

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Maintaining High Assurance in

Asynchronous Messaging

Kevin E. Foltz
William R. Simpson

24 October 2015

Approved for public release;
distribution is unlimited.

IDA Non-Standard

NS D-5490
Log: H 15-000428

Copy

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under
contract HQ0034-14-D-0001, Task BC-5-2283, “Architecture, Design of
Services for Air Force Wide Distributed Systems,” for USAF HQ USAF
SAF/CIO A6. The views, opinions, and findings should not be construed as
representing the official position of either the Department of Defense or the
sponsoring organization.

Copyright Notice

© 2015 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun
2013].

Maintaining High Assurance in Asynchronous

Messaging

Kevin E. Foltz and William R. Simpson

Abstract—Asynchronous messaging is the delivery of a

message without waiting for the intended recipient to respond

or acknowledge the message. This solution works for

distributed systems communication, in which different systems

may or may not be available at the same time. Asynchronous

messaging solutions often use a message queue that holds

messages to be picked up by the recipient. Although

communication with the queue can be secured using lower

layer protocols, such as Transport Layer Security (TLS), this

does not provide end-to-end security for the sender and

receiver. The queuing system acts as a man-in-the-middle,

negating authentication, integrity, and confidentiality

guarantees. End-to-end security for asynchronous messaging

must be provided by the asynchronous messaging layer itself.

This paper discusses current asynchronous messaging models

and proposes methods for providing end-to-end asynchronous

messaging security in a high assurance environment.

Index Terms—Asynchronous Communication, Publish

Subscribe, IT Security, Encryption, Key Management

I. INTRODUCTION

synchronous messaging describes communication that

take place between one or more applications or

systems, in which the sender does not receive feedback

from the receiver during transmission of a message. This is

in contrast to synchronous communication, in which the

sender of a message waits for acknowledgement or a

response from the receiver before completing the

transmission.

There is no assumption about which layers asynchronous

and synchronous communication take place in or how these

relate to each other. It is possible to implement synchronous

communication using an asynchronous messaging service or

using an asynchronous messaging service using

synchronous communication channels. In practice,

asynchronous messaging often uses an underlying

synchronous channel.

 A common asynchronous messaging design involves

one system placing a message in a message queue and

continuing its processing. At the completion of message

transmission, the sender does not know when or whether the

receiver received it. The message queuing system is

responsible for delivering the message to the recipient.

Some systems use two or more queues or intermediaries.

__

Manuscript received July 2, 2015; revised August 28, 2015. This work was

supported in part by the U.S. Secretary of the Air Force and the Institute
for Defense Analyses (IDA). The publication of this paper does not

indicate endorsement by any organization or IDA, nor should the contents

be construed as reflecting the official position of these organizations.

Kevin E. Foltz is with the Institute for Defense Analyses. (email:

kfoltz@ida.org). William R. Simpson is with the Institute for Defense

Analyses, 4850 Mark Center Drive, Alexandria, Virginia 22311 USA and
is the corresponding author phone: 703-845-6637, FAX: 703-845-6848 (e-

mail: rsimpson@ida.org)

A. Some Advantages of Asynchronous Communication

Asynchronous messaging solves the problem of

intermittent connectivity. If the receiving equipment fails or

is unavailable, the message remains in a message queue and

is delivered after the failure is corrected. This is especially

useful for transmission of large data files, in which failures

are more likely and retransmissions more costly.

An asynchronous messaging system with built-in

intelligence may transform the content and/or format of the

message automatically to conform to the receiving system’s

requirements or needed protocol but still successfully

deliver the message to the recipient. This intelligence is

used to provide a higher level of understanding of the

content, which allows translation into other formats and

protocols. Complicated transformations are better suited to

asynchronous communication than synchronous

communication because they may increase latency and

cause connectivity problems or other underlying protocol

failures for synchronous systems.

B. Some Disadvantages of Asynchronous Communication

The disadvantages of asynchronous messaging include

the additional component of a message broker or transfer

agent to ensure the message is received. This may affect

both performance and reliability. Another disadvantage is

the response time, which may be inconvenient and not

consistent with normal dialog communication.

II. PRIOR WORK

A proliferation of standards for asynchronous messaging

has caused interoperability problems, with each major

vendor having its own implementations, interface, and

management tools. Java EE systems are not interoperable,

and Microsoft’s MSMQ (Microsoft Message Queuing) does

not support Java EE.

