, including a great deal of cancer research; there is a lack 
of research directly tying precision medicine, diagnostics, and CB agents. We also observed that 
the implementation of precision medicine concepts in diagnostic technologies would not 
necessarily lead to better diagnoses, but would improve the characterization of patients, leading to 
improved clinical outcomes based on more personalized treatment.  

Precision medicine concepts primarily implement patient data to guide clinical decisions. 
Because diagnoses are less dependent on individual patient characteristics, precision medicine 
concepts do not necessarily improve diagnoses or detection in the traditional sense, as they are not 
designed to yield increases in sensitivity or specificity.  

We recommend using the information from this analysis to identify precision medicine 
concepts that could complement CB diagnostic technologies and make the leap from a traditional 
one-size-fits-all approach to medicine. The technologies highlighted in this study span multiple 
focus areas, but currently precision medicine concepts could apply to various scenarios such as 
patient monitoring in Role 3 facilities, or genetically profiling individuals in order to both 
characterize their susceptibility to chemical or biological agents and predict their responses to 
therapeutics.  

The information in this research highlights the need to acquire technologies and create large 
datasets representing the appropriate populations to pursue precision medicine; this supporting 
data could be used to engage with DoD research program managers focused on the development 
of tailored therapeutics, patient monitoring at medical treatment facilities, and pre-deployment risk 
screening. We have highlighted the need to develop precision medicine datasets and technologies 
relevant to chemical and biological agents for the pursuit of precision medicine. The domains of 
diagnostic technologies, precision medicine, and omics fields are fast-moving with advances 
occurring rapidly, and constant monitoring is needed to capture opportunities which may not have 
been obvious before.  
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1. Introduction

The term “precision medicine” first rose to prominence in a U.S. National Research Council 
publication that aimed to inspire a taxonomy database for disease classification. Precision 
medicine is defined as “the tailoring of medical treatment to the individual characteristics of each 
patient…to classify individuals into subpopulations that differ in their susceptibility to a particular 
disease, in the biology and/or prognosis of those diseases they may develop, or in their response 
to a specific treatment.”3 The publication states that “precision medicine” conveys the goal that 
subgroups of patients could be defined and targeted in more specific ways; though similar, the 
term “personalized medicine” can inadvertently imply that therapeutics are developed for 
individuals and does not convey the tie between broad-scope research and patient characteristics 
as well as “precision medicine.”  

Since the completion of the first human genome sequence in 2003, clinicians have anticipated 
this data-driven transformation in healthcare. The current state of healthcare is changing, from a 
one-size-fits-all approach to a “P4” approach, or one that is predictive, preventive, personalized, 
and participatory.4 Precision medicine fits into this approach by outlining how patient information, 
such as genetic data and clinical profiles, can result in different phenotypes to improve clinical 
outcomes. The authors of the National Research Council’s publication may have focused on 
heterogeneity of treatment effect (i.e., the varying efficacy of treatment and potential adverse 
effects among subpopulations of patients),5 but precision medicine can include all aspects of 
medicine which lead to better outcomes, including identifying high-risk patients for earlier or more 
aggressive interventions.  

This analysis provides an overview of the current state of precision medicine and potential 
future implementations, with a focus on chemical and biological (CB) diagnostic technologies. 
The field of precision medicine is broad and rapidly changing, and this analysis highlights 
representative technologies and concepts in various subdomains of precision medicine, in order to 
help decision-makers determine what may be most useful in a given situation. 

3  National Academies Press, Toward Precision Medicine: Building a Knowledge Network for Biomedical 
Research and a New Taxonomy of Disease (Washington, DC: National Academies Press, 2011), 
https://www.ncbi.nlm.nih.gov/books/NBK91503/. 

4  Qi Wang et al., “Toward Multiomics-Based Next-Generation Diagnostics for Precision Medicine,” Personalized 
Medicine 16, no. 2 (2019), https://doi.org/10.2217/pme-2018-0085. 

5  David M. Kent et al., “Assessing and Reporting Heterogeneity in Treatment Effects in Clinical Trials: A 
Proposal,” Trials 11, no. 1 (2010), https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-11-85. 
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Chapter 2 outlines the scope and methodology of the analysis. Chapter 3 outlines a variety of 
precision medicine technologies and highlights their relevance to chemical and biological 
diagnostics, when possible. Chapter 4 provides a non-exhaustive market analysis that highlights 
a few representative commercially available products and commercial entities that are prominent 
in the precision medicine field. Chapter 5 outlines the future of precision medicine, with 
some observations and suggestions for next steps for its complement within CB diagnostics. 
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2. Methodology 

The analysis presented here is primarily a literature review of current precision medicine 
technology and concepts, applicable to CB diagnostic technologies. To scope out the sub-domains 
of interest, we performed an initial survey of literature to establish a definition of “precision 
medicine,” identify the differences between precision medicine and other terms such as 
“personalized medicine,” and create an overview of the current state of precision medicine.  

We implemented three approaches when performing the literature review and our analysis: 

• A diagnostic target-based approach: This approach included searches for different 
forms of data which could be used as inputs for precision medicine implementations of 
diagnostic technologies.  

• A technologies-based approach: This approach highlights various novel diagnostic 
technologies which are relevant to precision medicine. A plethora of novel technologies 
have been developed in this domain, and many of these technologies have been 
captured in another recent IDA analysis, which may act as an extension to this 
approach.6 

• An agent/disease-based approach: This approach attempts to highlight the potential 
for precision medicine to be applied to various chemical and biological agents, 
identifying avenues for diagnostic technology implementations. 

 

A. Considerations  

1. Precision Medicine 
As defined by the President’s Council of Advisors on Science and Technology (PCAST), 

precision medicine (PM) is the “tailoring of medical treatment to the individual characteristics of 
each patient…to classify individuals into subpopulations that differ in their susceptibility to a 
particular disease or their response to a specific treatment. Preventative or therapeutic interventions 
can then be concentrated on those who will benefit, sparing expense and side effects for those who 
will not.”7 The term “precision medicine” has been defined similarly by multiple institutions, but 
the use of the term in this study refers to the PCAST definition. 

                                                           
6    Catherine Scheible et al., Analysis of State-of-the-Art Diagnostics for Far-Forward Use, IDA Paper P-33049, 

(Alexandria, VA: Institute for Defense Analyses, July 2022). 
7  President's Council of Advisors on Science and Technology, Priorities for Personalized Medicine.  
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Personalized medicine differs from precision medicine in that personalized medicine refers 
to an approach to patients which considers their genetics, but also includes their preferences, 
beliefs, attitudes, knowledge, and social context.8 Precision medicine relies heavily on data, 
analytics, and information, and generally does not include physician input. Table 1 highlights 
several examples of precision medicine concepts in genomics. The table only highlights genetic 
examples, but precision medicine is not limited to genetics and includes multiple other domains, 
including additional omics-based technologies, which are expanded upon in later sections of this 
analysis. The overall aim of precision medicine as a concept is to improve patient outcomes by 
allowing clinical decisions based on stratified patient data. 

 
Table 1. Examples of Precision Medicine 

Condition Gene Action 

Mendelian DiseaseA 

Cystic fibrosis CFTR Specific therapies such as 
ivacaftor and a combination of 
lumacaftor and ivacaftor 

Long QT syndrome KCNQ1, KCNH2, and SCN5A Specific therapy for patients with 
SCN5A mutations 

Duchenne muscular dystrophy DMD Ongoing phase III clinical trials 
of exon-skipping therapies 

Malignant hyperthermia 
susceptibility 

RYR1 Avoid volatile anesthetic agents; 
avoid extremes of heat 

Familial hypercholesterolemia 
(FH) 

PCSK9, APOB, and LDLR • Heterozygous FH (HeFH): 
eligible for PCSK9 inhibitor 
drugs 

  • Homozygous FH (HoFH): 
eligible for PCSK9 inhibitor 
drugs in addition to lomitapide 
and mipomersen 

Dopa-responsive dystonia SPR Therapy with dopamine 
precursor L-dopa and the 
serotonin precursor 5-
hydroxytryptophan 

Thoracic aortic aneurysm SMAD, ACTA2, TGFBR1, 
TGFBR2, and FBN1 

Customization of surgical 
thresholds based on patient 
genotype 

Left ventricular hypertrophy MYH7, MYBPC3, GLA, and TTR Sarcomeric cardiomyopathy, 
Fabry disease and transthyretin 
cardiac amyloid disease have 
specific therapies 

                                                           
8  Geoffrey S. Ginsburg and Kathryn A. Phillips, “Precision Medicine: From Science to Value,” Health Affairs 

(Project Hope) 37, no. 5 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989714/.  
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Precision OncologyB 

Lung adenocarcinoma EGFR and ALK Targeted kinase inhibitors, such 
as gefitinib and crizotinib 

Breast cancer HER2 HER2 (also known as ERBB2)-
targeted treatment, such as 
trastuzumab and pertuzumab 

Gastrointestinal stromal tumor KIT Targeted KIT kinase activity 
inhibitors, such as imatinib 

Melanoma BRAF BRAF inhibitors, such as 
vemurafenib and dabrafenib 

PharmacogenomicsC 

Warfarin sensitivity CYP2C9 and VKORC1 Adjust dosage of warfarin or 
consider alternative 
anticoagulant 

Clopidogrel sensitivity, post-
stent procedure 

CYP2C19 Consider alternative antiplatelet 
therapy (for example, prasugrel 
or ticagrelor) 

Thiopurine sensitivity TPMT Reduce thiopurine dosage or 
consider alternative agent 

Codeine sensitivity CYP2D6 Avoid use of codeine; consider 
alternatives such as morphine 
and non-opioid analgesics 

Simvastatin sensitivity SLCO1B1 Reduce dose of simvastatin or 
consider an alternative statin; 
consider routine creatine kinase 
surveillance 

A: Mendelian disease refers to diseases which occur due to specific mutations in single genes, which are generally 
inherited from the parents. The same disease may occur through other pathways not involving the 
genes/mutations listed here, however, such as cystic fibrosis. 

B: Precision oncology in this table refers to the genetic profiling of tumors in order to enable targeted treatments. 
C: Pharmacogenomics refers to the use of an individual’s genetic profile to predict their response to therapeutic 

drugs. 
Source: Table derived from Euan A. Ashley, “Towards Precision Medicine,” Nature Reviews Genetics 17, no. 9 
(2016), https://www.nature.com/articles/nrg.2016.86#Sec4. 

 

2. Diagnostics 
The diagnostic process is defined as the process of identifying a disease, condition, or injury 

from its signs and symptoms.9 A diagnostic procedure/technique is one that can help diagnose a 
disease or condition. In this document, diagnostics that relate to chemical and/or biological agents 
are considered. Due to the nature of precision medicine, diagnostics technologies in this document 
are not limited to diagnosing a disease or condition, but also include technologies that can extract 

                                                           
9  “NCI Dictionary of Cancer Terms,” National Cancer Institute Website, accessed August 25, 2022, 

https://www.cancer.gov/publications/dictionaries/cancer-terms/expand/D.  
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information about the nature and state of a disease and/or individual. An example would be next-
generation sequencing (NGS) technologies, which can be used both for diagnosing infections and 
for identifying host genetic variation altering susceptibility to disease. This concept is expanded 
upon in the following section. 

3. Relevance of Precision Medicine to Diagnostics 
Precision medicine is a multi-step process spanning multiple domains, such as the collection 

and processing of a large amount of data, selection of personalized drug dosages, and the 
development of analytical tools for monitoring clinical, genetic, and environmental parameters.10 
Biological and chemical diagnostics can play a role in the implementation of precision medicine 
concepts, for instance by the detection of biomarkers which may help predict a patient’s disease 
progression. Sequencing technologies are another example, and can characterize a patient’s 
genome to identify markers of risk. Various diagnostic technologies have analogous applications 
in the various omics domains, further demonstrating the overlap of diagnostic technologies and 
precision medicine (this is expanded upon in Section 3.1.b). 

Precision medicine technology, when integrated with diagnostic systems, could have multiple 
advantages including increasing timeliness of diagnostic information and actionability to the 
warfighter and/or medical system. It is important to note that precision medicine is a concept that 
can be used in parallel with diagnostic technologies, rather than integrated into diagnostic 
technologies. Precision medicine concepts can alter diagnostic technologies in various ways, such 
as requiring the detection of biomarkers at different intervals or detecting novel biomarkers.  

A large proportion of current precision medicine research work is directed at conditions such 
as cancer. This is a logical step; susceptibility to and progression of cancer is largely driven by an 
individual’s own clinical attributes, including genetic makeup, immune system function, and 
epigenetic changes.11 Cancer treatments are generally longer and more tailorable than other 
treatments, such as antibiotics for infections. As shown in the figure below representing a key-
word search of the registered clinical trials on ClinicalTrials.gov, of all precision medicine clinical 
trials as of 2022, cancer-related trials made up the largest group, over-represented when compared 
to the overall proportion of registered trials. However, many precision medicine approaches may 
be transferable to detecting exposure to chemical/biological agents of interest and to diagnosis of 
the diseases they produce, and thus remain quite valuable. 

 

                                                           
10  Maria M. Calabretta et al., “Precision Medicine, Bioanalytics and Nanomaterials: Toward a New Generation of 

Personalized Portable Diagnostics,” Analyst 145, no. 8 (2020), 
https://pubs.rsc.org/en/content/articlehtml/2020/an/c9an02041a. 

11 Paulina Krzyszczyk et al., “The Growing Role of Precision and Personalized Medicine for Cancer Treatment,” 
Technology 6, 3-4 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352312/. 
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Source: Derived from “ClinicalTrials.Gov,” National Institutes of Health - U.S. National Library of Medicine Website, 

accessed September 5, 2022, https://www.clinicaltrials.gov/ct2/home. 

Figure 1. Overview of Precision Medicine Trials Registered on ClinicalTrials.gov 

B. Search Terms 
We conducted a literature search using individual journals such as Nature, PLOS One, and 

Science, as well as databases such as PubMed and Google Scholar. To try and capture a large 
amount of studies, we used various combinations of search terms for each domain of interest. 
Generally, the search terms used included a combination of “precision medicine” and the domain 
of interest. Search terms for the omics portions of the study include combinations of “diagnostics,” 
“CBRN,” “biothreat,” “chemical,” “biological,” “agent,” “clinical,” “infectious disease,” along 
with the “omic” domain of interest.  

The agent-specific search included a combination of the above search terms with the agent 
of interest. As different technologies were identified performing the literature review, they were 
analyzed in depth by performing searches, combining the search terms “diagnostics,” “precision 
medicine,” “CBRN,” “biothreat,” “chemical,” “biological,” “agent,” “clinical,” along with the 
technology of interest. All searches were limited to studies which were unclassified and publicly 
distributed. 
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3. Integration with Diagnostic Technologies 

Precision medicine is a concept of therapy, focused on improving clinical outcomes using 
data obtained from patients. There are no “precision medicine technologies,” per se, but precision 
medicine concepts can be integrated into various technologies. Precision medicine concepts can 
alter diagnostic technologies in multiple ways, such as requiring the detection of different targets, 
requiring target detection at greater frequencies, or changes in data processing methods. The end 
goal of such changes would be to help modify medical interventions and preventive care, including 
better predictions of disease progression. However, this does not necessarily include improvements 
in making the diagnoses themselves. 

Biomarkers are promising diagnostic tools for supporting precision medicine, but there are 
currently limited clinical results due to a “reliance on syndromic definitions and the lack of clear 
gold-standard diagnostics linked to pathophysiology.”12 With a range of interconnected symptoms 
typically associated with a disease, it can be difficult to identify a single biomarker that clearly and 
effectively defines a disease.13 Multiple biomarkers may be simultaneously associated with a 
disease at different time points, severity levels, or different strains of the causative pathogen. A 
portfolio of associated biomarkers may provide a more complete diagnostic picture, but also 
introduces the potential for an overreliance on large numbers of specific (and costly) tests required 
for a single disease.14  

In the context of precision medicine, this level of sensitivity and specificity in diagnostics 
may help with more accurate treatment plans that balance the risk and reward of certain 
therapeutics, including a patient’s individual likelihood of responding to that treatment.15 Because 
the efficacy of many therapeutics depends on the timeliness of administration, ensuring a clinically 
relevant timeline for intervention should be an important consideration in biomarker research.16 
Many of the techniques described here would not necessarily enable earlier detection of the agent, 
but could allow for earlier intervention by providing actionable data about disease progression. 
  

                                                           
12  Timothy E. Sweeney and Purvesh Khatri, “Generalizable Biomarkers in Critical Care: Toward Precision 

Medicine,” Critical Care Medicine 45, no. 6 (2017): 934, https://doi.org/10.1097/CCM.0000000000002402.  
13  Ibid, 934. 
14  Ibid, 935. 
15  Thomas M. Kuntz and Jack A. Gilbert, “Introducing the Microbiome into Precision Medicine,” Trends in 

Pharmacological Sciences 38, no. 1 (2017): 81, https://doi.org/10.1016/j.tips.2016.10.001. 
16  Sweeney and Khatri, “Generalizable Biomarkers in Critical Care: Toward Precision Medicine,” 937. 
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A. Diagnostic Targets 
All precision medicine strategies include the use of decision-making processes based on 

various underlying data. Future personalized health care is expected to benefit from combined 
omics data, which includes not only genomic information but also the longitudinal documentation 
of all possible molecular and clinical components.17 This could be epigenetic modifications of the 
genome, RNA transcripts, translated proteins, the genetic material of non-human organisms 
associated with human environments, metabolites, and clinical characteristics of an individual.  

1. Genome 
The identification of various features of an individual’s genome can allow for predictions of 

an individual’s response to different stimuli, including pathogens. These features (variants) may 
be in multiple forms, such as single nucleotide variations, insertions, deletions, or structural 
variations. The modern definition of genomics also includes pharmacogenomics, which goes 
beyond characterization of disease into characterization of response to various therapeutics. 
Genomics technologies do not have to be limited to just an individuals’ genetic makeup; it can 
also include the genetic information of diverse micro-organisms residing on or within an 
individual. This domain of metagenomics is described in the section on the microbiome (3.1.b.4)). 

Genetic technologies have been essential for enacting precision medicine concepts, especially 
in diseases such as cystic fibrosis and cancer. This has improved patient outcomes by targeting 
treatments to specific subpopulations, with a better characterization of pathologies. Genetic 
diagnostics employ various strategies that target different portions of the genome (e.g., whole 
genome sequencing, exome sequencing), including different methods of extracting genomic 
information (e.g., short read sequencing, long read sequencing).  

For many diseases, the use of genetic markers to guide clinical decisions has become 
commonplace. For example, associations of HLA-C*06:02 with biologic therapy response in 
psoriasis,18 and HLA-DRB1 with treatment response in rheumatoid arthritis.19 HLA alleles have 
been implied by many genome-wide association studies (GWAS) to be associated with 
autoimmune diseases and other non-communicable diseases, with population-specific variants 

                                                           
17  Rui Chen and Michael Snyder, “Promise of Personalized Omics to Precision Medicine,” Wiley Interdisciplinary 

Reviews. Systems Biology and Medicine 5, no. 1 (2013), 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154620/.  

18  Nick Dand et al., “HLA-C*06:02 Genotype Is a Predictive Biomarker of Biologic Treatment Response in 
Psoriasis,” The Journal of Allergy and Clinical Immunology 143, no. 6 (2019), 
https://doi.org/10.1016/j.jaci.2018.11.038. 

19  Sebastien Viatte et al., “Association of HLA-DRB1 Haplotypes with Rheumatoid Arthritis Severity, Mortality, 
and Treatment Response,” JAMA 313, no. 16 (2015), https://doi.org/10.1001/jama.2015.3435. 
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having significant effects on diseases such as osteoarthritis20 or type 2 diabetes.21 Genome-wide 
association studies are a type of observational study in which a genome-wide set of genetic variants 
are observed in multiple individuals, in order to establish associations between variants and traits, 
thus making them an essential part of precision medicine.  

 Precision medicine concepts have been widely used to select drugs effective against certain 
types of cancers. For example, breast cancer which is positive for the human epidermal growth 
factor receptor 2 (HER2) is associated with increased effectiveness of drugs such as trastuzumab, 
lapatinib, and pertuzumab when used in conjunction with traditional chemotherapy.22,23,24 

Identified associations also make it possible to assign risk scores to individuals, in order to 
identify individuals at higher risk of disease. This can help make clinical decisions to improve 
outcomes, including more aggressive interventions. These associations do not necessarily have to 
be limited to a single nucleotide polymorphism (SNP) or allele, and may include multiple features 
from an individual’s genome. For instance, one paper found that a polygenic panel could act as a 
predictor for an individual’s risk for five common diseases (coronary artery disease, atrial 
fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer).25  

Genetic technologies associated with precision medicine also benefit the treatment of 
infectious diseases, with a large number of studies having been performed after the beginning of 
the SARS-CoV-2 pandemic. An analysis of 49,562 COVID-19 patients from 46 studies identified 
13 significant loci associated with severe SARS-CoV-2 infection, with some of the identified loci 
also corresponding to other disease associations such as autoimmune or inflammatory diseases.26,27 
Some other associations identified are highlighted in Section 3.2.g. 
                                                           
20  Unnur Styrkarsdottir et al., “Whole-Genome Sequencing Identifies Rare Genotypes in COMP and CHADL 

Associated with High Risk of Hip Osteoarthritis,” Nature Genetics 49, no. 5 (2017), 
https://doi.org/10.1038/ng.3816. 