A few of the numerous standard protocols used for

asynchronous communication are in the table below.

TABLE 1 MESSAGING PORTS

Port
TCP/
UDP

Messaging Protocol and Description Status

18
TCP
and
UDP

The Message Send Protocol (MSP), more
precisely referred to as Message Send Protocol 2,
is an application layer protocol used to send a
short message between nodes on a network.
Defined in RFC 1312.

Official

99 TCP

WIP message is a work-in-progress message sent
from a computer client to a computer server. It is
used to update a server with the progress of an
item during a manufacturing process. The only
known use is in the automotive wiring
manufacturing process, but the message structure
is generic enough to be used in any
manufacturing process.

Unofficial

110 TCP
Post Office Protocol v3 (POP3) is an email
retrieval protocol. Official

A

mailto:kfoltz@ida.org
mailto:rsimpson@ida.org%20)

Port
TCP/
UDP

Messaging Protocol and Description Status

119 TCP

The Network News Transfer Protocol (NNTP)
is an application protocol used for transporting
Usenet news articles (netnews) between news
servers and for reading and posting articles by
end user client applications.
Defined in RFC 3977.

Official

143 TCP

Internet Message Access Protocol (IMAP) is a
protocol for e-mail retrieval and storage as an
alternative to POP. IMAP, unlike POP,
specifically allows multiple clients
simultaneously connected to the same mailbox
and through flags stored on the server; different
clients accessing the same mailbox at the same or
different times can detect state changes made by
other clients.
Defined in RFC 3501.

Official

161 UDP

Simple Network Management Protocol
(SNMP) is an “Internet-standard protocol for
managing devices on IP networks.” Devices that
typically support SNMP include routers,
switches, servers, workstations, printers, modem
racks, and more.
Defined in RFC 3411-3418.

Official

162
TCP
and
UDP

Simple Network Management Protocol Trap
(SNMPTRAP).
See port 161.

Official

218
TCP
and
UDP

Message Posting Protocol (MPP) is a network
protocol used for posting messages from a
computer to a mail service host.

Official

220
TCP
and
UDP

Internet Message Access Protocol (IMAP),
version 3. See port 143. Official

319 UDP

Event Messages for The Precision Time
Protocol (PTP) is a protocol used to synchronize
clocks throughout a computer network. On a local
area network, it achieves clock accuracy in the
sub-microsecond range, making it suitable for
measurement and control systems.
Defined in IEEE 1588-2008.

Official

320 UDP
Event Messages for The Precision Time
Protocol (PTP). See port 319. Official

433
TCP
and
UDP

Network News Speed Protocol (NNSP), part of
Network News Transfer Protocol for bulk
transfer.
Defined in RFC 3977.

Official

587 TCP
Simple Mail Transfer Protocol (SMTP), as
specified in RFC 6409.

Official

1801
TCP
and
UDP

Microsoft Message Queuing or MSMQ is a
message queue implementation developed by
Microsoft and deployed in its Windows Server
operating systems since Windows NT 4 and
Windows 95. The latest Windows 8 also includes
this component. In addition to its mainstream
server platform support, MSMQ has been
incorporated into Microsoft Embedded platforms
since 1999 and the release of Windows CE 3.0.

Official

1863 TCP
MSNP (Microsoft Notification Protocol), used
by the Microsoft Messenger service and a number
of Instant Messaging clients.

Official

1935 TCP
Adobe Systems Macromedia Flash Real Time
Messaging Protocol (RTMP) “plain” protocol.

Official

2195 TCP Apple Push Notification service Link. Unofficial
2196 TCP Apple Push Notification—Feedback Link. Unofficial

2948
TCP
and
UDP

Multimedia Messaging Service (MMS) is a
standard way to send messages that include
multimedia content to and from mobile phones. It
extends the core SMS (Short Message Service)
capability that allowed exchange of text messages
only up to 160 characters in length.
Multimedia Messaging Service 1.3 – Open
Mobile Alliance.

Official

2949
TCP
and
UDP

WAP-push secure Multimedia Messaging
Service (MMS). See port 2948
Multimedia Messaging Service 1.3 – Open
Mobile Alliance.