21  Ida Moltke et al., “A Common Greenlandic TBC1D4 Variant Confers Muscle Insulin Resistance and Type 2 
Diabetes,” Nature 512, no. 7513 (2014), https://doi.org/10.1038/nature13425. 

22  Charles E. Geyer et al., “Lapatinib Plus Capecitabine for HER2-Positive Advanced Breast Cancer,” The New 
England Journal of Medicine 355, no. 26 (2006), https://pubmed.ncbi.nlm.nih.gov/17192538/. 

23  D. J. Slamon et al., “Use of Chemotherapy Plus a Monoclonal Antibody Against HER2 for Metastatic Breast 
Cancer That Overexpresses HER2,” The New England Journal of Medicine 344, no. 11 (2001), 
https://pubmed.ncbi.nlm.nih.gov/11248153/. 

24  Sandra M. Swain et al., “Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer,” 
The New England Journal of Medicine 372, no. 8 (2015), https://doi.org/10.1056/NEJMoa1413513. 

25  Amit V. Khera et al., “Genome-Wide Polygenic Scores for Common Diseases Identify Individuals with Risk 
Equivalent to Monogenic Mutations,” Nature Genetics 50, no. 9 (2018), https://doi.org/10.1038/s41588-018-
0183-z. 

26  David Ellinghaus et al., “Genomewide Association Study of Severe Covid-19 with Respiratory Failure,” The 
New England Journal of Medicine 383, no. 16 (2020), https://doi.org/10.1056/NEJMoa2020283. 

27  COVID-19 Host Genetics Initiative, “Mapping the Human Genetic Architecture of COVID-19,” Nature 600, 
no. 7889 (2021), https://www.nature.com/articles/s41586-021-03767-x. 
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Genetic testing does not have to be limited to host-based testing, and testing of the biological 
agent itself may arguably be included in the definition of precision medicine, given that this 
information can be used to guide clinical decisions based on features such as antibiotic resistance. 
Many of the state-of-the-art technologies to diagnose infectious diseases and characterize them 
based on their characteristics are analyzed in IDA Paper P-33049, and are directly relevant to 
precision medicine implementations.28 For instance, CRISPR-dCas9 is a novel technology which 
has been used to detect antibiotic resistance by recognizing antibiotic resistance genes, with ultra-
sensitive and rapid detection capabilities, without the requirement of heavy instruments.29 

Whole-genome sequencing (WGS) strategies attempt to sequence the entire genome, without 
focusing on specific regions of interest. As sequencing technologies rapidly develop, WGS is 
becoming more and more viable as a diagnostic assay. However, to avoid the difficulties in having 
to sequence and process large amounts of data, techniques concentrating on selected areas of the 
genome have become commonplace. The enrichment of selected areas of the genome, usually by 
hybridization to known sequences, is termed as capture.30  

Techniques like exome sequencing focus only on the capture of exomes (i.e., the parts of the 
genome which contain exons, the coding portions of genes) in order to prevent having to analyze 
the entire genome. Augmented exome sequencing uses extra probes in both coding and non-coding 
regions in order to augment coverage, along with other methods such as targeted polymerase chain 
reaction (PCR) to fill in gaps. Augmented exome sequencing may have some disadvantages, as 
regions rich in the nucleotides (GC-rich regions) usually cannot be optimized by simply expanding 
coverage using the aforementioned techniques, usually requiring sequencing conditions tailored to 
their chemistry.31  

The advantages of augmented exome sequencing when the target region is clearly defined is 
demonstrated in the case of the KCNH2 gene, in a paper published by a researcher at the Center 
for Inherited Cardiovascular Disease, Stanford Medicine.32 “Coverage” refers to the number of 
times a single base is sequenced during a nucleotide sequencing assay. The KCNH2 gene 
represents a scenario where WGS provides even coverage of the coding region of the gene, but at 
a coverage which may not be clinically sufficient. The standard exome panel results in higher but 
                                                           
28  Catherine Scheible et al., Analysis of State-of-the-Art Diagnostics for Far-Forward Use, IDA Paper P-33049, 

(Alexandria, VA: Institute for Defense Analyses, July 2022). 
29  Vilhelm Müller et al., “Direct Identification of Antibiotic Resistance Genes on Single Plasmid Molecules Using 

CRISPR/Cas9 in Combination with Optical DNA Mapping,” Scientific Reports 6, no. 1 (2016), 
https://www.nature.com/articles/srep37938. 

30  Euan A. Ashley, “Towards Precision Medicine,” Nature Reviews Genetics 17, no. 9 (2016), 
https://www.nature.com/articles/nrg.2016.86#Sec4. 
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highly variable coverage, while augmented exome capture can target medically relevant areas and 
fill in gaps for consistent, high coverage, and would be the most suitable for detecting variants in 
this gene in this scenario. Depending on the use-case, either of these strategies may be applicable, 
and must be considered when performing nucleotide sequencing to generate data for precision 
medicine.  

There have been rapid advancements in the field of genetic sequencing, especially with the 
introduction of “next-generation sequencing” (NGS) technologies around 2004-2006.33 The cost 
of sequencing has drastically decreased over time, outpacing Moore’s law since 2001.34  Along 
with the increase in direct sequencing technologies which allowed massively parallel sequencing 
of individual DNA molecules, the procedures involved with processing sequencing data also 
evolved.  

NGS sequencing, also known as second-generation technologies, generally involve 
massively parallel sequencing of “short-reads.” The term “massively parallel” is used as the 
sequencing methods involve individual, spatially separated reactions, and therefore multiple 
sequences are processed in parallel. They are also described as “short-read” methods as each read 
(i.e., the size of each DNA fragment sequenced) is in the range of 250-800 base pairs. Because of 
this low read length, assembling the sequenced data presents additional challenges, especially in 
regions with structural features such as repeats. 

Different organizations depend on different sequencing technologies. Illumina’s NGS 
technology is based on sequencing-by-synthesis (SBS), with a fluorescent-labeled reversible 
terminator technology.35 The technology detects single bases as they are incorporated into growing 
DNA strands, in order to identify the sequence of interest. The Illumina MiSeq instrument, 
commonly used for clinical HLA typing, favors fragments 350-500 bases long.36 Illumina has the 
most accurate base-by-base sequencing technology on the market, with an error rate of ~0.1 
percent.37 Ion Torrent’s platform works by clonal amplification, using a bead-by-bead method of 
particles in a micro-well using emulsion PCR. Adapter sequences are ligated to DNA fragments, 
captured in an emulsion droplet, and after amplification, nucleotide incorporation results in release 

                                                           
33  Taishan Hu et al., “Next-Generation Sequencing Technologies: An Overview,” Human Immunology 82, no. 11 
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35  Elaine R. Mardis, “Next-Generation Sequencing Platforms,” Annual Review of Analytical Chemistry 6 (2013), 
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of hydrogen ions which can be detected by pH sensors.38 454 Pyrosequencing, currently 
discontinued, was also a common method for genome sequencing, based on the detection of 
pyrophosphate, a biproduct of nucleotide incorporation, in order to detect whether a particular base 
had been incorporated in a DNA chain.39 

Long-read technologies, also called third-generation sequencing technologies, generally 
produce reads >10kb in length. Long reads can overcome many of the difficulties of short reads in 
regards to genome assembly, especially when dealing with repetitive sequences. Two of the 
primary long-read technologies are currently developed by Pacific Biosciences (PacBio) and 
Oxford Nanopore Technology.40 PacBio’s sequencing, the Single Molecule Real-Time (SMRT) 
sequencing method, consists of generation of a circular DNA template from the target DNA using 
ligation of hairpin adapters to both ends of the DNA molecule. Sequencing occurs in a “SMRT 
cell” chip, where many pores called zero-mode waveguides (ZMW) immobilize individual DNA 
polymerase molecules. Fluorescently labelled nucleotides with unique emission spectra are used, 
enabling the detection of light pulses which can be translated into a nucleotide sequence. Oxford 
Nanopore, on the other hand, can produce raw sequence reads >1Mb in length. Their method is 
based on the passage of a single-stranded nucleic acid molecule through a protein pore.41 The 
detection of changes in an applied ion current as the strand moves through the pore allows for 
detection of the nucleotide sequence. 

2. Multi-omics 
Beginning with traditional genomics, the development of various biological technologies has 

created the field of “omics,” which refers to the comprehensive study of the roles, relationships, 
and actions of various types of molecules and cells in an organism.42 This includes fields like 
transcriptomics, proteomics, and metabolomics, among others. Non-genomics omics technologies 
have now been applied across the various spectrum of human disorders. The subsequent sections 
provide an introduction to various omics domains, describing how diagnostic technologies are 
implemented for the application of precision medicine concepts in each domain. 
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a. Epigenome 
The epigenome refers to the complete description of all chemical modifications to DNA and 

histone proteins, which form a network that modulates chromatin structure and genome function.43 
The main types of epigenetic marks are DNA methylation, histone modifications, microRNAs 
(miRNAs), non-coding RNAs (ncRNAs) and long noncoding RNAs (lnRNAs) expression, and 
chromatin condensation; however, other modifications also exist.44  

Epigenetic modifications are considered to be a link between the genome and the 
environment, providing important targets and biomarkers for personalized medicine.45 Epigenetic 
changes have various functions in the cell, with a major function being the regulation of gene 
expression by altering the accessibility of chromatin to transcription factors. For instance, 
methylation of DNA mainly occurs in the cytosine-paired-with-guanine (CpG) dinucleotide 
sequences, which then physically impedes the binding of transcription factors to DNA or 
preventing recognition of methylated sites by chromatin-modifying enzymes. This prevents 
transcription from occurring and reduces gene expression.  

Epigenome-wide association studies have allowed for characterizations of disease, which 
could improve diagnoses and prognoses.46 An epigenetic study of COVID-19 severity uncovered 
44 CpG sites which were associated with disease severity, many of which were also associated 
with the native interferon response to viral infection.47 Markers like these can be used in order to 
identify high-risk patients for observation and earlier/aggressive treatments.  

Identifying the host methylation profile can also predict clinical outcome of COVID-19, as 
demonstrated in a longitudinal study of 164 patients performed by Konigsberg et al.48 The study 
used machine learning techniques in order to build a prediction system, and could successfully 
predict characteristics such as hospitalization, ICU admission, and progression to death due to 
COVID-19. This is a direct example of how epigenetics can be used to implement diagnostic 
targets. The detection of an individual’s epigenetic profile through the various technologies listed 
in Table 2 can allow for clinical predictions, which can ultimately lead to medical decisions to 
improve patient outcome. This concept can be extended to other infectious diseases as well, but 
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research is still required to identify such associations for other diseases, and subsequently develop 
clinical decision-making systems such as patient classifiers. 

Epigenetic markers may be transient but can also be inherited through cell division. This is 
in contrast to genetics, where inheritance is virtually perfect. Epigenetic changes hold the potential 
to cause diseases (epigenetic deregulation, i.e., epimutations), and also play a factor in the outcome 
of various diseases.49 For example, genomic imprinting, a form of inheritance in which gene 
expression is based on the parent-of-origin (i.e., allele of only one parent is expressed), has been 
associated with modified risk of various diseases including cancers.50 A well-known example of 
imprinting is a deletion in the q-arm of human Chromosome 15 – a maternal deletion leads to 
Angelman’s Syndrome, while a paternal deletion leads to Prader-Willi syndrome.51 

Multiple strategies exist for analyzing the epigenome, which vary based on characteristics 
such as throughput capability, resolution, and nature of target.52 Different methods are required 
for the analysis of detection of different types of epigenetic modifications, each providing different 
advantages. Some of these are expanded upon in Table 2.  
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785612. 



17 

Table 2. Techniques for Epigenetic Analyses 

Method 
Modification 

Detected Advantages Disadvantages 
PCR-based 
Bisulfite 
Sequencing53 

DNA 
Methylation 

Low cost, single-base 
resolution 

Inconsistent results, may require 
multiple runs to confirm results 

Methylation-
specific PCR54 

DNA 
Methylation 

Low cost, single-base 
resolution 

Not all CpG sites can be detected, 
low throughput 

Pyrosequencing
55 

DNA 
Methylation 

Accurate resolution, low 
cost, single-base resolution 

Requires validated primers, prone to 
errors due to DNA degradation 

Whole-Genome 
Bisulfite 
Sequencing56 

DNA 
Methylation 

Single-base resolution, can 
detect almost every CpG 
site 

High cost, requires large amounts of 
input DNA, computationally 
expensive 

HumanMethylati
on450 
(Methylation 
450K)57 

DNA 
Methylation 

Cost effective, single-base 
resolution 

Coverage highly dependent on 
predesigned array 

Methylation-
sensitive 
Restriction 
Enzyme Bisulfite 
Sequencing58 

DNA 
Methylation 

Low cost, no dangerous 
chemicals used (safe) 

Coverage depends on restriction 
enzyme sites, low resolution 

ELISA-based 
assays59 

DNA 
Methylation 

Low cost, commercially 
available kits 

Low resolution, high variability in 
results 

Single-cell 
bisulfite 
sequencing60 

DNA 
Methylation 

High resolution, de novo 
methylation exploration 

High cost, computationally 
expensive 

SMRT 
Sequencing61 

DNA 
Methylation 

No harsh bisulfite treatment 
(safe), high coverage 

Large amounts of input DNA 
needed, higher accuracy in bacterial 
genomes 

Nanopore 
sequencing62 

DNA 
Methylation 

No harsh bisulfite treatment 
(safe), de novo exploration 

Large amount of input DNA required, 
Computationally expensive 

OxBS-seq63 DNA 
Methylation 

High accuracy for 
evaluation of global 5hmC 
status 

High amount of input DNA required, 
high-sequencing depth required 

ChIP-PCR64 Histone 
Modifications 

Standard method for 
detection of specific histone 
modifications, low cost 

Only detects enrichment abundance, 
low-resolution 

ChIP-chip65 Histone 
Modifications 

De novo exploratory studies 
possible, low cost 

Quality is dependent on antibody 
quality, prone to artifacts 

ELISA-based 
assays66 

Histone 
Modifications 

Low cost, commercial kits 
available 

Low resolution, high variability 

qRT-PCR67 ncRNA  Commercial kits available, 
low cost, high sensitivity 
and specificity 

Requires validated primers, requires 
annotations 

RNA-seq68 ncRNA Can analyze whole 
genome, high-resolution 

Low sensitivity, high cost, 
computationally expensive 

HITS-CLIP69 ncRNA Single-base resolution, 
identifies interaction of 
ncRNA with specific 
proteins 

High cost, low sensitivity, requires 
high quality antibodies, 
computationally expensive 

Methyl-HiC70 Chromosome 
conformation 

Simultaneous capture of 
DNA methylation and 
chromosome conformation 

High cost, complicated procedure, 
computationally expensive 
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Source: Derived from Yuanyuan Li, “Modern Epigenetics Methods in Biological Research,” Methods 187 (2021), 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785612. 

                                                           
53  Yuanyuan Li and Trygve O. Tollefsbol, “DNA Methylation Detection: Bisulfite Genomic Sequencing Analysis,” 

Methods in Molecular Biology 791 (2011), https://link.springer.com/protocol/10.1007/978-1-61779-316-5_2. 
54  Keith Rand et al., “Conversion-Specific Detection of DNA Methylation Using Real-Time Polymerase Chain 

Reaction (ConLight-MSP) To Avoid False Positives,” Methods 27, no. 2 (2002), https://doi.org/10.1016/S1046-
2023(02)00062-2. 

55  Colin Delaney, Sanjay K. Garg, and Raymond Yung, “Analysis of DNA Methylation by Pyrosequencing,” 
Methods in Molecular Biology 1343 (2015), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772880/.  

56  Magali Kernaleguen et al., “Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA 
Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution,” in Epigenome Editing (New 
York, NY: Humana Press, 2018). 

57  Sarah Dedeurwaerder et al., “Evaluation of the Infinium Methylation 450K Technology,” Epigenomics 3, no. 6 
(2011), https://pubmed.ncbi.nlm.nih.gov/22126295/.  

58  Giancarlo Bonora et al., “DNA Methylation Estimation Using Methylation-Sensitive Restriction Enzyme 
Bisulfite Sequencing (MREBS),” PLoS ONE 14, no. 4 (2019), 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448829/. 

59  “The Enzyme-Linked Immunosorbent Assay (ELISA),” Bulletin of the World Health Organization 54, no. 2 
(1976), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366430. 

60  Omer Schwartzman and Amos Tanay, “Single-Cell Epigenomics: Techniques and Emerging Applications,” 
Nature Reviews Genetics 16, no. 12 (2015), https://www.nature.com/articles/nrg3980.  

61  Quentin Gouil and Andrew Keniry, “Latest Techniques to Study DNA Methylation,” Essays in Biochemistry 63, 
no. 6 (2019), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923321/. 

62  Andrew H. Laszlo et al., “Detection and Mapping of 5-Methylcytosine and 5-Hydroxymethylcytosine with 
Nanopore MspA,” Proceedings of the National Academy of Sciences of the United States of America 110, no. 47 
(2013), https://doi.org/10.1073/pnas.1310240110. 

63  Michael J. Booth et al., “Oxidative Bisulfite Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine,” 
Nature Protocols 8, no. 10 (2013), https://doi.org/10.1038/nprot.2013.115.  

64  Padmaja Gade and Dhan V. Kalvakolanu, “Chromatin Immunoprecipitation Assay as a Tool for Analyzing 
Transcription Factor Activity,” Methods in Molecular Biology 809 (2012), https://doi.org/10.1007/978-1-61779-
376-9_6.  

65  Smitha Pillai and Srikumar P. Chellappan, “ChIP on Chip Assays: Genome-Wide Analysis of Transcription 
Factor Binding and Histone Modifications,” Methods in Molecular Biology 523 (2009), 
https://doi.org/10.1007/978-1-59745-190-1_23. 

66  “The enzyme-linked immunosorbent assay (ELISA).” 
67  Colin C. Pritchard, Heather H. Cheng, and Muneesh Tewari, “MicroRNA Profiling: Approaches and 

Considerations,” Nature Reviews Genetics 13, no. 5 (2012), https://www.nature.com/articles/nrg3198. 
68  Mei Cao, Jian Zhao, and Guoku Hu, “Genome-Wide Methods for Investigating Long Noncoding RNAs,” 

Biomedicine and Pharmacotherapy 111 (2019), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401243/. 
69  Sung W. Chi et al., “Argonaute HITS-CLIP Decodes MicroRNA-MRNA Interaction Maps,” Nature 460, 

no. 7254 (2009), https://doi.org/10.1038/nature08170. 
70  Guoqiang Li et al., “Joint Profiling of DNA Methylation and Chromatin Architecture in Single Cells,” Nature 

Methods 16, no. 10 (2019), https://doi.org/10.1038/s41592-019-0502-z.  
 



19 

b. Transcriptome 
The transcriptome is the complete set of RNA transcripts in a cell or tissue of interest, which 

can include rRNAs, mRNAs, tRNAs, and miRNAs, among others.71 Various methods of RNA 
sequencing (RNA-seq) can reveal the features of the transcriptome, up to a single-cell resolution 
(scRNA-seq).72 ncRNAs may also be associated with epigenetic modifications due to their 
interactions with DNA, and therefore some methods of ncRNA analyses have been mentioned in 
Section 3.1.b.1).  

The transcriptome may be a useful tool for early detection or screening for a biological agent. 
In 2005, the U.S. military performed the first in vivo demonstration of classification of infectious 
disease by the host transcriptome, using transcriptomics to differentiate febrile respiratory illnesses 
(FRIs) caused by adenoviruses against other causes.73 The study used a transcriptome panel which 
included interferon-induced genes, complement cascades, and TNF and IL1 signaling transcripts 
to create a patient classification tool. Such tools could be adapted for various diseases, and can act 
as both a diagnostic tool as well as infectious disease surveillance tool.    

The viral load in the early stage of disease after infection is low in various diseases such as 
infections with the Ebola Virus (EBOV) and the Marburg Virus (MARV). Moreover, the virus 
accumulates in the blood only after significantly replicating in organs such as the liver and 
spleen.74 This makes diagnosis difficult via traditional methods that rely on the detection of viral 
particles. In an attempt to use transcriptomics for earlier identification of disease, one study created 
a tool combining viral RNA detection with sentinel host mRNA detection following filovirus 
detection. Tested in non-human primates, the approach could distinguish the causative agent 
(EBOV and MARV) samples in the pre-viremic stage. This approach may be transferred to 
different viral and bacterial infections, potentially allowing for pre-symptomatic diagnosis. This 
may be a valuable source of information useful in biological surveillance, and could help in making 
clinical decisions such as allowing for earlier quarantine of exposed persons. 

Studies similar to the one mentioned above have been successful in using the host 
transcriptome to characterize disease, including differentiating viral from bacterial infection and 
identifying interferon-stimulated genes (ISG) markers, which are differentially regulated in early 
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viral infection.75,76 These diagnostic tools are not limited to viral infections, and marker classifier 
panels have been created that can distinguish B. pseudomallei infection from other sepsis-causing 
agents.77 Exosomal miRNAs have also been used to identify active pulmonary tuberculosis.78 
Future work would be required to expand these tools to other agents, and to identify the specificity 
of such tools. The markers used for transcriptomic analyses may also be expressed in other 
situations, and extensive testing is thus required to characterize host responses adequately.  

The use of transcriptomics also extends to predicting clinical outcomes, as the gene 
expression profile of an individual can provide information about the state of disease. For B. 
pseudomallei, one study found that the host transcriptome was a good indicator of 28-day 
mortality, which would be useful in urgent care scenarios where the initial clinical presentation of 
a patient may not accurately reflect the patient’s clinical course.79 The host transcriptomic profile 
could also act as an indicator of treatment effectiveness. Over a course of oseltamivir in influenza 
patients, it was demonstrated that the host transcriptomic signature changed throughout treatment, 
returning to a baseline after recovery.80  

There also appears to be a large potential role for transcriptomics in the management of 
sepsis. Sepsis is a large challenge faced by the U.S. military; about 25 percent of the deaths from 
otherwise survivable injuries in operations Iraqi and Enduring Freedom were attributed to sepsis.81 
Characterization of sepsis is clinically difficult, with severe combat injuries causing nonspecific 
clinical presentations of inflammatory responses following trauma.82  
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The first Food and Drug Administration (FDA)-approved RNA biomarker diagnostic tool, 
SeptiCyte LAB, was designed to discriminate between sepsis and infection-negative inflammation 
in critically ill patients.83 Novel transcriptomic sepsis classifiers have also been developed, 
including one which uses unsupervised clustering to classify sepsis into different mechanistic 
endotypes.84 These endotypes could then suggest application of different therapies (e.g. patients 
with the NPS endotype, or Neutrophilic Suppressive, would be offered immune-recovering 
therapies such as interferon gamma or GM-CSF), and patients with the INF endotype (Interferon) 
might benefit from a focus on anti-inflammatory therapies.  

A similar study identifying the subclasses of septic shock in patients with pneumopathies 
identified 117 differentially expressed genes; the most significant were the MME and THBS1 
genes with an AUC of 0.879 and 0.889, respectively.85 The identified genes provide an insight into 
the pathways of septic shock with pneumopathies, and can help establish prognosis of septic shock 
patients by identifying high-risk individuals. 

There have not been a large amount of transcriptomic studies performed for infectious 
diseases to date; however, there has been a recent push for transcriptomic analyses. The UK Health 
Security Agency and Liverpool University have started a three-year project to compare responses 
to the Ebola Virus in humans and animals, identifying biomarkers of disease progression and 
correlating host response with disease pathology.86  

It has also been found that transcriptomic signatures, or “transfer signatures” can be common 
across species, enabling the use of animal transcriptomic data to guide human studies.87 This 
approach was tested using the progression of latent tuberculosis to active tuberculosis, and in 
identifying the severity of COVID-19 and H1N1 infections. Further studies could allow for 
transcriptomic diagnostics to act as broad-spectrum diagnostics, identifying diseases based on 
differential gene expression. 
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c. Proteome 
The proteome consists of the complete protein makeup of a cell or tissue in a defined 

condition. Proteins are chains of amino acids, which result from the process of translation from 
RNA templates and represent gene expression. Beyond simple gene expression, proteins can be 
processed to modify their amino acid constituents and can take different structural conformations 
or interact with other molecules to form complexes, all of which are examples of data that can be 
included in the proteome.88 Multiple protein biomarkers have been identified that can provide 
information about pathologies and assist in clinical decision making. The proteome consists of the 
sum of all proteins, but proteomics technologies can be used to analyze a small subset of proteins, 
or even individual proteins, some of which are discussed here. 

Many proteomics-based diagnostic assays are already in use for various conditions, such as 
the use of mass spectrometry for the detection of apolipoprotein-B-to-apolipoprotein-A1 ratios, 
used in cardiovascular disease management.89 Proteomics pipelines for sample analyses have also 
improved significantly in the past decade, with developments including automated mass 
spectrometry sample preparation to produce tryptic peptides, improved sensitivity, and improved 
software algorithms.90 Longitudinal proteomic analyses of individuals can also provide 
accumulated risk measurements, helping to quantify interindividual variability in baseline 
proteomes.  In this way, longitudinal characterization of an individual’s proteome could allow for 
early diagnoses of disease, and also allow for tracking and prediction of clinical progression.  

An example of an application of proteomics for precision medicine is the TRIAGE study. 91  
This study measured the performance of three candidate biomarkers (proadrenomedullin 
(ProADM), copeptin, and procalcitonin (PCT)), testing a sandwich immunoassay for ProADM 
and copeptin, and time-resolved amplified cryptate emission assay for PCT.92 The study concluded 
that these three blood markers would allow for early risk stratification of individual patients at the 
time of emergency department admission, with ProADM being the best biomarker for mortality 
prediction. A more recent example of proteomic use was the development of a proteomic classifier 
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for COVID-19 infection, using 27 biomarkers differentially expressed during infection.93 These 
biomarkers included complement factors, inflammatory indicators, coagulation factors, and 
interleukin-6, which could help assess the severity of disease. Similarly, another study identified 
a protein panel which could be used to predict mortality of patients in intensive care.94 The study 
used clinical data including the measurements of 321 plasma proteins, and after analysis ended up 
with a 14-protein panel which achieved accurate prediction of mortality. The methodologies used 
in the aforementioned studies could be used to develop routine proteomic assays to help in clinical-
decision making, based off of predicted patient progression. 

Until now, mass spectrometry-based technologies have been the standard for analyses of the 
proteome, including steady states and changes during various biological processes. Four types of 
mass analyzers are commonly used for proteomics research: quadrupole, ion trap, time-of-flight, 
and Fourier-transform ion cyclotron resonance.95 Table 3 describes some advances in proteomics 
technology. 

 
Table 3. Advances in Proteomic Technologies 

Method Description Advantages Example Uses 

Ion Mobility Mass 
Spectrometry96 

Separates ions in gas 
phase based on 
differences in size, 
shape, and charge 

Allows for an additional 
level of protein/peptide 
separation, high 
specificity 

Gas chromatography 
ion mobility mass 
spectrometry was 
determined to be a 
feasible point-of-care 
test to diagnose 
COVID-19 via breath 
analyses, 
distinguishing the 
disease from other 
respiratory 
conditions.97 
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MALDI mass 
spectrometry imaging98 

Thinly sliced tissues 
are coated with a 
MALDI matrix, with a 
directed laser revealing 
spatial distributions of 
molecules 

Absolute quantitation 
possible, multiple 
compounds detected 
simultaneously without 
labelling 

MALDI MS could 
differentiate protein 
isoforms associated 
with patient survival in 
high-grade 
sarcomas.99 

Top-down 
proteomics100 

Intact proteins at the 
proteoform level are 
analyzed, implementing 
Fourier transform ion 
cyclotron resonance 
technologies 

Information such as 
protein location, post-
translational 
modifications can be 
extracted, proteins can 
be observed without 
chemical digestion 

This technology has 
been clinically used to 
diagnose 
hemoglobinopathies 
and B-thalassemia.101 

Mass cytometry102 Fluorescence activated 
cell sorting is combined 
with mass 
spectrometry, allowing 
for single cell analyses 

High resolution 
analyses possible, 50 
targets can be 
measured 
simultaneously per cell 

Mass cytometry could 
differentiate between 
systemic sclerosis, 
systemic lupus 
erythematosus, and 
primary Sjogren’s 
syndrome by 
characterizing immune 
system pathways.103 

 
Another significant advance in the field of proteomics is the development of real-time protein 

sequencing, which is analogous to nucleotide sequencing for genomics / transcriptomics. Up until 
now, mass spectrometry, enzyme-linked immunosorbent assays (ELISA), and Edman degradation-
based technologies have been the standard for protein sequencing/identification.104 Edman 
degradation was the first method to determine the amino acid sequence of a purified peptide, in 
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which the protein of interest is sequentially cleaved from the N-terminal, to identify the released 
amino acids by converting them to their phenylthiohydantoin derivatives. Advancements in the 
technology have led to techniques such as massively parallel fluorosequencing, in which Edman 
chemistry is combined with fluorophore chemistry and millions of fluorescently labeled peptides 
can be visualized in parallel.105  

Recent novel approaches have strayed from Edman chemistry, including a significant recent 
breakthrough which uses an integrated semiconductor optical chip for single-molecule 
sequencing.106 The study by Reed et al. described a technique where labeled proteins initially 
recognize the N terminus of an immobilized peptide, and the labeled proteins along with proteases 
allow for measurements of fluorescence intensity and binding kinetics to identify each amino acid 
in the sequence. This technique is poised to offer a sensitive, scalable, and accessible platform for 
single-molecule protein studies. 

Advances in proteomics now allow for single-cell proteomics (i.e., detecting and quantifying 
protein levels in individual cells). A number of companies are developing instrumentation for 
single-cell proteomics, with examples being NanoString Technologies’ GeoMx, Akoya 
Biosciences’ CODEX, CanopyBiosciences’ ChipCytometry, and Mission Bio’s Tapestri. These 
single-cell methods can allow for high-throughput screening of samples with added data such as 
identification of regulatory network stages in various cell types.  

In turn, this can allow for identification of therapeutic strategies based on the disease 
pathology.107 An example is the single-cell IsoCode chip, which is a multiplexed chip with an 
antibody barcode array, which can simultaneously detect 40 secreted proteins from individual 
cells.108 This chip is used to predict clinical response and toxicities of chimeric antigen receptor 
(CAR) therapy products by patients, allowing for evidence-based decisions to be made when 
selecting therapies.  

Advances in protein microfabrication and microfluidics have allowed for the development of 
protein microarrays, which have entered the market and can detect large portions of the proteome, 
(e.g., Snapshot Proteomics microarray by AVMBiomed).109 Sandwich-based antibody arrays also 
exist, such as RayBio’s Human Cytokine Array G-series, which is used for serum analyses in 
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endometriosis patients.110 Aptamers can bind to proteins with great specificity and affinity, and 
the company Somalogic has used this concept to generate reagents (SOMAmers) that improve 
capture, with recent studies performed by the company using their technology validating protein-
phenotype models for various health indicators.111 Similar approaches have been employed to use 
the proteome to characterize heart failure in a population.112 

d. Microbiome 
The human microbiome is “the ecological community of commensal, symbiotic, and 

pathogenic microorganisms that literally share our body space.”113 These microorganisms exist 
throughout the body, and perform many functions and can impact various organ systems, including 
the nervous system, the immune system, and the endocrine system, as well as impacting disease 
outcomes.114  

This unique and commensal community creates the opportunity to establish a microbiome 
genetic “fingerprint” using PCR amplicon sequencing or whole genome comparison; this strategy 
may establish a baseline fingerprint that can be used as a comparison for future monitoring. These 
fingerprints may be useful not only in individual care and treatment, but may be a useful 
epidemiological tool to more quickly identify and control disease outbreaks.115 

There is great potential for the microbiome to provide biomarkers for characterizing disease, 
identifying a prognosis, and optimizing treatment.116 A large body of research focusing on 
discovering and leveraging microbiome biomarkers exists, though it largely focuses on diseases 
and conditions other than infectious diseases. Most research focuses on gastrointestinal diseases 
(such as Crohn’s disease and irritable bowel syndrome),117,118 metabolic disorders,119 respiratory 
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diseases (such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis),120 and 
cancers.121,122,123 In addition, certain gut microbiome biomarkers have been tested for diabetes, 
colorectal cancer, and cirrhosis.124 Table 4 provides an overview of the field of research. 

 
Table 4. Overview of the Body of Clinical Research on Microbiome Biomarkers 

No. of Microbiome 
Studies on 

clinicaltrials.gov (as of 
Oct. 25, 2020) 

Total 
Number Completed Ongoing 

Terminated/Withdrawn/ 
Suspended 

Therapeutics 1023 285 499 51 
Diagnostics 370 72 198 16 
Sensors/biosensors 16 4 12 0 

Source: Derived from Celia Fuentes-Chust et al., “The Microbiome Meets Nanotechnology: Opportunities and 
Challenges in Developing New Diagnostic Devices,” Advanced Materials 33, no. 18 (2021), 
https://doi.org/10.1002/adma.202006104. 

 
The gut microbiome is the focus of a large body of research due to its sheer size, complexity, 

and impact on the body. For example, the gut microbiome is involved in metabolism and can affect 
the means by which therapeutic drugs are metabolized, as well as the duration and form of their 
bioavailability;125 this is especially impactful for low solubility and low permeability 
compounds.126 Some drugs are inactivated by the gut microbiome and therefore made less 
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effective, while other therapeutics are activated and can cause cytotoxicity, such as non-steroidal 
anti-inflammatory drugs.127,128 

Understanding the gut microbiome and its effects on metabolism may provide biomarker 
opportunities for predicting the efficacy of a given therapeutic. However, not all potentially useful 
biomarkers may be easy to detect; solutions such as using engineered bacteria as surrogate 
biomarkers to amplify the signal may help overcome this challenge.129 In addition, establishing 
direct associations between the microbiome and a particular disease can be complicated due to its 
dynamic and individualistic nature. For a microbiome biomarker to be clinically relevant, factors 
such as its prevalence in the population and the impact of external factors (such as nutrition, 
lifestyle, and geography) must be considered and established. Gathering the data to establish these 
connections to a disease requires intensive longitudinal sampling and analysis.130,131 

There are currently two primary approaches to the use of microbiome data in precision 
medicine: 16S rRNA sequencing and shotgun metagenomics.132,133,134 16S rRNA sequencing uses 
a target gene that contains both highly conserved (and therefore bacterially non-specific) and 
hypervariable (allowing for species-level identification) regions. These qualities make it a good 
target for bacterial identification and classification, which can provide additional detail about the 
bacterial strain.135 16S rRNA sequencing is useful for preliminary screening in determining the 
composition, or the “who’s there” of a microbial community,136 even if using a small sample 
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size.137 16S rRNA sequencing requires standard next-generation sequencing equipment, which 
may limit its availability for use at far-forward medical treatment facilities (MTFs), but it can be 
useful in identifying organisms that are difficult or impossible to culture.138 

Shotgun metagenomics typically provides a more complete microbiome genetic analysis  
because it sequences all genetic material in a given sample,139 and is useful for characterizing a 
patient’s microbiota and identifying resistance genes and microbial interactions.140 This method is 
also good for determining the protein functionality, or the “what are they doing,” of a microbial 
community such as the microbiome.141 Computational tools can be used in conjunction with 
shotgun metagenomics to reconstruct sequenced fragments (if intact genetic material is not 
available) and identify patterns, which may be desirable for specific biomarker identification.142 
This method typically requires more complex downstream analysis and greater sequence coverage; 
however, shotgun metagenomics can provide more accurate species identification.143 

Both 16S rRNA sequencing and shotgun metagenomics are generally considered to be 
“compositional rather than quantitative.”144 Metagenomics can provide robust identification and 
characterization of an infection, for example, but cannot provide the extent or potential severity of 
the infection. Shotgun metagenomic sequencing may be overtaking 16S rRNA sequencing as the 
primary method for microbiome analysis, as it tends to provide more accurate identification and 
more additional information due to its more thorough sequencing of all available genetic 
material.145 Establishing microbiome biomarkers may help identify pathogenic respiratory 
microbes that may be difficult to culture or detect with other methods, as well as their susceptibility 
to various antibiotics.146 

However, these are not the only available methods. Single cell sequencing uses a non-PCR 
method of multiple displacement amplification, which allows for high-quality genomic sequencing 
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of low-abundance species; however, sorting the cells from the samples can be time-consuming.147 
Quantitative polymerase chain reaction (qPCR) is a method considered to be a clinical standard of 
care for pathogen detection, and has shown good sensitivity over culture methods. It can define 
the taxonomy and antibiotic resistance of a target, though it is limited to known, pre-identified 
targets.148 Other options include lateral flow assays (including the use of gold nanoparticles and 
quantum dots), electrochemical sensors, and plasmonic sensors such as ELISA and SPR.149 Table 
5 provides an overview of the advantages and disadvantages of a few of the primary techniques 
for analyzing the microbiome. 

 
Table 5. Advantages and Disadvantages of Select Microbiome Analytical Methods 

Method Advantages Disadvantages Potential Solutions 

16S rRNA Sequencing Low cost 
Can provide taxonomic 
information on 
uncultured microbial 
communities 

Low resolution at strain 
or species level 
Little to no functional 
microbial community 
data 

Combine with 
metagenomics 
Use the software tool 
PICRUSt to add 
metagenomic and 
functional data 

Shotgun Metagenomics Can provide taxonomic 
and functional 
information on 
uncultured microbial 
communities 
Can provide full 
genomic data on 
microbes 

Lack of high genome 
coverage 
Cannot associate 
individual phylogeny 
with functional genes 

Combine with long-
read sequencing and 
advanced algorithms 
Combine with single 
cell sequencing 

Single Cell Sequencing Can provide taxonomic 
and functional 
information on 
uncultured individual 
microbes 
Can provide high 
quality genomic data 
for low concentrations 
of microbes 

Challenges in cell 
sorting 
Easily contaminated by 
other/background DNA 
Uneven read coverage 
or chimeric reads 

Combine with 
metagenomics 

Source: Derived from Mingyue Cheng, Le Cao, and Kang Ning, “Microbiome Big-Data Mining and Applications Using 
Single-Cell Technologies and Metagenomics Approaches Toward Precision Medicine,” Frontiers in Genetics (2019): 
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As an example of how microbiome analysis can aid medical diagnosis, extracellular vesicles 
are often used by microbes for cell-to-cell signaling, but may also cause immunogenic effects in 
their host (e.g., S. aureus extracellular vesicles trigger multiple interleukins and 
immunoglobulins). These extracellular vesicles harbor 16S rDNA that can be recovered from a 
liquid/fluid biopsy sample, such as from a lung lavage, for analysis; in addition to the 16S rDNA, 
antibodies against extracellular vesicles can also serve as a good biomarker for infection.150 

Table 6 summarizes the scenarios in which different analytical methods may be used and the 
type of information they can provide. 

 
Table 6. Analytical Methods and Potential Uses 

Method Bacteria Viruses 
Relative 

Abundance 
Absolute 

Abundance 
Species 

Richness Resistome 

16S rRNA 
Sequencing 

All targets No Yes No Yes Potentially 
inferred from 
taxonomy 

Metagenomic 
Sequencing 

Yes Yes Yes No Yes Known 
resistance 
sequences 

qPCR Known 
targets 

Known 
targets 

Limited Limited Limited Known 
resistance 
sequences 

Culture Culturable 
targets 

Culturable 
targets 

Culturable 
targets 

Semi-
quantitative 
in culturable 
targets 

Culturable 
targets 

In vitro 
phenotypic 
susceptibility 

Quantitative 
Microbiome 
Profiling 

Yes Depends 
on 
technique 

Yes Yes Yes Depends on 
technique 

Source: Derived from Gregory L. Damhorst, Max W. Adelman, Michael H. Woodworth, Colleen S. Kraft, “Current 
Capabilities of Gut Microbiome–Based Diagnostics and the Promise of Clinical Application,” The Journal of Infectious 
Diseases 223, no. S3 (2021): S271, https://doi.org/10.1093/infdis/jiaa689. 