Official

4486
TCP
and
UDP

Integrated Client Message Service (ICMS).
Defined in RFC 6335. Official

5010 TCP IBM WebSphere MQ Workflow. Official

A. Java Standard Messaging Protocol

Java Messaging System (JMS) is a message-oriented

middleware API for communication between Java clients. It

is part of the Java Platform Enterprise Edition. It supports

point-to-point communication as well as publish-subscribe.

B. De-facto Standard Microsoft Message Queuing

Microsoft Message Queuing (MSMQ) allows applications

running on separate servers/processes to communicate in a

failsafe manner. A queue is a temporary storage location

from which messages can be sent and received reliably, as

and when conditions permit. This enables communication

across networks and between computers running Windows,

which may not always be connected. By contrast, sockets

and other network protocols require permanent direct

connections.

MSMQ is responsible for reliably delivering messages

between applications inside and outside the enterprise.

MSMQ ensures reliable delivery by placing messages that

fail to reach their intended destination in a queue and then

resending them once the destination is reachable. It also

supports security and priority-based messaging. Dead letter

queues can be created for looking at messages that have

timed out or failed for other reasons.

MSMQ also supports transactions. It permits multiple

operations on multiple queues, with all of the operations

wrapped in a single transaction, thus ensuring that either all

or none of the operations will take effect. Microsoft

Distributed Transaction Coordinator (MSDTC) supports

transactional access to MSMQ and other resources.

C. Open Source Messaging Protocols

In addition to Java and Microsoft, different open source

solutions exist. RabbitMQ is an open source messaging

solution that runs on multiple platforms and multiple

languages. It implements Advanced Message Queueing

Protocol (AMQP), in which messages are queued on a

central node before being sent to clients. It is easy to

deploy, but having all traffic pass through a single central

node can hinder scalability.

ZeroMQ is another cross-platform, cross-language

messaging solution that can use different carrier protocols to

send messages. It can support publish-subscribe, push-pull,

and router-dealer communication patterns. It can be more

difficult to set up, but it provides more control and

granularity at the lower levels to tune performance.

ActiveMQ is a compromise between the ease of use of

Rabbit MQ and the performance of ZeroMQ. All three

support multiple platforms and have client APIs for C++,

Java, .Net, Python, and others. They also have

documentation and active community support. There are

many other implementations, including Sparrow, Starling,

Kestrel, Beanstalkd, Amazon Simple Queue Service (SQS),

Kafka, Eagle MQ, and IronMQ.

D. Emerging Standard Advanced Message Queuing

Protocol

Advanced Message Queuing Protocol (AMQP) is an open

standard application layer protocol for message-oriented

middleware. It is an emerging technology addressing the

standardization problem. Implementations are interoperable.

It includes flexible routing and common message paradigms

like publish/subscribe, point-to-point, request-response, and

fan-out.

The defining features of AMQP are message orientation,

queuing, routing (including point-to-point and publish-and-

subscribe), reliability, and security. AMQP mandates the

behavior of the messaging provider and client to the extent

that implementations from different vendors are truly

interoperable, in the same way as SMTP, HTTP, FTP, and

others have created interoperable systems.

III. ASYNCHRONOUS MESSAGING SECURITY

Asynchronous messaging can provide authentication of

the sender and receiver identities and the integrity and

confidentiality of the message content if the holder of the

queue is trusted. One key challenge in asynchronous

messaging systems is that a third party is often involved in

the transaction, which may or may not be trusted to speak

for the sending or receiving entities or view or modify

content in transit. As a result, security models often require

a trusted third party, which restricts deployment options. In

contrast, synchronous web traffic relies on routers and other

infrastructure to deliver messages, but the use of TLS

provides end-to-end security without the need to trust these

intermediate nodes.

A. Security for Server Brokered Invocation

Server brokered invocation uses web server middleware

to manage message queues. The sender and receiver both

communicate directly through secure synchronous channels

to the server to send and receive messages. This model is

shown in Figure 1. Asynchronous message security must be

from sender to receiver, not just from sender to server and

server to receiver. The latter fails to provide end-to-end

authentication, integrity, and confidentiality, which are

required for a high assurance environment.

In order for the parties involved in the transaction to

provide accountability, integrity, and confidentiality, the

service requester must authenticate itself to the receiver,

encrypt the message so only the service provider can

receive this message, and provide verifiable integrity checks

on the full message content. The service provider must

confirm that the message is from a known identity, decrypt

the content with a valid key, and verify the integrity checks

before that entity can take action on the message.