 
The concept of harnessing the microbiome for diagnostics, therapeutics, and other clinical 

uses is still relatively new, but it is a promising area of research and development. Fuentes-Chust 
et al. estimate that the “microbiome  therapeutics  &  diagnostics  market  is  expected to grow 
from $506 million in 2022 to $899 million by 2025…diagnostics are expected to grow the most, 
due mainly to the discovery of microbiome-related biomarkers for oncology.”151  
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The DOD has shown interest in supporting microbiome research: the Army Center for 
Environmental Health Research is examining environmental exposure monitoring and surveillance 
tools, the Walter Reed Army Institute of Research is working to establish baseline upper 
respiratory microbiome profiles to track occupational exposures, the Air Force Research Lab is 
pursuing lung microbiome biomarker identification for airborne particle exposure, and the 
National Institutes of Health is investigating point-of-care wound diagnostics for precision 
antibiotic decisions.152 

Despite the plethora of research, clinically relevant and useful microbiome diagnostic tools 
are still plagued by early-phase challenges. Well-defined profiling or diagnostic data is currently 
available for only a few diseases, and using these biomarkers to quantify an infection is still 
difficult.153 More robust data is needed to establish the healthy “baseline” that enables microbiome 
biomarker monitoring to be a useful diagnostic; this may include clinical trials and validation, 
regular doctor visits (at the individual level) and population screening (to establish prevalence), 
and combining microbiome data with other genetic and clinical data.154,155 Microbiome profiling 
and monitoring may be useful in defining disease risk stratification within a population, but more 
research is needed, especially in establishing the associations between specific biomarkers and a 
given disease156 and over the course of a disease’s progression.157 

The microbiome presents many opportunities for biomarker identification unique to a specific 
pathogen, but it also provides the opportunity to assess the risk for certain pathogens based on the 
baseline state of the microbiome. Understanding an individual’s susceptibility to certain disease 
exposures based on the composition of their microbiome may help prevent disease.158 This 
preventative microbiome profiling analysis can both assess risk and guide future therapy 
decisions.159 
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e. Metabolome 
Metabolomics is “broadly defined as the comprehensive measurement of all metabolites and 

low-molecular-weight molecules in a biological specimen.”160 Most research on metabolomics 
primarily focuses on metabolic dysfunction and chronic pulmonary disease (often associated with 
disease severity),161 cancer,162,163 traumatic brain injuries, trauma, and burns,164 COVID-19,165 
obesity, diabetes, and gastrointestinal conditions.166 

A metabolomic profile, along with clinical and genomic data, may help identify disease 
variants such as COVID-19 variants.167 Metabolomics can provide tissue-specific and time-
specific data, and may help provide a more rapid approach to biomarker discovery.168 Many 
sample types may be used for metabolomic analysis, including blood, urine, saliva, breath 
condensate, cerebrospinal fluid,169 and synovial fluid.170 Blood and urine are the most common 
sample types, as they are easy to collect and prepare.171 Blood is less impacted by time course in 
the metabolite profile, but it mostly contains extracellular metabolites and therefore may not be 
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the most suitable sample type for all diseases, as there may be disease-associated metabolites that 
are purely intracellular and are not present in the bloodstream.172  

Dynamic biomarkers, which may change depending on certain factors, are useful for 
determining disease state and therapeutic response (e.g., prostate-specific antigen in cancer 
treatment), while static biomarkers are more useful in prognosis (e.g., gene expression or risk 
assessment).173 There are many ways metabolomics may have a positive impact through the use 
of biomarkers, such as to better understand disease mechanisms, arrive at diagnoses and prognoses, 
conduct patient-specific disease state/severity binning, and to monitor therapeutic response.174 

However, advances in metabolomics face challenges. For example, metabolites include a 
wide variety of potential target types, with various molecular weights, polarities, and 
compositions; it is estimated that there are over 19,000 different small molecule metabolites in the 
human body, including environmentally, dietary, and pharmacologically derived molecules.175 In 
addition, changes in target metabolite levels may be very small and difficult to quantify, especially 
early on in the course of a disease.176 Due to the complexity and variation of metabolites, there is 
currently “no single assay that can detect all metabolites present in a given sample.”177 The time 
sensitivity of metabolites – they are typically short-lived molecules that are easily degraded – 
creates the imperative to collect and process samples quickly to establish an accurate profile.178 

Currently, a comprehensive database or understanding of the full range of the metabolome 
does not exist, partially due to a lack of quantitative techniques/platforms; as Xie et al. state, “the 
clinical usefulness and application of metabolomics has not yet been realized.”179 As such, clinical 
applications of metabolomics are still fairly limited.180,181 This is partially due to the challenges in 
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translating research and biomarker discovery from a model system or platform to clinical use. 
There is also a lack of integrated platforms that can accurately and intuitively connect the “puzzle 
pieces” of multi-omics.182 Finally, there is a lack of external validation for biomarker discovery 
research, which can lead to high false-positive rates and uncertainty in the quality of the predictive 
values.183 

There are three primary study approaches in metabolomics: fingerprinting, footprinting, and 
profiling. Fingerprinting generally searches for metabolites within a patient,184 but does not 
identify each metabolite, and associates a pattern with a given state.185 Footprinting searches for 
metabolites within the patient’s environment.186 Profiling searches specifically for target 
metabolites in a sample.187 

There are two primary methods of metabolomics analysis: mass spectroscopy (MS) and 
nuclear magnetic resonance spectroscopy (NMR).188 MS is very sensitive and good for the 
detection and quantification of a wide variety of metabolites. However, there is a need to separate 
metabolites by molecular weight for better sensitivity, so MS is often paired with a separation 
technique such as liquid chromatography (LC-MS), gas chromatography (GC-MS), or capillary 
electrophoresis (CE-MS).189,190,191 GC-MS is high-resolution192 and has good sensitivity,193 but 
requires volatile reagents,194 can involve labor-intensive sample preparation, and is not the best 
method for identifying new compounds.195 LC-MS is high-sensitivity but low-resolution196 and 
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less robust, despite its ability to cover a wide range of metabolites.197 CE-MS is a good technique 
for the simultaneous detection of a variety of targets through multiplexing.198 

NMR allows for absolute quantification and sample preservation because it is a non-
destructive method, which is useful if follow-on analysis with different techniques is desired. Some 
variations include H-NMR, which is the most common technique,199 and high-resolution magic 
angle spinning NMR (HR-MAS-NMR),200 which is good for liquid or intact solid tissue.201 NMR, 
though somewhat limited by low sensitivity,202,203 is an effective technique for small sample 
sizes.204 It can detect metabolite concentrations of 1–2 μM in 0.5 mL, while metabolite 
concentrations in the nanomolar or picomolar range are typically required for early disease 
detection.205 

As an example, a study on metabolome profiling for COVID-19 found that lipids might serve 
as good biomarkers for disease severity. Performing NMR on blood serum samples identified 168 
metabolites, 56 of which had significant association (p < 0.05) as measured by the World Health 
Organization COVID-19 disease severity score. This indicates they might be a useful biomarker 
for disease severity. It was found that acetylated glycoproteins increased with disease severity, 
while low albumin concentrations indicated higher polymorphonuclear myeloid-derived 
suppressor cell numbers. Treatment with tocilizumab led to severe patients having a metabolite 
profile more similar to those with mild disease as treatment progressed.206 

3. Clinical History 
Clinical history is a broad term referring to qualitative and quantitative information about a 

person’s health, often evaluated chronologically. This information can include data on allergies, 
past illnesses, surgeries, immunizations, and the results of physical exams and tests. It can also 
include information about medication and health habits. A family clinical history includes data on 
the health information of an individual’s close relatives, potentially demonstrating patterns among 
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a family.207 In this section, we are using the term “clinical history” to refer to datasets outside of 
traditional omics that can improve patient diagnosis. To discover useful insights, the breadth of 
clinical history requires scoping. Through our literature review, we identified four topics of 
relevance to clinical history, precision medicine, and diagnostics: personomics, therapeutic drug 
monitoring, biobanking, and image analysis.  

a. Personomics 
With increased emphasis on quantitative tests and decreased time for patient-physician 

interactions, many clinicians have been advocating for improved holistic understanding of patients. 
Dr. Roy Ziegelstein from Johns Hopkins School of Medicine defines personomics as the “social, 
psychological, cultural, behavioral and economic factors that affect the patient’s health beliefs, the 
way he or she approaches illness, and the patient’s interactions with the medical system. It 
considers the patient’s personal preferences, his or her values and goals, and the support the patient 
receives from family and friends.”208  

This consideration of a patient as a person allows for improved diagnostics and clinical 
outcomes; Dr. Ziegelstein and his colleagues give three examples when asking a patient about their 
lives led to a definitive diagnosis or improved patient compliance. One such example was a patient 
with unexplained exacerbations of asthma that occurred around the same time each year.209 Upon 
discussion, the physicians realized the woman had survived the September 11, 2001 attacks on the 
World Trade Center and were able to treat the underlying psychological source of her illness.210  
While some physicians obtain this information as a regular portion of their interactions with 
patients, it is not typically recorded and included as a part of their medical record.  

The National Institute of Health and Care Excellence in the United Kingdom provides 
guidance on methods for learning about adult patients as individuals while obtaining their medical 
history.211 This approach consists of five areas: 1) the patient as an individual, 2) the patient’s life 
circumstances, 3) the patient’s concerns, 4) the patient’s needs, and 5) a reminder to clinicians to 
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avoid making assumptions about their patients and instead ask their patients for additional 
information.212  

A different report surveyed physicians who have been recognized for their clinical excellence 
and asked how they get to know their patients as individuals.213 The authors identified six themes 
through their research: 1) the patient’s concerns, 2) the patient’s personal relationships, 3) the 
patient’s hobbies and pleasurable activities, 4) open-ended questions to learn about the patient, 5) 
the patient’s work, 6) the patient’s perspective on the patient-physician relationship.214 For military 
populations, information about some of these categories may already be available and could be 
integrated into the medical record for the purposes of personomics.  

Advances in personomics are more likely to occur through training initiatives than 
technological innovation, though a method to incorporate these types of questions into a patient’s 
electronic health records would still need to be developed and standardized.  

b. Therapeutic Drug Monitoring 
For nearly all drugs currently approved for use in humans, bioanalytical assays exist, partly 

because of the regulatory requirements to characterize a drug’s pharmacokinetic properties during 
its preclinical and clinical development. However, only a few drugs are subject to routine 
therapeutic drug monitoring (TDM) in patients. This may be because of the lack of well-
characterized relationships between serum/blood drug levels and effects, wide therapeutic 
windows, significant intra- and interpatient and intra and inter-occasion variability in 
pharmacokinetics, and cost concerns.215  

TDM is the practice of measuring the concentration of a therapeutic agent in a patient to 
optimize the dosing regimen.216 TDM may improve clinical outcomes by multiple means, 
including ensuring serum concentrations are kept within a drug’s therapeutic windows, which can 
vary due to various factors such as inter-patient variation in metabolism. Physiologic variations in 
patients can have a great effect on drug kinetics; for example, ertapenem has a longer half-life, 
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slower clearance, and higher area-under-concentration-time-curve (fAUC) in older patients 
compared to younger adult patients.217  

According to WHO reports, certain criteria indicate whether a drug needs to be monitored: 
pharmacokinetic variability, adverse and therapeutic effects related to concentration, narrow 
therapeutic index, undefined range of therapeutic concentration, and difficulty in controlling 
desired therapeutic effect.218 Table 7 provides examples of studies using TDM to monitor 
pharmaceuticals. Notably, many of these drugs are treatment options for CBRN agents (including 
azithromycin and vancomycin).  

 
Table 7. Studies on TDM of Various Pharmaceuticals using Electrochemical Sensing Therapeutic 

Drug Monitoring 

Target Technology Target Class 

Clinical 
Sample 
Tested 

Limit of 
Detection 

Acetylcholinesterase219 Silver 
nanoparticles 

Enzyme Urine 10-12 M 

Phenoxymethylpenicillin220 Microneedles Antibiotic* Blood/Serum 0·17 mg/L 

Azithromycin221 Biomimetic 
electrochemical 
sensor 

Antibiotic Urine, 
Plasma 

0.85 nM 

Kanamycin222 Biomimetic 
electrochemical 
sensor 

Antibiotic Food 0.42 pg/ml 
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Cyclophosphamide223 Molecularly 
imprinted 
polymer 
electrochemical 
sensor 

 Blood 3.4×10−12 mol/L 

Metronidazole224 Molecularly 
imprinted 
polymer with 
carbon paste 
electrode 
sensor 

Antihelminthic Serum, Urine 9.1×10−8 mol/L 

Ibuprofen225 Graphene 
quantum dots 
and gold 
nanoparticle  

Anti-inflammatory Serum 33.33 aM 

Multiple Drugs226 Electrochemical 
aptasensor with 
gold 
nanoparticles 

Antibiotics Food Varying (fm 
range) 

Azithromycin227 Gold/graphene 
oxide modified 
carbon 
electrode 
sensor 

Antibiotic Serum 0.1 nM 

Methyl paraoxon228 Microneedle 
with carbon-
paste electrode 
sensor 

Organophosphates Skin 
(microneedle 
sensor) 

20μM 
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An example of the advantages of TDM is seen in vancomycin, a glycopeptide antibiotic 
which has a narrow therapeutic range and high interpatient variability. Guidelines suggest an area 
under concentration-time (AUC) to minimum inhibitory concentration (MIC) ratio of >400 for 
clinical effectiveness.229 High plasma concentrations also increase the likelihood of ototoxicity 
and nephrotoxicity; hence, drug monitoring is warranted to ensure the target concentration is 
reached but the chance of toxicity is not kept minimal.  

A recently developed electrochemical aptamer-based sensor was designed with the target of 
enabling rapid convenient measurement of plasma vancomycin via finger-prick-scale samples of 
whole blood.230 Tested in an animal model, this sensor allowed for closed-loop feedback control 
over plasma levels of the drug. Advances of such technologies could eventually lead to clinical 
therapeutic systems that would allow maintenance of constant plasma levels of a pharmaceutical. 

The main groups of antibiotics which could benefit from TDM are aminoglycosides, 
glycopeptides, beta-lactams, fluoroquinolones, oxazolidinones, lipopeptides, and polymyxins.231 
Traditionally, serum measurements of antibiotics are carried out by chromatography, but newer 
techniques such as nanobiosensors and immunochromatography are becoming more commonplace 
due to various advantages, such as removed need for specialized equipment or toxic solvents.232,233  

Herregodts et al. recently prototyped a device termed ExaBreath which could measure 
antibiotics in exhaled air from critically ill patients.234 While the amounts of antibiotic quantified 
in exhaled air did not correlate with plasma concentration, the creators suggest alternatives such 
as normalization using endogenous markers to improve the correlation.235 Table 8 provides an 
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overview of antibiotic concentration toxicities (of which many are accepted therapeutic options 
for CBRN agents). 

 
Table 8. Overview of Antibiotic Toxicity and Optimal Dose 

Antibiotic Adverse Effects 

Example 
Agent 

Treated with 
Antibiotic236 Dose 

Maximum 
Concentration 

Aminoglycosides 
Gentamicin Nephrotoxicity, neurotoxicity, 

ototoxicity 
Plague, 
Tularemia 

5–7 
mg/kg/day 

5–10 mg/L 

Amikacin Plague 15–20 
mg/kg/day 

20–35 mg/L 

Tobramycin  5–7 
mg/kg/day 

5–10 mg/L 

Glycopeptides 
Vancomycin Nephrotoxicity, ototoxicity, severe 

vesicular reactions, hemorrhagic 
occlusive retinal vasculitis 

Anthrax 15–20 
mg/kg/12 h 

20–50 mg/L 

Teicoplanin Nephrotoxicity, ototoxicity, 
thrombocytopenia 

   43 mg/L 

Polymyxins 
Colistin Nephrotoxicity, Neurotoxicity  150mg 

(single dose) 
18 µg/mL 

β-Lactamics 
Penicillins 

Ampicillin-
sulbactam 

Thrombocytopenia, eosinophilia, 
leukopenia, and transient elevation 
of transaminases 

 1000:500 
mg 

8–37 µg/mL 

Cephalosporins 
Cephalexin Coagulation disorders, platelet 

function disorders, leukopenias, 
thrombocytopenias, neutropenias, 
decreased hemoglobin and 
hematocrit, hemolytic anemias, and 
nephrotoxicity 

 0.25 g/6 h 14 µg/mL 
Cephradine  0.5–2g/6 h 12 µg/mL 
Cefoxitin  1–2 g/6–8 h 20 µg/mL 
Cefuroxime  0.5–1g/6–8 

h 
40 µg/mL 

Ceftazidime Glanders 1–2 g/8–12 
h 

120 µg/mL 

Moxalactam  500–200 
mg/kg//6–12 
hr 

100 µg/mL 

                                                           
236 This is not an all-inclusive list, and the antibiotics listed here may be used for the treatment of more biological 

threat agents. 
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Carbapenems 
Imipenem In high doses, neurological toxicity, 

seizures rarely occur. 
Hematological alterations, such as 
leukopenia, eosinophilia, or 
thrombocytosis, moderate and 
transient increases in 
transaminases, alkaline 
phosphatase. Doripenem is toxic 
by epidermal necrolysis and 
Steven-Johnson syndrome. 

Anthrax 1 g 69.9 mg/L 
Meropenem Anthrax, 

Glanders, 
Melioidosis  

1 g 61.6 mg/L 

Ertapenem  1 g 164.6 mg/L 

Doripenem Anthrax 500 mg 23 mg/L 

Quinolones 
Pipemidic acid In some cases, tendinitis or tendon 

rupture. Fatal ventricular 
arrhythmias and neurotoxicity 
infrequently. Some quinolones that 
cause problems of phototoxicity 
(clinafloxacin), liver (trovafloxacin), 
or cardiac (grapafloxacin) toxicity 
have been withdrawn from the 
market. 

 400 mg 4 mg/L 
Ciprofloxacin Anthrax, 

Plague, 
Tularemia 

400 mg 1.6 mg/L 

Ofloxacin  400 mg 4 mg/L 
Levofloxacin Anthrax, 

Plague, 
Tularemia 

500 mg 5 mg/L 

Oxazolidinone 
Linezolid Hematological toxicity, 

mitochondrial toxicity in blood cells 
and nerve fibers of the skin, 
hypoglycemia, lactic acidosis, and 
acute pancreatitis 

Anthrax 1.5 mg/Kg 2.5 mg/L 

Lipopeptide 
Daptomycin Muscle toxicity. Neurological 

disorders (paraesthesia, 
dysesthesia) and eosinophilic 
pneumonia, skin and subcutaneous 
tissue disorders, hepatobiliary 
disorders, musculoskeletal, and 
connective tissue disorders. 

 4 mg/kg/day 62.4 µg/mL 

Source: Derived from Garzón, Bustos, and Pinacho, “Personalized Medicine for Antibiotics: The Role of 
Nanobiosensors in Therapeutic Drug Monitoring.” 
 

ELISA techniques have also been demonstrated to successfully quantify antibiotic levels in 
serum, with potential use as a cost-effective and high throughput alternative to 
chromatographic/fluorescent methods.237 There are several commercial kits available on the 
market today for quantification of antibiotics requiring TDM, such as QMS Tobramycin (Thermo 
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1411-y. 



44 

Fisher), QMS Gentamicin (Thermo Fisher), QMS Vancomycin (Thermo Fisher), Monoclonal 
Antibody Penicillin (Thermo Fisher), and the ARK Linezolid Assay (ARK Diagnostics). 

Electrochemical sensors work by measuring electric potential differences (potentiometric), 
current generation (amperometric), or by changes in conductance (impedimetric). 
Aminoglycosides have been quantified in blood serum using electrochemical biosensors, using 
RNA aptamers that work in the therapeutic range of 2-6 micromolar.238 The aminoglycoside sensor 
described has multiple attributes which would enable it to be a point-of-care diagnostic device, 
including reusability, compactness, speed of results, and having no reagent requirement. The 
creators of the sensor have outlined its ability to be implemented in a hand-held device format for 
ease of use.  Amperometric biosensors have also been developed, an example being a kanamycin 
sensor using a label-free immunosensor on a water-soluble graphene sheet. The sensor was shown 
to have a limit of detection (LOD) of 6.3 pg/ml,239 with traditional high-powered liquid 
chromatography (HPLC) having a LOD in the range of 0.01 µg/ml.240 

Optical biosensors also have various characteristics that would make them a good candidate 
for TDM, including high sensitivity, portability, and reproducibility. Vancomycin has been 
detected in plasma by imprinted polymer nanoparticles, with a LOD of 0.0032ng/ml.241 Optical 
biosensors are also commonplace in the food industry to detect antibiotics in food, with a portable 
optofluidic-based biosensing platform developed for sulfadimidine testing.242 

For example, when a polarized light beam is directed to a lower refractive index later between 
a prism and a sample, the light generates excitation of a surface plasmon for a certain angle of 
incidence of the light beam, which is known as the resonance angle. Surface plasma resonance 
(SPR) sensors act on the principle of the displacement of the resonance angle when an analyte 
binds with a recognition element.  Tobramycin has been detected using a portable SPR device in 
patient serum, with a LOD of 3.4um.243 This sensor was palm-sized, inexpensive, and portable. A 
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large number of SPR applications have been created for the detection of antibiotics in food, the 
methodology of which could be used for the detection of antibiotics in clinical samples such as 
sera.244 

c. Biobanking 
Biobanks are large collections of biological specimens linked to relevant personal and health 

information (e.g., health records, family history, lifestyle, omics data) that are held primarily for 
use in health and medical research.245 Biobanks can be classified by a few different schemes, 
including the type of research (e.g., population-level studies, translational studies, or pathology 
archives), the type of samples collected (e.g., frozen tissues, formalin-fixed tissues, cells, whole 
blood, urine), the type of donor or patient (e.g., healthy donors or donors with a particular 
condition), collection methods and study design (e.g., retrospective or prospective accrual of 
samples), nature of the intended user (e.g., single group or user, institution), or whether the biobank 
is physical, all virtual, or a combination of the two.246 As precision medicine technologies advance, 
biobanking enables researchers to return to original samples for additional analyses that were not 
possible when the data was originally collected.  

One type of biobanking particularly relevant to precision medicine diagnostics is longitudinal 
biobanking, where samples are collected from a patient over time. These samples can be used for 
biomarker discovery and investigation. Notably, the DoD has maintained one of the largest 
biobanks in the world at the DoD Serum Repository, containing over 62 million longitudinal 
blood-derived serum samples that can be linked to deployment data, pharmaceutical data, 
microbiological lab test results, and electronic records.247  

In one recent example using biobanks to understand medical outcomes, blood samples and 
symptom data were collected from UK Biobank participants monthly for a six-month period to 
determine whether COVID-19 antibodies remained in the circulation after infection.248 They found 
that 99 percent of participants who tested positive for SARS-CoV-2 retained antibodies against 
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the virus for three months and 88 percent retained antibodies for six months.249 This type of data 
could indicate the need for additional intervention for those patients who did not maintain 
circulating antibodies.  

Another type of biobanking with potential relevance for diagnostics and therapeutic 
development is cell or tissue banking with the purpose of developing patient-derived organoids. 
Organoids are “self-organizing, expanding 3D cultures derived from stem cells.”250 Patient-
derived organoids can serve important purposes, particularly for cancer diagnosis and treatment 
options. The drug response of patient-derived organoids has been shown to correlate well with 
overall patient drug response, suggesting their use in companion diagnostics to determine 
appropriate cancer treatments. Additionally, organoids and organ-on-a-chip technologies have 
been suggested as research tools to develop countermeasures for radiation, and they may be useful 
tools in developing new diagnostics for a variety of CBRN agents.251 

Biobanking can also be of tremendous use when developing new diagnostic tests. To 
research, develop, and validate new diagnostics, clinical samples need to be made available to 
researchers conducting those analyses, but often these samples are siloed due to physical distance, 
legal obstacles for sample sharing, or researchers not knowing about available collections. Even 
for high priority diseases such as COVID-19, obtaining samples—particularly from diverse 
demographics—was difficult during the beginning of the pandemic.252 New resources such as 
DxConnect Virtual Biobank provide a service that connects researchers to available samples, 
reducing this bottleneck.253 Currently this resource only is linked to COVID-19, but DxConnect 
aims to increase the represented samples to include tuberculosis, HIV, malaria, hepatitis, fever-
related infections, and neglected tropical diseases in the future.254   

                                                           
249 Ibid.  
250 Shree Bose, Hans Clevers, and Xiling Shen, “Promises and Challenges of Organoid-Guided Precision 

Medicine,” Med 2, no. 9 (2021), https://doi.org/10.1016/j.medj.2021.08.005. 
251 Gordana Vunjak-Novakovic et al., Human Organs-on-a-Chip Platforms for Developing Countermeasures to 

Space Radiation: Topical White Paper, (New York, NY: Columbia University, 2021), 
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/623127/6378869/20-
3b2763af34355557c9b2552c617f9c5e_VunjakNovakovicGordanaV.pdf. 

252 Shubhagata Das and Sherry Dunbar, “The COVID-19 Pandemic - A Diagnostic Industry Perspective,” Frontiers 
in Cellular and Infection Microbiology 12 (2022), https://doi.org/10.3389/fcimb.2022.862440. 

253 Stefano Ongarello, Marta Fernández Suárez, and Fay Betsou, “The DxConnect Virtual Biobank Connects 
Diagnostic Researchers to Clinical Samples,” Nature Biotechnology 40, no. 1 (2022), 
https://doi.org/10.1038/s41587-021-01168-z.  

254 Ibid. 
 



47 

d. Image Analysis/Radiomics 
Medical imaging has been used to diagnose patients and monitor treatment outcomes since 

the 1890s when x-rays were first discovered.255 New advancements in machine learning have 
turned the relatively qualitative field of medical imaging into a rich source of quantitative data. 
Radiomics has been defined as “the rapidly evolving field of research concerned with the 
extraction of quantitative metrics—the so-called radiomic features—within medical images.”256 
Radiomics can capture information from images such as tissue and lesion properties (e.g. size, 
shape, and heterogeneity). If multiple images are taken over time, information about the disease 
progression, treatment effectiveness, and discovery of new biomarkers can be outputs of 
radiomics. 

Several applications of radiomics in infectious disease diagnostics have been chronicled in 
the academic literature. For example, groups have investigated the use of computed tomography 
(CT) imaging to diagnose patients with COVID-19. In one study, researchers developed a deep 
learning model for identification of COVID-19 infection using chest CT scans. They collected CT 
images from patients with COVID-19 or community acquired pneumonia from three different 
medical centers and determined the clinical utility of their methods.257 They found that the deep 
learning models were as sensitive as senior radiologists and more efficient (5.15 vs 38 minutes 
from imaging until time to diagnosis), and could serve as a screening method.258 This type of 
diagnostic modality would be particularly useful for uncommon infectious diseases such as some 
biothreat agents, where clinicians may lack familiarity and an index of suspicion. 

In addition to diagnostics of infectious diseases, radiomics can be used to determine tissue 
damage following radiation. Another recent study involved the use of radiomics for patient 
diagnosis in cases of chronic kidney disease induced as a side effect of radiation therapy for 
cancer.259 In this study, the CT images of 50 patients were analyzed to determine radiomic features 
useful in diagnosing chronic kidney disease and predicting chronic kidney radiation toxicities.260 
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While not directly related to CBRN defense, this type of analysis might be useful in the future for 
determining organ toxicity following acute radiation exposure. 

B. Diagnostic Technologies 
The development of diagnostic technologies that employ precision medicine concepts is still 

in its early stages. Development of host-based assays for diagnosing and establishing prognosis 
would most likely consider adopting the WHO’s ASSURED guidelines for diagnostics in the 
developing world.  Many characteristics of these WHO guidelines are applicable to scenarios faced 
by personnel in austere environments or combat situations.261 These guidelines suggest a 
diagnostic should be Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and 
Delivered (ASSURED) to those who need it. The current cost and infrastructure required for host-
based assays such as transcriptomic profiling is higher than other diagnostic assays currently 
available, but developments in point-of-care technology are moving towards low-cost, 
multiplexed, equipment-free systems.  

An analysis of state-of-the-art diagnostic technologies has been documented in IDA Paper P-
33049.262 This document gives special consideration to diagnostic technologies that may be 
favorable for far-forward use, but many of the technologies considered are directly relevant to 
precision medicine. Some of the technologies described in the study have been highlighted below, 
but a more detailed analysis can be found in P-33049.   

1. Nanomaterials  
Nanomaterials consist of both active nanostructures (3D transistors, amplifiers, actuators), 

passive nanostructures (coatings, nanoparticles, nanostructured metals, etc.), and molecular 
nanosystems.263 Nanomaterials have characteristics which may make them ideal portable 
biosensors, with the potential for ultra-sensitive detection of analytes of interest. These 
characteristics are primarily due to electron and phonon (i.e., the unit of vibrational energy in a 
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crystal lattice264) confinement, high surface-to-volume ratios, high surface reaction activity, high 
adsorption ability, and high catalytic efficiency.265  

An example is an immunoassay device for rapid human ferritin detection using gold nanorods 
as the reported probe for antibody labelling. The device is similar to a lateral flow assay, with the 
output being a visually detectable color change, or electrochemical detection for quantification.266 
Carbon-based nanomaterials, such as fullerenes, carbon nanotubes, and graphene area, also 
provide advantages due to their physical and chemical properties. Carbon nanotubes (CNTs) have 
been widely used as electrode materials in electrochemical biosensing, and have been clinically 
useful in the detection of carbohydrate antigen 19-9, a marker in cases of pancreatic cancer.267 
Multi-walled carbon nanotubes increase conductivity and active surface area of the sensing 
platform, as demonstrated in a tool designed to rapidly detect target DNA with a detection limit of 
40pM.268  

2. Quantum dots 
Quantum dots (QDs) are inorganic semiconductor nanocrystals, with diameters in the range 

of 2–10 × 10-9 m, that display a range of unique optoelectronic properties. They have broad 
excitation spectra and narrow emission spectra, and their emission wavelengths can be tuned by 
changing the size of the nanoparticle; this creates great potential for fluorescence sensing 
applications. QDs have been used in multiple applications in order to improve detection limits, 
and decrease instrumentation requirements.269 QD-mediated fluorescence resonance energy 
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transfer (FRET) nanosensors have been created; these can help distinguish rare mutations (~0.001 
percent) from mixtures for highly sensitive single nucleotide polymorphism (SNP) detection.270 

3. Paper based diagnostics 
Paper-based diagnostic technologies may prove essential in spreading precision medicine 

concepts to low-resource situations. A useful tool implementing this concept is the paper-based 10 
SNP panel, which detects a genetic signature associated with breast cancer, and provides a visual 
output.271 The device is a lateral flow assay in gold nanoparticles (AuNPs) functionalized with 
anti-biotin that were immobilized to allow capture of complimentary tag sequences. The presence 
of the target alleles caused red spots to form on the paper, removing the need for instrumentation 
for detection. The same concept could potentially be used to screen for other nucleotide sequences, 
potentially identifying polymorphisms of interest to classify patients based on their genetic 
makeup. Paper-based devices may also employ microfluidics to detect analytes such as pathogens 
or biomarkers like glucose, hepatitis antibodies, Ebola virus RNA, or NO2 in saliva.272,273,274,275 

4. Digital PCR 
Digital PCR (dPCR) involves an approach of partitioning an input sample into multiple 

parallel PCR reactions using microfluidic processes. After amplification, each well can be 
measured to produce a binary readout, with the fraction of positive readouts and a Poisson 
distribution used to estimate the target’s initial concentration in the sample.  

This method is highly quantitative, does not require a reference sample, and has the potential 
to be more sensitive and specific than traditional PCR, with potential single molecule sensitivity. 
dPCR has been shown in cases to be more sensitive than NGS for testing and identification of rare 
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(<1 percent prevalence) mutations, and has been shown to detect 0-5 copies of genes with a small 
coefficient of variation (<3 percent).276,277  

5. CRISPR 
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-based systems take 

advantage of the high specificity/sensitivity of natural CRISPR systems for diagnostic purposes.278 
CRISPR is a natural defense mechanism of single-celled organisms, which identifies and cleaves 
specific nucleotide sequences foreign to the host cell. CRISPR systems consist of a Cas protein 
and a guide RNA. The guide RNA (gRNA) has the function of identifying a nucleotide sequence, 
which the Cas protein depends on to cleave the target sequence.  

This cleavage property can be leveraged to identify target sequences with high accuracy, and 
by modifying the guide RNA, the CRISPR system can be used to target a nucleotide sequence of 
choice. Cas9, Cas12, and Cas13 are the most common proteins used along with CRISPR. Cas9 is 
the most well-known CRISPR system, consisting of only one Cas9 protein that has target DNA-
cleaving ability. Cas 12 and Cas13, on the other hand, have collateral cleavage activity; this means 
that along with the target sequence, they also cleave nearby non-target sequences. Cas13 is also a 
ribonuclease, and therefore instead of DNA it cleaves RNA. 

Various CRISPR assays have been created for nucleic acid detection. For example, CRISPR-
Chip is a CRISPR-enhanced graphene-based field-effect transistor (gFET) tool which uses 
graphene functionalized with the dCas9 enzyme as a channel between source and drain electrodes. 
The binding of the target nucleotide sequence to the dCas9 complex causes electrical modulation 
of the gFET. This technique can be used for rapid sensitive detection of target sequences and was 
used to detect Duchenne muscular dystrophy-associated mutations with an LOD of 3.3ng/μL (1.7 
× 10-15 M genomic material), with a sample-to-result time of 15 minutes, without the need for 
DNA amplification.279 

Cas13 is an RNA-guided ribonuclease, acting through crRNA-target pairing. A Cas13a-based 
system termed SHERLOCK (Specific High-Sensitivity Enzymatic Reporter UnLOCKing) has 

                                                           
276 Megan E. Dueck et al., “Precision Cancer Monitoring Using a Novel, Fully Integrated, Microfluidic Array 

Partitioning Digital PCR Platform,” Scientific Reports 9, no. 1 (2019), 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925289/. 

277 Deborah L. Stabley et al., “SMN1 and SMN2 Copy Numbers in Cell Lines Derived from Patients with Spinal 
Muscular Atrophy as Measured by Array Digital PCR,” Molecular Genetics & Genomic Medicine 3, no. 4 
(2015), https://onlinelibrary.wiley.com/doi/10.1002/mgg3.141. 

278 Xiaohong Xiang et al., “CRISPR-Cas Systems Based Molecular Diagnostic Tool for Infectious Diseases and 
Emerging 2019 Novel Coronavirus (COVID-19) Pneumonia,” Journal of Drug Targeting 28, 7-8 (2020), 
https://doi.org/10.1080/1061186X.2020.1769637. 

279 Reza Hajian et al., “Detection of Unamplified Target Genes via CRISPR-Cas9 Immobilized on a Graphene 
Field-Effect Transistor,” Nature Biomedical Engineering 3, no. 6 (2019), https://doi.org/10.1038/s41551-019-
0371-x. 

 



52 

been shown to identify mutations in tumor DNA.280 SHERLOCK combines reverse transcription 
recombinase polymerase amplification (RT-RPA) with Cas13a nuclease activity and uses a 
crRNA-Cas13a complex to bind to the target sequence, which in turn activates RNAse activity. 
This RNAse activity degrades non-target RNA, which causes fluorescence. Multiple variations of 
SHERLOCK have been implemented, including an FDA-approved commercial assay for SARS-
CoV-2. 

6. Artificial Intelligence / Machine Learning  
Artificial Intelligence (AI) and Machine Learning (ML) approaches are common ways to 

explain large datasets and produce actionable insights. This makes these approaches directly 
applicable to precision medicine approaches. AI and ML are useful in analyzing metabolomic 
profile data and establishing disease associations, thereby supporting the concept of predictive 
diagnostics.281 For instance, AI/ML platforms can identify continuous drug administration 
parameters for optimal dosing.282 Combined with TDM, this could allow for a significant increase 
in the efficiency of administered therapeutics, tailoring concentrations for each patient while also 
ensuring that the target concentrations are achieved.  

Google’s DeepMind Health project and IBM’s Watson are some of the leading programs for 
the implementation of AI in clinical practice.283 IBM’s Watson can recognize data in clinical notes 
and reports, and then provides essential oncology decision support tools for creating optimized 
treatment plans for patients. As described in Image Analysis/Radiomics, the field of radiogenomics 
focuses on establishing associations among imaging features to predict a patient’s risk / clinical 
progression.284 The majority of work in this field has been performed for cancer therapeutics,285 
but various methodologies applied using AI/ML technologies should be applicable to various 
subdomains of precision medicine.  

For instance, Huang et al. developed a machine learning tool to predict individual patient 
responses to cancer therapeutics with a high accuracy, based on the patient’s genome.286 Similar 
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tools may be developed for other classes of therapeutics for other conditions, such as the use of 
antibiotics in treating infections. These tools can also be combined with many other diagnostic 
technologies to implement precision medicine concepts. For example, MALDI-TOF Mass 
Spectrometry was combined with a neural network approach to create a tool that could identify 
methicillin resistance in Staphylococcus aureus clinical isolates.287 

7. ELISA 
Enzyme-linked Immunosorbent Assay (ELISA) uses antibodies to detect a given antigen or 

other target, by attaching these antibodies to a reporter molecule. ELISA  itself is not a novel 
advancement and is a standard diagnostic tool for various purposes, but there have been many 
advancements in ELISA technologies that are relevant to precision medicine.  

SiMoa (Single Molecule Assay) is an ultrasensitive ELISA-based tool which uses a bead-
based sandwich immunoassay approach, sealing beads with oil to ensure only one bead is present 
in each well (there is one enzyme-labelled immunocomplex).288 This allows for a low limit of 
detection (in the range of 10 molecules per 100μL sample). Another technology that has allowed 
for increased sensitivity in detecting biomarkers is graphene nanoparticle-based ELISA, in which 
graphene oxide sheets, which act as nanocarriers, are antibody-functionalized.289 This technique 
has been tested in multiple applications, such as the detection of amyloid beta, an Alzheimer’s 
Disease biomarker. Another technology which improves both the sensitivity and 
portability/accessibility of ELISA is the paper-based ELISA test (p-ELISA), with a portable p-
ELISA kit designed to detect C-reactive protein, an inflammatory biomarker for multiple disease 
and conditions, with a low limit of detection of 1μg/ml in blood.290 

The analysis of ELISA technologies above has been adapted from IDA Paper P-33049.291 
The paper presents in-depth analyses of multiple similar diagnostic technologies with direct 
relevance to precision medicine, and the study may act as an extension to this section.  
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C. Agents / Diseases 
The National Human Genome Research Institute and European Bioinformatics Institutes’ 

joint database of GWAS was used to identify genome-wide associations for various biological and 
chemical agents. As seen in the results depicted in Table 9, associations are lacking for most 
agents. However, due to the SARS-CoV-2 pandemic, there has been a spur of interest in precision 
medicine and association studies, and multiple studies have attempted to associate COVID-19 with 
various markers in order to predict clinical trajectories. These methods may be directly applicable 
to other agents of interest in the future. 

 
Table 9. Agent Associations Identified using the NHGRI-EBI Catalog of Genome-wide Association 

Studies 

Agent Number of Associations292 Number of studies293 
B. anthracis 8 1 
Botulinum Toxin 0 0 
C. burnetii 0 0 
Eastern Equine Encephalitis294 0 1 
F. tularensis 0 0 
Lassa Fever Virus 0 0 
Marburg Virus 0 0 
Monkeypox 0 0 
Ricin 0 0 
Rickettsia 0 0 
1918 Influenza 0 0 
SARS-CoV-2 823 131 
Staphylococcal enterotoxin 0 0 
T-2 toxin 0 0 
Variola 130 2 
Y. pestis 0 0 
B. mallei 0 0 
B. pseudomallei 0 1 
Organophosphates 0 0 
Chlorine 0 0 
Influenza (General) 103 5 
Enterobacteriaceae 5 1 
Tuberculosis 205 19 
Sepsis 47 6 

                                                           
292 The total number of associations includes associations with vaccine responses. 
293 “Study” refers to an article published in a scientific journal, which is different than the GWAS Catalog’s 

definition of “study.” As per the catalog’s definitions, one publication may have multiple studies.  
294 Viral encephalitis in general had one reported study, but no reported associations. 
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Below are highlighted precision medicine concepts relevant to a few representative biological 
or chemical agents. Highlighted associations may not have been present in the NHGRI-EBI 
database, and therefore may not be reflected in Table 9. This is not a comprehensive list of all the 
associations identified per agent, nor is it a comprehensive list of all agents/diseases, but the section 
highlights potential targets for enacting precision medicine concepts and modifying diagnostic 
technologies accordingly.  

The descriptions of the agents also serve as an introduction to the various methodologies 
available for implementing precision medicine concepts, while highlighting biomarkers, genetic 
variations, and other targets that can be detected with the use of diagnostic technologies. 

1. Anthrax 
Various association studies have been performed to identify factors related to anthrax 

susceptibility. Expression levels of anthrax toxin receptor 2 (ANTXR2) are strongly correlated 
with anthrax toxin susceptibility. Gene loci containing regulatory elements of ANTXR2 were 
identified, including regulatory SNPs (rs13140055 and rs80314910) which may cause variability 
in expression and hence account for interindividual toxin susceptibility variation.295 Human 
studies regarding the transcriptome also have shown associations with toxin susceptibility, with 
sensitivity to the PA moiety of the anthrax toxin being correlated to CMG2 RNA abundance in 
cells.296 

Animal models have also shown significant results in this domain. Multiple genes, including 
the Kif1C297 and Nalp1b298 gene, along with quantitative trait loci299 have all been shown to have 
associations with anthrax toxin susceptibility. While not tested in humans, these regions do have 
human analogues, laying out direction for future studies. 
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2. Coxiella burnetii 
The bacteria C. burnetii is an intracellular pathogen, and the causative agent of Q fever. About 

40 percent of people infected with C. burnetii become symptomatic and 1-3 percent of these 
develop chronic Q fever.300  

Various host factors affect the progression of Q fever, from genetic factors to congenital 
disorders. The expression of the chemokine CXCL9 was found to be increased in chronic Q fever 
patients, indicating its potential for to be a biomarker for diagnosis of chronic Q fever.301 A study 
by Jansen et al. used univariate logistic regression models to identify SNPs correlated with innate 
responses to C. burnetii such as cytokine production and basal reactive oxygen species 
production.302 Two SNPs were associated with the development of Q fever, and four were 
identified as having potential protective effects. This information may be used to predict 
progression of disease. A major morbidity in chronic Q fever is endocarditis, which can be more 
frequently associated with congenital bicuspid aortic valves (the most frequent congenital heart 
disorder), which itself has a large heritable component.303 Chronic adverse effects are usually seen 
in those with comorbidities who would not typically match an active-duty individual’s profile, but 
similar studies in the future may help classify military populations based on susceptibility. 

3. Ebola 
Ebola Virus Disease is one of the more well-characterized infectious diseases when it comes 

to precision medicine. Various association studies have been performed to characterize the disease, 
identifying the underlying pathology and predicting outcomes. Host factors appear to play a large 
role in disease progression.  

For instance, the genotypes and haplotypes of KIR (killer immunoglobulin-like receptor) 
have been associated with fatal outcomes. KIR genes exhibit a large amount of sequence diversity, 
with 70 and 33 alleles respectively having been described for KIR2DS1 and KIR2DS2 (members 
of the KIR family of genes).304 Two haplotypes for KIR are common: haplotype A, which has 
seven KIR genes including a unique activating KIR gene KIR2DS4, and haplotype B which has 
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high variability and includes additional activating KIR genes.305 The presence of activating 
KIR2DS1 and KIR2DS3 genes were linked to fatal outcomes in the Wauquier et al. study.306  

The Niemann-Pick C1 (NPC1) receptor, which is involved in glycoprotein-mediated entry of 
filoviruses into cells, is also believed to be a determinant of susceptibility to filovirus infection. 
An analysis of 10 naturally occurring missense SNPs in humans found that several SNPs may 
result in reduced susceptibility to filoviruses.307 

Multiple biomarkers have also been identified that may predict disease progression/severity. 
Studies performed using data collected during the 2001 outbreak of Ebola hemorrhagic fever 
caused by Sudan Virus (SUDV) have identified multiple biomarkers correlated to disease outcome, 
most notably CD40L levels, which are linked to nonfatal outcomes.308Another study identified a 
four-protein biomarker panel (Histone H1-5, moesin, kininogen 1, and ribosomal protein L35) 
which could predict disease outcomes more accurately than viral load.309  

Transcriptomic analyses have also been used to diagnose Ebola without identifying viral load, 
with 15 miRNAs discovered to be common among EBOV-infected humans and non-human 
primates (NHPs). Of these 15, eight were used to create a classifier that could identify infection 
status, even in pre-symptomatic cases.310 

4. Lassa Fever Virus 
It has been hypothesized that Lassa virus (LASV) may have been a driver of natural selection 

of humans in West African populations, and studies have found evidence for positive selection in 
LARGE gene and interleukin 21 genes, which are implicated in LASV infectivity and immunity.311 
The identified variants of these gene may confer resistance to LASV and may therefore help 
predict disease outcome. 
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5. Marburg Virus 
As described in 3.3.c, polymorphisms in the Niemann-Pick C1 gene are thought to influence 

filovirus entry into cells.312 These SNPs may therefore also affect susceptibility to Marburg virus. 

6. Ricin 
Ricin is a naturally occurring toxin derived from the beans of the castor oil plant Ricinus 

communis.313 The genes Fut9 and Slc35c1 have been identified as host factors required for ricin 
to exert its toxic effects in animal models.314 Mutations in these genes therefore affect host 
susceptibility, even though this relationship has not yet been well characterized. The gene 
SLC35C1 is a protein coding gene which encodes a GDP-fucose transporter. In one study, human 
patient cells with SLC35C1 deficiency were found to be resistant to ricin, due to the masking of 
ricin-binding sites following increased sialylation of Lewis X structures (a carbohydrate present 
on cell surfaces which plays a role in cell recognition).315 Human patients lacking SLC35C1 suffer 
from a diverse range of symptoms, including severe immunological deficiencies; however, this 
study offers insight into potential biomarkers for future studies to focus on. 

7. Organophosphates 
The paraoxonase genes PON1, PON2, PON3 have anti-oxidative properties, with PON1 

involved in the metabolism of organophosphate (OP) compounds.316 The 192R and 55L 
polymorphisms in the PON1 gene appear to be involved in susceptibility to OP poisoning; 
however, further research is required before it may be used as a biomarker.317 

The 57 known CYP genes in the P450 gene family are also involved in OP metabolism, and 
hepatic P450-mediated metabolism represents the primary method of xenobiotic elimination from 
the body.318 CYP2B6 is considered the primary enzyme for inactivation of many organophosphate 
pesticides, and studies have found multiple variants of the CYP2B6 gene, with individuals with 
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the  CYP2B6.6 potentially having a more robust ability to inactivate organophosphates.319,320 This 
information could be used to predict an individual’s clinical progression, if the genotype is known. 

8. Influenza 
HLA Class I alleles and haplotypes were demonstrated to be linked to susceptibility to the 

Influenza A (H1N1) 2009 virus.321 SNPs in multiple genes such as FCGR2A, C1QBP, CD55, and 
RPAIN are thought to affect host immune response.322 SNPs in other genes such as Il1B, TNF, 
LTA IL17A, IL8, and IL6 among others are associated with altered phenotypes in pro-
inflammatory molecules, which participate in Influenza A infections.323 With this information, a 
potential gene panel can be created which could predict an individual’s response to infection, 
highlighting patients who are at higher risk. 

9. Enterobacteriaceae 
Carbapenem-resistance Enterobacteriaceae (CRE) have been designated by the U.S. CDC as 

a “nightmare bacteria” in light of their potential impact on human health.324 CRE are usually 
resistant to all commercially available beta-lactams, as well as a number of other antibiotics, 
including fluoroquinolones. Reliable antibiotic activity against CRE is seen only with tigecycline, 
polymyxin B, and polymyxin E (colistin).  Use of these drugs is often problematic. Colistin, for 
example, has a narrow therapeutic window (2µg/mL steady state is required, but renal toxicity 
occurs at 2.5µg/mL).325 TDM might assist in guiding use of this toxic drug and is expanded on in 
3.1.c.2). 
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10. Tuberculosis 
Gene sequencing panels have shown to produce faster results for drug susceptibility testing 

(DST) compared to traditional DSTs.326 Mendelian susceptibility to mycobacterial disease 
(MSMD) is a rare condition characterized by predisposition to clinical disease by weakly virulent 
mycobacteria, but can also increase susceptibility to salmonellosis, candidiasis, and other bacteria, 
fungi, or viruses.327 There have been nine MSMD-causing genes identified, all of which involve 
IFN-gamma-dependent immunity, impairing the production or response of IFN-gamma. Screening 
for these genes can identify individuals at higher risk for TB, along with salmonella and other 
infections.  Genome-wise association studies have also identified loci for active tuberculosis 
susceptibility, which may be useful in gene panels.328,329  

11. COVID-19 
As noted in Table 9, by far the infectious disease with the highest number of genomics-related 

studies is COVID-19. COVID-19 is not thought of as a biological agent relevant for the battlefield, 
but this section is meant to represent how the large amount of data created due to COVID-19 has 
advanced precision medicine among various domains. This section reflects Chapter 3.1, providing 
an overview of studies analyzing various diagnostic targets in the context of COVID-19. Many of 
these concepts are applicable to other infectious diseases or even non-infectious diseases, such as 
in studies involving generalized inflammation, which may occur in various conditions. 

a. Genome 
Some of the first papers which described the effect of host genomics on susceptibility to 

COVID-19 or severity of COVID-19 symptoms largely used genome-wide association studies 
(GWAS) to determine potential loci of interest. Ellinghaus et al. published a GWAS in 2020 which 
found associations with COVID-19 severity at two loci: 3p21.31 and 9q34.2.330 The signal at 
3p21.31 coincided with the gene LZTFL1 and the signal at 9q34.2 coincided with the ABO blood 
type group. A later study found that LZTFL1 regulated a viral response pathway in pulmonary 
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epithelial cells and a gain-of-function risk A allele for that gene was the probable cause of the 
association with this locus.331 Other studies also found a link between blood type and COVID-19 
diagnosis.332 A later study by Butler-Laporte et al. found a deleterious variant in the SARS-COV2 
sensor toll-like receptor TLR7, found on the X chromosome, which was associated with a five-
fold increase in severe disease.333 

As noted previously, it is important to use data from different populations for GWAS to avoid 
bias or finding associations indicative of only one group. For example, the OAS1/2/3 cluster is a 
risk locus for severe COVID-19.334 This cluster originated within Neanderthals and therefore is 
prevalent mostly in those with European ancestry. Fine-mapping of those with African ancestry 
and European ancestry further showed that the differences in this locus and corresponding 
associations with COVID-19 severity can be correlated with ancestry.335 Other gene associations, 
such as with TLR7 and MARK1, have also been driven largely by study participants with European 
ancestry.336 A study by Chinese investigators also found that some of the associations previously 
observed in European populations were not the same as those observed in their Chinese 
participants.337 

Other genomics studies have tested more specific hypotheses or focused on narrower 
symptoms of COVID-19 than just overall symptom severity or susceptibility GWAS studies. 
Shelton et al. used online surveys and multi-ancestry GWAS to identify the UGT2A1 and 
UGT2A2 genes as correlated with COVID-19-related loss of smell or taste.338 Both of these genes 
are expressed in the olfactory epithelium and help metabolize odorants. Therefore, this could show 
a genetic link to the COVD-19-related loss of smell or taste. Butler-Laporte et al. used GWAS 
results to determine whether circulating Vitamin D levels influenced COVID-19 severity.339 They 
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found that there was no correlation between genetically increased Vitamin D levels and COVID-
19 susceptibility, hospitalization, or severe disease. 

For more information or studies, the CDC produces a COVID Genomics and Precision Health 
database (COVID-19 GPH) which maintains thousands of publications related to pathogen and 
human genomics and other areas of interest for precision medicine related to COVID-19.340 The 
database also produces a weekly update each Thursday on the new articles related to the topic.341   
In addition to this database, there have been some review articles and meta-analyses related to 
GWAS for COVID-19.   

Cen et al. produced a good review of recent papers on precision medicine concepts related to 
COVID-19, including genomics, proteomics, and metabolomics.342 The COVID-19 Host Genetics 
Initiative also published a meta-analysis of GWAS studies containing over 125,000 cases of 
COVID-19 and over 2.5 million controls across 60 studies.343 The team found 11 more genome-
wide significant loci than those previously identified, and found that all but one of the previously 
discovered loci increased their statistical significance as the additional data was included.  

b. Epigenome 
Several studies have been performed to determine the methylation signatures of COVID-19 

infection. Most of these studies have been larger epigenome-wide association studies (EWAS) 
which looked at the methylation signatures of blood samples taken from those with or without 
COVID-19 or those with mild versus severe COVID-19.344 Some of the studies found dozens of 
methylation sites related to COVID-19 disease or severity.345,346 Therefore, we will not discuss 
each site in detail from those studies.  

                                                           
340 Wei Yu et al., “COVID-19 GPH: Tracking the Contribution of Genomics and Precision Health to the COVID-19 

Pandemic Response,” BMC Infectious Diseases 22, no. 1 (2022), https://doi.org/10.1186/s12879-022-07219-3. 
341 “COVID-19 Weekly Update: Up to Date Genomics and Precision Health Information on COVID-19,” Centers 

for Disease Control and Prevention Website, accessed March 9, 2023, 
https://phgkb.cdc.gov/PHGKB/coVInfoClip.action?action=home#. 

342 Xiaoping Cen et al., “Towards Precision Medicine: Omics Approach for COVID-19,” Biosafety and Health, 
2023, https://doi.org/10.1016/j.bsheal.2023.01.002. 

343 “The COVID-19 Host Genetics Initiative, a Global Initiative to Elucidate the Role of Host Genetic Factors in 
Susceptibility and Severity of the SARS-CoV-2 Virus Pandemic,” European Journal of Human Genetics EJHG 
28, no. 6 (2020), https://doi.org/10.1038/s41431-020-0636-6. 

344 Swati Bhat, Praveen Rishi, and Vijayta D. Chadha, “Understanding the Epigenetic Mechanisms in SARS CoV-2 
Infection and Potential Therapeutic Approaches,” Virus Research 318 (2022), 
https://doi.org/10.1016/j.virusres.2022.198853. 

345 Manuel Castro de Moura et al., “Epigenome-Wide Association Study of COVID-19 Severity with Respiratory 
Failure,” eBioMedicine 66 (2021), https://doi.org/10.1016/j.ebiom.2021.103339. 

346 Iain R. Konigsberg et al., “Host Methylation Predicts SARS-CoV-2 Infection and Clinical Outcome,” 
Communications Medicine 1, no. 1 (2021), https://doi.org/10.1038/s43856-021-00042-y. 

 



63 

Many of the methylation sites were related to the immune system. Bowler et al. found those 
with COVID-19 had differences in four unique methylation sites – IFI27, EPSI1, IRF7, and 
cg07878065 – all of which (except cg07878065, which has an unknown function) are related to 
immune system function.347 Guillermo et al. found that mild and severe cases could be 
distinguished via methylation of genes associated with IL-6.348 Bradic et al. focused on those with 
COVID-19 who were on ventilators.349 They found there were differences in methylation of 
immune system genes between those who died from COVID-19 and those who survived, but most 
of those differences were only observed toward the end of life. These studies indicate that there 
could be a number of epigenetic signatures which could be indicative of COVID-19 infection or 
severity. More studies would be needed, however, to determine how generalizable the results are 
or whether they could be used for precision medicine.  Most of the studies used fewer than 500 
patients (including both test subjects and controls). 

c. Transcriptomics 
Transcriptomic studies have been useful in analyzing the pathogenesis of SARS-CoV-2, as 

well as measuring disease progression and diagnosing individuals. The creation of large 
transcriptomic databases with appropriate metadata including clinical symptoms can allow for the 
creation of tools to implement precision medicine concepts against disease. Most of the studies 
identified that perform transcriptomic analyses for COVID-19 focus on tracking disease 
progression, estimating outcomes, and identifying relevant biomarkers. 

A study that performed scRNA-seq to 284 samples from 196 COVID-19 patients and controls 
(a total of 1.46 million cells) created a database that could help identify immune subtype changes 
associated with clinical features, including severity and stage of disease.350  The study could also 
identify how upregulation of the S100A8/A9 proteins by megakaryocytes and monocytes in 
peripheral blood could contribute to cytokine storms observed in severe disease, acting as a 
predictor for worse disease outcomes. Transcriptomic analyses can also identify the mechanisms 
behind disease progression, linking gene expression signatures with pathophysiological events. 
For instance, a study performed by Bagh identified specific COVID-19 mechanisms dysregulated 
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between different disease severity groups.351 These mechanisms had transcriptomic signatures that 
overlapped with previously known organ dysfunction and sepsis signatures.  Previously known 
signatures such as the so-called “cellular-reprogramming” signature were found to act as strong 
discriminators between different groups of disease severity. In severe cases, it was found that the 
30-day mortality prediction was fairly accurate when using a known mortality transcriptomic 
signature of all-cause sepsis, potentially identifying how existing tools can be used for 
treatment/prognosis of patients. 

As is common with many studies analyzing transcriptomic and other omics databases, 
machine learning methods have found success in identifying predictive biomarkers.  Li et al. 
demonstrate the use of feature analysis methods (Boruta and the minimum redundancy maximum 
relevance methods) to identify markers to predict disease stages.352 Similar techniques could also 
be applied for diagnosis of disease, and it was discovered that the immune system transcriptomic 
profile of SARS-CoV-2 had distinct signatures based on tissue type (i.e., a difference between 
nasopharyngeal swabs and whole blood samples).353 The authors of this study proposed a 
biomarker panel that could distinguish SARS-CoV-2 infections based on transcriptomic profiles –
with successful discrimination of COVID-19 patients from non-COVID patients – and the 
presence of predictive biomarkers for severe disease and increased inflammatory response. 

d. Proteome 
COVID infection can affect “inflammation, immune cell migration and degranulation, 

complement system, coagulation cascades, and energy metabolism,” which can be characterized 
and analyzed with proteome biomarkers.354 Proteomics is “in principle an ideal technology for 
systems-wide characterization of disease response,” though it faces numerous challenges in real-
world applications.355 Samples used for proteomics can include serum, nasopharyngeal, and urine 
samples. The proteome can be analyzed using a variety of techniques and technologies, including 
MS methodologies (LC-MS, DIA-MS) and non-MS methodologies (proximity extension assay, 
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protein immunoassay),356 and LC-timsTOF (trapped ion mobility time-of-flight MS).357 
Furthermore, machine learning is often used to analyze proteomics data.358,359,360 However, it must 
be noted that many COVID-specific proteomics studies are limited by small sample sizes.361 

It has been observed that in COVID patients, “the levels of complement components and 
inflammation proteins tended to increase, whereas proteins of the coagulation cascade tended to 
decrease when compared to control groups.”362 One study identified 14 inflammatory proteins 
associated with COVID disease; among these, three proteins – IL-6, IL-10, and CXCL10 – were 
also observed to be a potential combination of biomarkers for predicting disease severity.363  
Costanzo et al. not only identified proteins that were associated with SARS-CoV-2 infection, but 
also proteins that may help distinguish disease outcomes. It was found that the proteins ORM1, 
ORM2, S100A9, CRP, AZGP1, CFI, SERPINA3/ACT, and LCP1/LPL were significantly up-
regulated in severe COVID-19 cases, and the proteins FETUB, CETP, and PI16 were down-
regulated in severe cases. In serum, common up-regulated proteins also include CXCL10, IL-6, 
and TNF.364 

Geyer et al. compared COVID patients against PCR-negative patients with COVID-like 
symptoms over an average of 31 days to determine a proteome profile associated with COVID. 
They found that the most-decreased proteins were complement factors (e.g., C2, CFB), 
inflammatory proteins, and innate immunity mediators, while the most-increased were coagulation 
modulators (e.g., FN1, APOH), immunoglobulins, and some proteins involved in lipid 
homeostasis. The first significant changes to the proteome began to appear at days 6-10 after 
hospital admission.365 Tushir et al. identified proteins unique to COVID disease in nasopharyngeal 
swabs that indicated increases in immune proteins – typically associated with neutrophil activation 
and degranulation proteins – as well as proteins related to oxidative stress and metabolic 
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pathways.366 These protein profiles can provide a better understanding of the pathology of how 
COVID disease affects different body systems and processes. 

Another study found that around 12-15 serum proteins could be used to distinguish between 
survivors and non-survivors at an early time point after hospital admission. Non-survivors tended 
to have higher levels of neutrophil pathway proteins, IgA, and SERPINA3, and significantly lower 
levels of type-3 cystatins HRG and FETUB compared to survivors. These proteins may be 
involved in innate immunity signaling and wound healing. Inter-α-trypsin inhibitors ITIH1 and 
ITIH2 were increased in survivors and tended to increase as the disease progressed; however, 
ITIH3 and ITIH4 were lower in survivors and tended to decrease over time.  

However, other studies have found that SERPINA3, ITIH3, and ITIH4 increase in COVID 
patients and HRG and FN1 decrease in COVID patients compared to healthy controls, the latter 
of which slightly contrasts Völlmy et al.’s findings. This demonstrates that while protein panels 
may have decent predictability for outcomes, they are not universally true and tend to be better 
predictors earlier in the course of disease progression.367 

Park et al. examined urine samples and found that IL-6 expression, which is related to 
inflammation, was within normal range for mild patients but was higher in severe patients and 
“drastically fluctuated during the infection.”368 They found that while protein profiles of COVID 
patients may change drastically over time, most protein levels return to normal by the time of 
recovery, as recovered patients’ protein profiles matched well with those of healthy controls.  

Park et al. also identified 44 proteins unique to mild COVID and 95 unique to severe COVID; 
compared to the mild cases, severe patients had increased levels of proteins that are highly 
associated with complement activation, immune regulation, and oxidative stress response, while 
the down-regulated proteins were associated with lipid metabolism and homeostasis, platelet 
degranulation, glucose and protein metabolism.369 This suggests that severe cases have more 
systemic inflammation and cell responses, as well as hampered immune response and normal cell 
function. Additionally, other studies have found that the neutrophil, complement, and coagulant 
pathways could be significant differentials between mild and severe COVID cases.370 
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e. Microbiome 
Growing evidence indicates that the gut microbiome contributes to the host immune response 

for infectious diseases, and multiple studies have looked into the role of the gut microbiome in 
COVID-19 infections. The gut microbiome is now thought to play an important role in many 
physiological functions including immune system modulation, and metagenomic studies on 
microbiomes in COVID-19 patients have added evidence to this theory.  

A study that analyzed 11,584 metagenome-assembled genomes found that COVID-19 
infection was associated with a reduction of strain richness of many species in the gut, and the gut 
microbiome profile could also be used to distinguish infections from healthy controls, as well as 
predict disease progression.371 This study also identified a specific cohort of gut microbiome 
species which could diagnose COVID-19 across separate human population cohorts independent 
of host genetics and environmental factors, suggesting a role of some microbes in the pathogenesis 
of SARS-CoV-2.  

Gut microbiome changes have also been linked to specific host responses, such as the 
microbe C. comes being correlated with CD3+, CD4+, and CD8+ lymphocyte counts.372 Sun et al. 
found that an abundance of B. contaminans was correlated with higher inflammation markers and 
a lower immune cell count, and identified multiple species associated with severe disease.373 
Moreover, microbiome changes were not limited to the gut microbiome; analyses of the oral 
microbiome have also shown how various microorganisms, such as abundance of members of the 
genera Provotella and Veillonella, are associated with prolonged COVID symptoms.374 

Outside of acting as a diagnostic/prognostic tool, the microbiome can act as a target or guide 
for treatment to minimize the impact of disease. It has been suggested that intestinal microbiome 
dysbiosis, which can result due to SARS-CoV-2, may play a large factor in severe disease and 
mortality in at-risk groups such as elderly patients, and efforts to control microbiome dysbiosis 
may help better clinical outcomes.375 A randomized trial performed in 293 individuals showed a 
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significant difference in viral load, lung infiltrates, and duration of COVID-19 symptoms in 
individuals who were supplemented with a probiotic formula compared to the control.376 

Traditional workflows for analyzing the microbiome may focus on bacterial DNA to identify 
micro-organisms, but organisms including fungi and viruses may also act as sources of information 
for omics studies. Being subsets of the microbiome, the mycobiome and virome are terms which 
refer to the sum of all fungi and viruses existing in an environment, respectively. These non-
bacterial organisms can also interact with human physiology, and may play a role in the 
progression of disease.   

COVID-19 also alters the intestinal fungal microbiome along with the bacterial microbiome, 
and various species have been identified that may act as markers of disease progression. For 
instance, Candida spp. were shown to increase in abundance in patients with acute respiratory 
distress syndrome, with an overall decrease in fungal diversity.377 The gut virome is also affected 
by infections. The presence of SARS-CoV-2 RNA can be identified in fecal shotgun sequencing, 
but the relative abundances of other viral species may also change. One example is the pepper 
chlorotic spot virus, an RNA virus that was inversely correlated with COVID-19 severity, pro-
inflammatory proteins, white cell counts, and neutrophil counts.378 

f. Metabolome 
The metabolic pathways include numerous signaling molecules, many of which can impact 

and regulate parts of the immune response. Various studies have shown that changes to the 
metabolome may be useful as biomarkers and predictors of COVID-19 disease severity.379 
Compared to the genome or even the proteome, the metabolome is “a more sensitive indicator” of 
the current status of cells or organs, as metabolites serve a very specific purpose and are short-
lived molecules. This can aid in understanding or characterizing otherwise poorly understood 
processes.380 Techniques used to analyze the metabolome and identify potential biomarkers can 
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include GC-MS,381,382 NMR, and MALDI-TOF.383 Some emerging technologies, such as ambient 
ionization MS, may allow for clinical specimens to be analyzed as far-forward as the point of care 
with little to no sample preparation.384 

One study identified 75 metabolites associated with SARS-CoV-2 infection; some 
metabolites were associated with respiratory infections (e.g., elevated levels of butyric acid, 2-
hydroxybutyric acid, L-glutamic acid, L-phenylalanine, L-serine, L-lactic acid, and cholesterol), 
while some were only found in COVID patients (e.g., elevated levels of D-fructose and succinic 
acid, along with reduced levels of citric acid and 2-palmitoyl-glycerol). These unique 
distinguishing metabolites may aid in COVID diagnosis and understanding its pathogenesis. 

It was also determined that comorbidities did not significantly impact the metabolome profile 
as compared to COVID infection. For example, D-fructose enhances dendritic cell inflammation, 
which is often observed in COVID patients. Shi et al. also identified a few metabolites that could 
distinguish between mild and severe COVID, though 2-hydroxybutyric acid was the only “good” 
predictor. Most metabolites returned to normal by the time of hospital discharge.385 

Lv et al. identified nine distinguishing metabolites in COVID patients: sucrose, ribonic acid, 
and 2-palmitoyl-glycerol were significantly increased, while 2,4-di-tert-butylphenol, arachidic 
acid, behenic acid, pseudouridine, 7H-purine and D-allose were significantly decreased in COVID 
patients. The authors found that sucrose, lactic acid, ribonic acid, and 2-palmitoyl-glycerol386 were 
good predictors of disease, with an area-under-the-curve of 0.7–0.85.  

Interestingly, some of these metabolites are associated with GI bacteria and fungi, while some 
metabolites that were enriched are mostly or entirely derived from food; this provides insight into 
how COVID disrupts the body’s metabolism and can impact nutrient absorption. Furthermore, 
other metabolites become enriched when there is a reduction in certain gut microbes, indicating a 
disease-induced disruption of the microbiome.387 

Hasan et al. examined volatile organic compounds (VOC) in exhaled air. This method is non-
invasive, allows for easy sample collection, and is especially useful for respiratory diseases. They 
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found that detection of SARS-CoV-2 using this method ranged from 75 to 100 percent sensitivity 
and 66 to 96 percent specificity. Four VOCs were identified as unique to severe COVID: 
methylpent-2-enal, 2,4-octadiene, 1-chloroheptane, and nonanal, all significantly elevated. These 
metabolites may be distinguishing factors between milder cases. It has been noted that the 
arginine/kynurenine ratio is very good at predicting COVID, as the kynurenine pathway can 
impact IL-6 levels associated with COVID.388 Costanzo et al. noted that tryptophan metabolism is 
impacted and associated with severe disease when tryptophan is converted to NAD (nicotinamide 
adenine dinucleotide) via the kynurenine pathway.389 

Caterino et al. examined amino acid metabolism and increased levels of lactic acid in COVID 
patients. They identified increased levels of lactic acid, glutamate, aspartate, phenylalanine, β-
alanine, ornithine, arachidonic acid, choline, and xanthine in both moderate and severe cases 
compared to healthy controls. SARS-CoV-2 infection seems to suppress adenosine triphosphate 
production and cause a shift from aerobic respiration to lactic fermentation; high levels of lactic 
acid have been associated with cases of sepsis and circulatory shock, both of which can occur in 
severe COVID disease. Furthermore, they found that TNF-α, IL-17 A, and IL-26 were the primary 
metabolites most associated with this shift.390 

These studies and others indicate a growing interest in the metabolite profiles of COVID, but 
there is still limited research that provides clear and well-substantiated COVID metabolic 
profiles.391 As Costanzo et al. state, “[a]lthough a great deal of effort was put into COVID-19 
biomarker research and a number of potential biomarkers were identified, no large-scale trials were 
performed to reliably determine their usefulness in clinical setting.”392 If metabolite profiling is a 
desired clinical tool for diagnosing and characterizing COVID, more research and technology 
development must be performed. 

g. Clinical History/Electronic Health Records 
Traditionally, linking a patient’s electronic health records across years and multiple 

institutions has been challenging for many health systems. Nationalized healthcare systems like 
the one in the United Kingdom have allowed researchers to conduct analyses across many different 
levels of care (e.g., primary care, hospitals, testing centers, national death records), linking data 
from diverse sources to track individuals through care systems. In response to the COVID-19 
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pandemic, researchers have investigated disease trajectories (e.g., how patients interact with and 
move through the healthcare system) for patients in England.393  

Based on this linked data, they categorized patients into COVID-19 phenotypes, including 
positive COVID-19 tests, COVID-19 diagnoses from primary care physicians, hospital admissions 
with COVID-19 diagnoses, respiratory support, and death. Any given patient could be categorized 
into multiple phenotypes. One finding showed mortality was highest among patients who required 
ventilation outside of intensive care units during the first wave of COVID (February 20-May 29, 
2020).394 They also associated mortality rates with vaccination status. This type of knowledge 
could enable earlier intervention for patients with risk factors or trigger examination of healthcare 
systems to improve outcomes. 

Another benefit of examining longitudinal electronic health records is the ability to identify 
longer-term consequences of COVID-19 infection. Researchers used electronic health records 
from the U.S. Department of Veterans Affairs to identify and describe risk factors for developing 
post-acute sequelae of COVID-19 (i.e., long COVID).395 One of their major findings was that risk 
for development of post-acute sequelae increased with the severity of acute COVID-19 infection 
(i.e., whether patients were not hospitalized, hospitalized, or admitted to intensive care units). They 
also characterized use of healthcare resources and medications by COVID-19 patients 30 days 
after their illness, finding that patients who recovered from acute COVID-19 were more likely to 
use these resources than non-COVID patients. These types of retrospective analyses could inform 
health planning and resource management. 

The military population may be ideally suited to research on clinical history using electronic 
health records, as data collected by the military health system can be coordinated. For effective 
tracking of electronic health records among service members, interoperability between military 
and civilian health records will need to be considered.  

h. Biobanking 
Samples from patients who succumbed to or recovered from COVID-19 have been collected 

and stored in a variety of biobanks for future analysis. Biobanking efforts typically lead to 
advances in -omics associations, as they provide well-characterized samples from which 

                                                           
393 Johan H. Thygesen et al., “COVID-19 Trajectories Among 57 Million Adults in England: A Cohort Study Using 

Electronic Health Records,” The Lancet Digital Health 4, no. 7 (2022), https://doi.org/10.1016/S2589-
7500(22)00091-7. 

394 Johan H. Thygesen et al., “COVID-19 Trajectories Among 57 Million Adults in England: A Cohort Study Using 
Electronic Health Records.” 

395 Ziyad Al-Aly, Yan Xie, and Benjamin Bowe, “High-Dimensional Characterization of Post-Acute Sequelae of 
COVID-19,” Nature 594, no. 7862 (2021), https://doi.org/10.1038/s41586-021-03553-9. 
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researchers can conduct their analyses.396 These COVID-19 biobanks have been used to study a 
variety of topics, including genome-wide association studies to find risk variants associated with 
lethal SARS-CoV-2 infection397 and long COVID.398  
 

i. Radiomics 
Considerable effort was dedicated to the development of imaging-based diagnostics for 

COVID-19, particularly when the availability of PCR and antigen tests was relatively limited (see 
Table 10). Computed tomography (CT) and X-ray equipment is available in most medical care 
facilities and may be beneficial for rapidly establishing diagnostic methods immediately following 
an outbreak for which biochemical testing methods are not available. Of these imaging methods, 
CT imaging is higher resolution, though X-ray imaging tends to be more widely available, 
affordable, and faster, and exposes patients to less radiation.399 The majority of studies seemed to 
focus on the diagnosis of COVID-19 compared to other respiratory illness (e.g., influenza, 
pneumonia), with fewer studies investigating outcomes.  

One notable exception was Wu et al., who developed an algorithm to use radiomic markers 
to predict whether a patient would be more likely to experience poor prognostic outcomes, 
including death, need for mechanical ventilation, or admission to an intensive care unit.400 This 
type of analysis could lead to earlier intervention and improve patient outcomes and provides 
additional information that would not be available if only molecular-based diagnostic tools were 
used. Overall, radiomics seem unlikely to replace molecular assays as a diagnostic screening tool, 
but may be an important decision support tool for individuals who have already been hospitalized. 

 
Table 10. Imaging-Based Diagnostics for COVID-19 

Study Imaging type Groups Prediction Accuracya 

(Wu et al. 2020) CT Early stage (< 6 days 
after symptoms, n = 
212) or later stage (>6 

Poor prognostic 
outcomes (death, 
mechanical 

86-98% 

                                                           
396 Stephanie M. LaVergne et al., “A Longitudinal SARS-CoV-2 Biorepository for COVID-19 Survivors with and 

without Post-Acute Sequelae,” BMC Infectious Diseases 21, no. 1 (2021), https://doi.org/10.1186/s12879-021-
06359-2. 

397 Toni M. Delorey et al., “COVID-19 Tissue Atlases Reveal SARS-CoV-2 Pathology and Cellular Targets,” 
Nature 595, no. 7865 (2021), https://doi.org/10.1038/s41586-021-03570-8. 

398 Stephanie M. LaVergne et al., “A Longitudinal SARS-CoV-2 Biorepository for COVID-19 Survivors with and 
without Post-Acute Sequelae.” 

399 Jakub Kufel et al., “Application of Artificial Intelligence in Diagnosing COVID-19 Disease Symptoms on Chest 
X-Rays: A Systematic Review,” International Journal of Medical Sciences 19, no. 12 (2022), 
https://doi.org/10.7150/ijms.76515. 

400 Qingxia Wu et al., “Radiomics Analysis of Computed Tomography Helps Predict Poor Prognostic Outcome in 
COVID-19,” Theranostics 10, no. 16 (2020), https://doi.org/10.7150/thno.46428. 
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days after symptoms, 
n = 105) 

ventilation, ICU 
admission) 

(Chen et al. 
2021) 
 

CT COVID patients (n = 
108); other viral 
pneumonias (n = 77) 

Diagnosing 
patients with 
COVID-19 

0.915 (AUC) 

(Zhang et al. 
2021) 

CT COVID patients (n = 
98); non-COVID 
pneumonia (n = 157); 
influenza/mycoplasma 
pneumonia patients 
(n = 38) 

Diagnosing 
patients with 
COVID-19 

92-96% 

(Santone et al. 
2021) 

CT Healthy patients; 
COVID patients; non-
COVID pneumonia 

Diagnosing 
patients with 
COVID-19 

81% 

(Wang et al. 
2023) 

X-ray COVID patients (n = 
1,245); healthy 
patients (n = 1,245); 
viral pneumonia (n = 
1,225); bacterial 
pneumonia (n = 
1,245) 

Diagnosing 
patients with 
COVID-19 

95% 

(Chen and 
Rezaei 2021) 

X-ray COVID patients; 
healthy patientsb 

Diagnosing 
patients with 
COVID-19 

86% 

(Xia et al. 2021) X-ray COVID patients (n = 
512); influenza 
patients (n = 106); 

Diagnosing 
patients with 
COVID-19 

0.971  (AUC) 

(Sharifrazi et al. 
2021) 

X-ray COVID patients (n = 
77); healthy patients 
(n = 256) 

Diagnosing 
patients with 
COVID-19 

99% 

(Tabik et al. 
2020) 

X-ray COVID patients with 
mild (n = 100), 
moderate (n = 171) or 
severe (n = 79) 
symptoms; healthy 
patients (n = 426) 

Diagnosing 
patients with 
severe, 
moderate, or mild 
COVID-19 

98% (severe); 
87% (moderate); 
62% (mild) 

(Joshi et al. 
2021) 

X-ray COVID (n = 465); 
healthy (n = 1,077); 
bacterial pneumonia 
(n = 1,000); viral 
pneumonia (n = 
1,000); other 
anomalies (n = 230) 

Diagnosing 
patients with 
COVID-19 

97% 

(Mahmud, 
Rahman and 
Fattah 2020) 

X-ray COVID (n = 305); 
healthy (n = 305); 
bacterial pneumonia 
(n = 305); viral 
pneumonia (n = 305) 

Diagnosing 
patients with 
COVID-19 

90% 
 

AUC = Area under the curve 
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a The accuracy reported in this table represents the value the paper reported for multimodal accuracy if the group 
was attempting to distinguish between multiple diseases (e.g., healthy, COVID-19, bacterial pneumonia, as 
opposed to bimodal (e.g., healthy vs COVID-19). Bimodal accuracies between COVID-19 and healthy patients 
always tended to be higher than multimodal accuracies. 

b Source did not report the number of patients in each group. 
 

Overall, radiomics may be a useful tool to supplement molecular diagnostics, particularly when 
molecular diagnostics may not be available. One potential hurdle with use of radiomics for 
biological agents, as opposed to diseases like COVID-19, is that a significant amount of imaging 
data is required to train models, which may not be practical with agents which are not commonly 
encountered.   
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4. Market Analysis 

Investment in precision medicine and precision diagnostics has increased dramatically in 
recent years. One report valued the precision diagnostics market at roughly $78 billion in 2022; 
other estimates predict that will increase to $138-168 billion by 2028.401,402 Due to the broad scope 
of precision medicine, companies involved with precision medicine typically span multiple 
domains. A large portion of precision medicine technologies are based on genomic technologies; 
therefore, many companies dealing with genomics technologies are likely positioned to be leaders 
of the field of precision medicine.  

Table  provides an overview of the top genome sequencing companies. Similarly, Table  lists 
microbiome diagnostic companies with an analysis of their products, whether on the market or 
under development. A commercial technology of note is Oxford Nanopore’s MinION sequencer, 
which is capable of portable genome sequencing, and has been tested in NATO field exercises for 
biological detection.403,404 

An important point to consider when looking at the precision medicine market is that most 
companies do not specifically focus on infectious disease precision medicine. Most applications 
of precision medicine are either in other domains such as oncology, or are general-use such as 
sequencing technologies. To target infectious diseases / chemical and biological agents, currently 
existing technologies must be adapted for these diseases. 

Equally relevant in the field of precision medicine are organizations which store, distribute, 
and analyze data. An example is the company Tempus, which has established partnerships with 
cancer centers across the United States to provide a proprietary platform which uses both 
unstructured data (such as clinical notes and pathology images) and structured data (sequencing 

                                                           
401 “Precision Diagnostics Market Size, Share, and COVID-19 Impact Analysis,” Fortune Business Insights 

Website, accessed November 10, 2022, https://www.fortunebusinessinsights.com/industry-reports/precision-
diagnostics-market-100357. 

402 “Precision Diagnostics Market Growth Analysis: Report 2022-2028,” The Insight Partners Website, accessed 
November 10, 2022, https://www.theinsightpartners.com/reports/precision-diagnostics-market. 

403 Fuentes-Chust et al., “The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing 
New Diagnostic Devices.” 

404 Mathias C. Walter et al., “MinION as Part of a Biomedical Rapidly Deployable Laboratory,” Journal of 
Biotechnology 250 (2017), https://pubmed.ncbi.nlm.nih.gov/27939320/. 
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data) to produce actionable personalized clinical insights.405 Tempus was recently valued at $2 
billion.406 Geisinger Health System has partnered with Regeneron and, with an initial $100 million 
investment, aims to sequence and analyze 250,000 patient samples in order to act as a biobank to 
advance precision medicine.407 

 
Table 11. Top Genome Sequencing Companies 

Company Name Revenue in 2017 (Billion USD) Location 

Illumina 2.8 California, U.S. 
Thermo Fisher Scientific 0.42 Massachusetts, U.S.  
BGI 0.33 Shenzhen, China 
Agilent Technologies 0.23 California, U.S.  
Qiagen 0.12 Hilden, Germany 
Macrogen 0.095 Seoul, South Korea 
Pacific Biosciences 0.094 California, U.S. 
10x Genomics 0.71  California, U.S.  
Oxford Nanopore Technologies 0.006 Oxford, U.K. 

Source: Derived from Alex Philippidis, “Top 10 Sequencing Companies,” Genetic Engineering and Biotechnology 
News, April 9, 2018, https://www.genengnews.com/topics/omics/top-10-sequencing-companies-2/. 
 

Table 10. Biotechnology Companies with Microbiome Diagnostics Products Available or in 
Development 

Company 
Direct to 

consumer Research 
Therap
eutics IVD Sample Targets Regulator Status 

Μbiome X XXX X X Stool, 
mouth, 
nose, 
genitals 
and 
skin 
swabs 

IBS, IBD, UC, 
Crohn's 
disease, HPV, 
STIs 

FDA Commercially 
available 

CosmosID 
 

XXX 
 

X Various IVD, HAIs, 
pharmaceutical 
discovery, 
public health, 
food 
production, 

Not yet 
regulated 

NGS and 
bioinformatics 
services 
available 

                                                           
405 “Tempus | Data-Driven Precision Medicine,” Tempus Website, accessed November 18, 2022, 

https://www.tempus.com/. 
406 Jacob Aptekar et al., “Precision Medicine: Opening the Aperture,” McKinsey & Company, February 6, 2019, 

https://www.mckinsey.com/industries/life-sciences/our-insights/precision-medicine-opening-the-aperture. 
407 “Geisingers MyCode Genomic Study Hits 100K Recruits Goal Now Set at 250K,” Geisinger Website, accessed 

November 18, 2022, https://www.geisinger.org/about-geisinger/news-and-media/news-
releases/2016/09/01/14/13/geisingers-mycode-genomic-study-hits-100k-recruits-goal-now-set-at-250k. 

https://www.genengnews.com/topics/omics/top-10-sequencing-companies-2/
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environmental 
microbial 
detection 

Diversigen 
 

XXX 
  

Various Crohn's 
disease, IBS, 
C. difficile 
infection 

Not yet 
regulated 

Research Use 
Only (RUO) 

Enterome 
 

XXX X X Stool IBD, Crohn's 
disease 

FDA Companion 
diagnostics in 
development 

Epibiome 
 

XXX X 
 

Various Bacterial 
profiling 

FDA RUO 

Genetic 
Analysis AS 

X XXX 
 

X Stool IBS CE Approved 

HolistX X 
   

Stool Metabolism, 
diabetes, 
wound care 

Not yet 
regulated 

Commercially 
available 

Metabiomics 
 

XXX 
 

X Stool Colon polyps, 
colorectal 
cancer 

FDA Preliminary 
clinical trial 
finalized 

MetaboGen 
 

XXX x 
 

Stool, 
blood 

Obesity, 
diabetes, and 
atherosclerosis 

Not yet 
regulated 

Patent 
granted for 
diabetes 
prediction test 

Nanopore 
 

XXX 
  

DNA/R
NA 

Non-specific Not yet 
regulated 

RUO 

Thryve X 
   

Stool Metabolism Not yet 
regulated 

Commercially 
available 

Viome X 
   

Stool Metabolism Not yet 
regulated 

Commercially 
available 

Source: Derived from Diana R. Hernandez, “Gut Check: In Vitro Diagnostics for Gut Microbiome Analysis,” Clinical 
Microbiology Newsletter 41, no. 7 (2019), https://www.sciencedirect.com/science/article/pii/S0196439919300261. 
 

The precision medicine domain also includes pharmaceutical companies, who arguably have 
the largest stake in this space, and have been leading precision medicine treatments. In 2017 and 
2018, the approval of Yescarta (Gilead Sciencs, Inc.) and Kymriah (Novartis) constituted landmark 
advances in the application of precision medicine.408,409 As “personalized” treatments for leukemia 
and lymphoma, respectively, the therapies involve chimeric antigen receptor T-cells (CAR-T), a 

                                                           
408 “YESCARTA (Axicabtagene Ciloleucel),” U.S. Food and Drug Administration Website, accessed 

November 18, 2022, https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-
axicabtagene-ciloleucel.  

409 “KYMRIAH (Tisagenlecleucel),” U.S. Food and Drug Administration Website, accessed November 18, 2022, 
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel.  
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type of immunotherapy in which the patient’s T-cells are genetically modified in order to target 
cancer cells. 

A number of companies have also established niches in various omics domains. Metabolon, 
for instance, has developed a method that tests for inherited metabolic diseases using a small 
plasma sample and an untargeted metabolomics platform.410,411 Biocrates’ platform includes the 
p180 kit, a high-throughput metabolomic analysis component capable of detecting various analytes 
in multiple types of samples.412 Biocrates’ MxP Quant 500 kit targets detection of 630 metabolites 
using LC-MS/MS (for small molecules) and FIA-MS/MS (for lipids).413 Similarly, in the 
proteomics domain, Somalogic has developed the SomaScan Assay, which implements plasma 
proteomics technology in order to stratify cardiovascular disease patients for risk of secondary 
events such as myocardial infarction or congestive heart failure.414  

Companion diagnostics are diagnostic devices (typically based on biomarkers) that can be 
used to match a patient to an appropriate therapy.415 There are currently over 150 companion 
diagnostic devices approved by the FDA. The vast majority of these devices focus on cancer, with 
only three devices (as of this writing) focused on other applications (thalassemia, aggressive 
systemic mastocytosis, and obesity).416  

 

 

                                                           
410 Ning Liu et al., “Comparison of Untargeted Metabolomic Profiling Vs Traditional Metabolic Screening to 

Identify Inborn Errors of Metabolism,” JAMA Network Open 4, no. 7 (2021), 
https://doi.org/10.1001/jamanetworkopen.2021.14155. 

411 “A Metabolomic Approach to Better Clinical Diagnostics,” Metabolon Website, accessed November 18, 2022, 
https://www.metabolon.com/blog/a-metabolomic-approach-to-better-clinical-diagnostics/. 

412 “AbsoluteIDQ P180 Kit - the Standard in Targeted Metabolomics,” Biocrates Website, accessed November 18, 
2022, https://biocrates.com/absoluteidq-p180-kit/. 

413 Xie et al., “A Metabolite Array Technology for Precision Medicine.”  
414 “Proteomics and Heart Failure: Improving Risk Stratification and Treatment,” SomaLogic Website, accessed 

November 18, 2022, https://somalogic.com/blog/proteomics-and-heart-failure-improving-risk-stratification-and-
treatment. 

415 Peter Keeling, Jordan Clark, and Stephanie Finucane, “Challenges in the Clinical Implementation of Precision 
Medicine Companion Diagnostics,” Expert Review of Molecular Diagnostics 20, no. 6 (2020), 
https://doi.org/10.1080/14737159.2020.1757436. 

416 “List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools),” U.S. Food and 
Drug Administration Website, accessed November 10, 2022, https://www.fda.gov/medical-devices/in-vitro-
diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools. 
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5. Future Paths 

Precision medicine is a rapidly advancing field, but much work is still needed before 
precision medicine-based concepts can be widely applied to clinical diagnosis and treatment. This 
might be particularly true as it applies to chemical and biological agents, where advances lag far 
behind those in the field of oncology, for example. The advances are required in two major 
domains: first, there is a need for the generation of a large amount of data in order to identify 
actionable associations and stratify patients, and second, there is a need to enhance and modify 
diagnostic technologies in order to detect targets of precision medicine relevance.  

A. Diverse populations 
In order to establish associations that can be generalized and not necessarily focused in 

isolated populations, association studies must be performed in large, diverse populations. Until 
now, the majority of genomic association studies have been focused on people of European 
ancestry, which may cause unfavorable outcomes when using the information obtained on larger 
populations.417 For example, a G6PD gene variant that is common (11 percent) in African 
populations but absent in the European populations is associated with decreased HbA1c levels, 
irrespective of blood glucose levels.418 This could lead to underdiagnosis of type 2 diabetes in 
African ancestry populations if diagnosis is based on HbA1c levels alone. In order to adjust for 
variations, a large amount of data will be required, spanning multiple populations and diseases. 
This data includes omics and clinical data and can be generated through the various technologies 
described in this study. 

B. Deep phenotypic characterization 
Retrospectively and prospectively linking electronic health records (EHRs) with genetic and 

other omics data can lead to enhanced clinical characterization of conditions and enable discovery 
of new genetic associations. This can only be possible with the establishment of large-scale 
biobanks, such as the All of Us initiative, The Million Veterans Program and the UK Biobank, all 
of which contain information of several hundred thousand individuals, and have attempted linkage 

                                                           
417 Alice B. Popejoy and Stephanie M. Fullerton, “Genomics Is Failing on Diversity,” Nature 538, no. 7624 (2016), 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089703. 
418 Eleanor Wheeler et al., “Impact of Common Genetic Determinants of Hemoglobin A1c on Type 2 Diabetes Risk 

and Diagnosis in Ancestrally Diverse Populations: A Transethnic Genome-Wide Meta-Analysis,” PLOS 
Medicine 14, no. 9 (2017), https://doi.org/10.1371/journal.pmed.1002383. 
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to EHRs.419 Theoretically, such databases would increase the ease of translation of precision 
medicine to the clinical world.  

An example of the success of this concept is seen in the ANGPTL3 gene. Loss-of-function 
variants identified in the gene were associated with lower levels of serum triglycerides, HDL 
cholesterol, and LDL cholesterol, and subsequent studies in animal models found that targeted 
genetic and therapeutic antagonism of the gene could decrease odds of atherosclerotic disease.420 
The convergence of high-throughput technologies and electronic health records, along with proper 
policies to ensure responsible data handling, can enable unprecedented opportunities to derive new 
phenotypes form real-world clinical data. These phenotypes can both improve the diagnoses of 
disease variants and validate new treatments.421 

C. Infectious diseases 
As described previously, applying precision medicine concepts to infectious diseases is still 

a lagging field when compared to other disease domains such as cancers. However, potential exists 
for precision medicine to make a large impact on the outcomes of infectious diseases, by allowing 
for targeted treatment and targeted surveillance of patients, identifying those at higher risk, and 
more accurately predicting clinical outcomes.  

The ultimate goal of precision medicine is to predict and prevent unfavorable clinical 
outcomes, which can be achieved by multiple methods. These same principles also translate to the 
application of precision medicine to chemical agents. The application of precision medicine in this 
domain will require well-phenotype human cohorts, with reductions in cost of processing each 
sample and an increased availability of associated technologies. 

The immune system is one of the most complex biological systems in animals, and high-
throughput profiling technologies, such as omics platforms, have enabled comprehensive 
characterization of components of this system at various scales.422 COVID-19 is one of the best 
current examples for the application of precision medicine for infectious diseases. Included among 
the large amount of data collected during the pandemic are multiple genetic determinants of 
susceptibility to infection, including severe infection.423  

                                                           
419 Benjamin S. Glicksberg, Kipp W. Johnson, and Joel T. Dudley, “The Next Generation of Precision Medicine: 

Observational Studies, Electronic Health Records, Biobanks and Continuous Monitoring,” Human Molecular 
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420 Frederick E. Dewey et al., “Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease,” 
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421 Johnson et al., “Precision Medicine, AI, and the Future of Personalized Health Care.” 
422 Ward et al., “Harnessing the Potential of Multiomics Studies for Precision Medicine in Infectious Disease.” 
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These include associations with single-nucleotide polymorphisms (SNPs) (i.e., one base-pair 
changes,424 variants in multiple alleles of a gene,425 and epigenetic changes).426 Various host 
biomarkers have been identified, which can identify individuals with a potentially poor prognosis 
and allow for earlier interventions.427 While not well characterized for SARS-CoV-2 treatments, 
precision medicine can affect therapeutic choices.  

For example, a study of the cytochrome P450 enzyme, CYP2D6, in a military population 
identified considerable variation in enzyme activity, which predicted  variation in the metabolism 
of primaquine.428 As primaquine is a standard treatment for P. vivax malaria, this inter-individual 
variability can have a significant effect on disease outcome. Knowing a warfighter’s genotype 
could in the future assist in tailored prescription of primaquine, and better prepare combatant 
command leaders and medical providers for potential episodes of treatment failure due to host 
pharmacogenomic characteristics.429  

D. Observations and Recommendations 
The purpose of this analysis is not to provide specific recommendations on the use of, or 

investment in, individual diagnostic technologies, but to provide situational awareness on the 
current state of precision medicine. By providing insight into methods for the implementation of 
precision medicine concepts (with particular relevance to chemical and biological diagnostic 
technologies), we envision that decision-makers may be better prepared  to understand the broad 
panoply of options available to them. Precision medicine is a rapidly advancing field, and this 
analysis provides a base of knowledge which can be updated as technologies advance in the future.  

That being said, our analysis produced several broader observations regarding translating 
advances in precision medicine into military medical diagnosis. First, we highlight a few examples 
of how precision medicine could be implemented within the military medical system. Second, we 
examine the differences between civilian and military populations that make them unique for 
precision medicine diagnostics. The bulk of the research in the precision medicine field is 
                                                           
424 Ellinghaus et al., “Genomewide Association Study of Severe Covid-19 with Respiratory Failure.” 
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conducted by the civilian sector and tends to focus on pathologies that may be less relevant to 
active-duty military populations. In some cases, military populations may be particularly well-
suited to a precision medicine approach or require different considerations than the broader U.S. 
population. Finally, there are some challenges and drawbacks with the implementation of precision 
medicine in diagnostics that we highlighted for consideration.  

1. Application of precision medicine and military medical diagnosis 
An intersection between precision medicine and military medical diagnosis is not without 

precedent, with current efforts to improve diagnosis in surgical medicine. An example program 
which touches on many of the technologies and approaches mentioned in this report is the 
Uniformed Service University’s Surgical Critical Care Initiative (SC2i), which was implemented 
to develop clinical and biomarker-driven clinical decision support systems to improve patient 
outcomes in high-risk conditions.430 SC2i is a public-private partnership between Walter Reed 
National Military Medical Center, Duke University, Emory University, and Grady Memorial 
Hospital.  

The goal of the initiative was to improve patient outcomes and resource usage for patients 
with traumatic injuries. Clinicians collected serum, tissue biopsies, wound effluent, and urine to 
develop a biobank of patients recovering from traumatic injuries. Samples were then processed 
using a variety of molecular assays to develop cytokine, chemokine, protease, bacteriological, 
pathogen taxonomic, and ribonucleic transcriptomic profiles of each patient during the course of 
their treatment. Molecular biology data was aggregated with healthcare and personal information 
into a repository. Two clinical decision support systems have been developed as a result of SC2i: 
one to identify and treat invasive fungal infections and a second to maximize the utility of blood 
transfusions. Ongoing efforts are to identify panels of biomarkers to predict battle-wounded 
patients at risk of wound dehiscence (reopening due to improper healing).  

This approach, while focused on trauma patients who have undergone surgery, may be 
applicable to military infectious disease patients. As a notional example, following an outbreak of 
an infectious disease, samples could be collected during the course of treatment from patients who 
recover fully with mild symptoms and compared to those who have longer term or more severe 
symptoms. Identification of biomarkers from these samples could inform future clinical decision 
support systems, treatment protocols, or procurement of materiel for patients at risk of severe 
symptoms (e.g., giving patients a higher dose of antibiotic or a longer course, allocating resources 
such as ventilators for patients more likely to need them, transporting higher-risk patients to a 
higher role of care).  
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Additionally, different precision medicine technologies may be more or less relevant 
depending upon the level of care a treatment facility can provide. For example, paper-based 
diagnostics that can be used in far-forward Role 1 or Role 2 medical treatment facilities could be 
used to inform triage or medical transport decisions. Precision medicine technologies requiring 
extensive, specialized equipment (e.g., proteomics, transcriptomics, or medical image analysis) 
would likely be implemented at higher levels of care in Role 3 or Role 4 medical treatment 
facilities. Understanding where a patient is likely to be treated can help to guide investments in 
diagnostic devices, as developed technologies should be usable at the role of care where patients 
are typically treated for those diseases.  

Overall, precision medicine seems more likely to change the manner in which diagnostic 
technologies are employed, rather than dramatically shifting the field of diagnostics itself. The 
majority of studies reported in this paper describe improved clinical outcomes from precision 
medicine due to adjustments in their treatment as opposed to adjustments in their diagnosis. There 
are a few exceptions to this rule, including nanomaterials, digital PCR, CRISPR-based systems, 
AI/ML, and ELISA, which may allow for disease diagnosis at lower levels of care or earlier during 
the course of an infection. Integrating CBRN agent biomarkers into previously developed precision 
medicine technologies would be one way to capitalize on advances in this field, but it would 
require the identification of relevant biomarkers.  

2. Precision medicine in a military population 
Precision medicine approaches can be applied to both civilian and military populations, but 

there are a few factors in which these two communities differ that could affect implementation. 
First, the diseases of concern to the military population differs from that of the civilian population. 
Many civilian precision medicine technologies focus on the identification and treatment of cancer 
and diseases associated with old age, whereas the relatively young and healthy military population 
may be more concerned with traumatic injuries and/or CBRN agent exposure.  

As seen in Table 9, few of the CBRN agents of concern have genome-wide association study 
data. Partnering with civilian research organizations to develop precision medicine technologies 
and approaches for diseases and agents of concern to the military population may be one way 
forward. Second, some precision medicine approaches may be particularly suited toward a military 
population. For example, the DoD already collects lifestyle information on their military 
population that could be useful for personomics. Additionally, the DoD could standardize 
collection of personomic data much more readily than the disjointed civilian medical care system.  

3. Challenges using precision medicine in diagnostics 
Precision medicine has advanced significantly in the past years, but several challenges remain 

in the field as a whole and in relation to diagnostics. These include overdiagnosis, time and cost, 
and large datasets.  
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a. Overdiagnosis 
Overdiagnosis is defined by the National Cancer Institute as “finding cases of [disease] with 

a screening test that will never cause any symptoms.”431 It can trigger medically unnecessary 
treatment, resulting in both increased costs and harm to the patient.432 Increased testing for 
biomarkers has been shown to increase diagnosis of disease without improving mortality rates in 
several specific cases.433 Ensuring new precision medicine approaches actually result in improved 
patient outcomes should be a necessary step of programmatic evaluation to avoid overdiagnosis.  

b. Time and cost 
Currently, many precision medicine technologies may not be timely enough to influence 

clinical decision-making or affordable enough for widespread use, particularly in far-forward 
environments. As technologies improve, both the time to run samples and cost of diagnostic tests 
will likely decrease. Precision medicine could have benefits in many specific diagnostic 
applications, but may not always be beneficial. A cost-benefit analysis of precision medicine-based 
diagnostic technologies over current gold-standard procedures should be considered before 
investment in any specific systems are made.  

c. Large datasets 
Development of the biomarker associations necessary for precision medicine requires a large 

and diverse amount of data, which presents its own challenges, including data collection, storage, 
and security. The diversity of a population represented in a biological dataset is of paramount 
importance when developing associations between biomarkers and disease or clinical outcomes. 
As mentioned previously, different subpopulations of individuals may not exhibit the same 
biomarkers in response to the same diseases or treatments. Undersampling of minority 
subpopulations during sample collection should be avoided for effective precision medicine 
approaches.  

Additionally, the datasets employed for precision medicine initiatives can become massive 
in scale. For example, in the SC2i program, an average of 30 samples are collected per patient 
across multiple visits.434 These samples can result in over 30,000 clinical and biomarker data points 
per individual per visit, with digital memory of this dataset entering the petabyte range. SC2i has 

                                                           
431 “NCI Dictionary of Cancer Terms: Overdiagnosis,” National Cancer Institute Website, accessed November 30, 

2022, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/overdiagnosis. 
432 John Brodersen et al., “Overdiagnosis: What It Is and What It Isn't,” BMJ Evidence-Based Medicine 23, no. 1 

(2018), https://doi.org/10.1136/ebmed-2017-110886. 
433 Ibid. 
434 Belard et al., “The Uniformed Services University's Surgical Critical Care Initiative (SC2i): Bringing Precision 

Medicine to the Critically Ill.” 
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attempted to address this scale by using cloud-based computing, but consideration of the security 
risks associated with cloud-based computing of military biological data is crucial.  

Biological data could be misused either indirectly (e.g., personal identification of warfighters, 
environmental targeting of troops) or directly (e.g., directed development of engineered 
bioagents).435 Possible national security implications should be considered by decision makers 
when implementing precision medicine concepts into military medical diagnostics.  
 
  

                                                           
435 Diane DiEuliis and James Giordano, “Balancing Act: Precision Medicine and National Security,” Military 

Medicine 187, Suppl 1 (2021), https://academic.oup.com/milmed/article/187/Supplement_1/32/6489948. 
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Appendix C. Abbreviations 

AI artificial intelligence  
ASSURED affordable, sensitive, specific, user-friendly, rapid, 

equipment-free, delivered 
AUC area under curve 
CAR chimeric antigen receptor 
CB chemical and biological 
CBRN chemical biological radiological nuclear 
CDC Center for Disease Control 
CE capillary electrophoresis 
CE-MS capillary electrophoresis mass spectroscopy 
CFTR cystic fibrosis transmembrane conductance regulator 
COVID-19 coronavirus disease 2019 
CRE carbapenem-resistant Enterobacteriaceae 
CRISPR clustered regularly interspaced short palindromic repeats 
CT computerized tomography 
CYP cytochrome P450 
DMD Duchenne muscular dystrophy 
DNA deoxyribonucleic acid 
DST drug sensitivity testing 
DTRA Defense Threat Reduction Agency 
EBI European Bioinformatics Institute 
EBOV Ebola virus 
EGFR epidermal growth factor receptor 
EHR electronic health record 
ELISA enzyme-linked immunosorbent assay 
EVD Ebola virus disease 
FDA Food and Drug Administration 
FIA flow injection analysis 
FRET fluorescence resonance energy transfer 
G6Pd glucose-6-phosphate deficiency 
GM-CSF granulocyte macrophage colony stimulating factor 
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GWAS genome wide association study 
HDL high-density lipoprotein 
HITS-CLIP high throughput sequencing of RNA isolated by cross 

linking immunoprecipitation 
HIV human immunodeficiency virus 
HLA human leukocyte antigen 
HPLC high performance liquid chromatography 
HPV human papilloma virus 
HR-MAS-
NMR 

high-resolution magic angle spinning nuclear magnetic 
resonance spectroscopy 

IBD inflammatory bowel disease 
IBM International Business Machines 
IBS irritable bowel syndrome 
ICU intensive care unit 
ID infectious disease 
IDA Institute for Defense Analyses 
IFN interferon 
IL1 interleukin-1 
IL17A interleukin-17A 
IL6 interleukin-6 
IL8 interleukin-8 
INF interferon 
ISG interferon-stimulated genes 
KIR killer immunoglobulin-like receptor 
LASV Lassa virus 
LC-MS liquid chromatography-mass spectrometry 
LDL low density lipoprotein  
LOD limit of detection 
MALDI matrix-assisted laser desorption/ionization 
MARV Marburg virus 
MIC minimum inhibitory concentration 
ML machine learning 
MRNA messenger ribonucleic acid 
MS mass spectrometry 
MSMD mendelian susceptibility to mycobacterial disease 
MTF medical treatment facility 
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NAAT nucleic acid antigen test 
NATO North Atlantic Treaty Organization 
NCI National Cancer Institute 
NGS next-generation sequencing 
NHGRI National Human Genome Research Institute 
NHP non-human primates 
NIH National Institutes of Health 
NMR nuclear magnetic resonance 
NPS neutrophilic suppressive 
OP organophosphate 
PCAST President's Council of Advisors on Science and 

Technology 
PCR polymerase chain reaction 
PCT procalcitonin 
PM precision medicine 
ProADM pro-adrenomedullin 
QD quantum dot 
qPCR quantitative polymerase chain reaction 
R&D Research and Development 
RNA ribonucleic acid 
RPA recombinase polymerase amplification 
RT reverse transcriptase 
RUO research use only 
SARS severe acute respiratory syndrome 
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 
SBS sequencing-by-synthesis 
SHERLOCK specific high-sensitivity enzymatic reporter unlocking 
SMRT single molecule real-time 
SNP single nucleotide polymorphism 
SPR surface plasmon resonance 
SUDV Sudan ebolavirus 
TB tuberculosis 
TDM therapeutic dose monitoring 
TNF tumor necrosis factor 
TOF time of flight 
UK United Kingdom 
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US United States 
USD United States Dollars 
UV ultraviolet 
WGS whole genome sequencing 
WHO World Health Organization 
WMD weapons of mass destruction 
ZMW zero-mode waveguides 
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