This is accomplished by invoking two cryptographic

techniques. The first is the use of a digital signature by the

sender. When the message signature is verified, the service

provider knows the identity of the sender and that the

content has not been altered by another entity after it was

signed. The second is the encryption of the message using

the public key of the service provider. This requires that the

requester know the public key of the target. A response to

the requester must similarly be signed and encrypted using

the public key of the requester.

The use of asymmetric encryption is paired with more

efficient symmetric encryption, where content is encrypted

with a random symmetric key, which is itself encrypted

using the receiver’s public key. Additional security can be

provided by message expiration deadlines within queues

and central auditing of all messages sent and received.

Fig. 1. Security Considerations for Server Brokered Invocation

B. Security for Publish Subscribe Systems

In a Publish Subscribe System (PSS) the queue server

acts as an intermediary between sender and receiver to

manage many-to-many instead of just many-to-one

communications. Senders and receivers communicate with

the PSS through a secure synchronous channel. The PSS

collects messages and makes them available to entities

based on subscriptions. This model is shown in Figure 2.

Fig. 2. Publish-Subscribe Push Model

The PSS is an active entity and registered in the

Enterprise Service Directory. Active entities act on their

own behalf and are not a proxy. To preserve the end-to-end

accountability chain for messages, the original publisher

signs the message. However, unlike server-brokered

invocation, no single public key can be used for all potential

receivers. One solution to address this is for the PSS to

encrypt the content to the receivers. The sender’s signature

remains intact, preserving integrity, but end-to-end

confidentiality is not guaranteed.

A PSS may use the web server broker as shown in

Figure 3. The web server broker is used only for notification

messages, so it does not require security like the main

channel. The transmission of the actual message is still done

through the secure synchronous channel. The storage queue

must be encrypted using the PSS’s public key. This is

piecemeal confidentiality, because the sender encrypts to

the PSS, and the PSS encrypts to the receiver. This relies on

trust of the PSS.

Fig. 3. Publish-Subscribe Pull Model

IV. PSS ROCK AND JEWEL

The following is an approach developed to maintain high

security assurances with the use of an untrusted PSS. In this

formulation, the sender and receiver maintain end-to-end

security because the PSS is unable to impersonate either

endpoint or view or modify the content. The key concepts

are the use of “rocks” and “jewels” to provide security

guarantees. The “rocks” are encrypted content blocks, and

the “jewels” are the decryption keys for these rocks,

encrypted using public keys for the intended recipients.

A. Claims for Targeted Content (PSS)

After authentication through TLS v1.2 or later versions

and authorization based on SAML claims, the sender

accesses PSS services. The PSS will offer either publish or

retrieve based on the values in the SAML content claim. If

there are no SAML content claims, the subscriber will only

receive basic services based on identity.

Publishing of content for a targeted list, as used by

software publishers, is based upon registered delivery. The

targeted list requires the following steps:

0. Publisher does a bi-lateral authentication and

establishes a TLS 1.2 session with SAML

authorizations for session establishment with the

PSS. The PSS identifies him as a publisher. He may

also be a subscriber, or he may be modifying a

previous publish or he may be retrieving messages,

so the PSS ascertains the reason for his session.

1. Content to be published will be digitally signed by

the publisher.

2. The publisher will generate an AES-256 encryption

key and encrypt the content.

3. Encrypted Content is placed in a queue based on an

access claim and list name. The publisher will keep

such lists. The PSS will assist in developing claims.

4. Access is based on a list of targets and claims. A

target may be an individual subscriber or a group

queue. The publisher may establish a new queue

based on claims and the list for retrieval. This new

queue requires an identity and a claims establishment

for retrieval (see 3 above). Additional content may be

published as needed.

5. Expiration time of targeted content is determined by

the publisher or the messaging system.

6. The PSS will provide PKI certificates for each of the

targets for the content (if the publisher needs them

and they are already registered in the PSS). The

publisher should check all certificates on the list for

currency and revocation. If invalid certificates are

discovered, the list should be pruned.

7. The publisher will prepare encrypted key sets

(jewels) by wrapping the AES encryption key in each

target’s public key.

8. The publisher will publish the encrypted material

(rocks) and the encrypted key sets (jewels) for the

targets. The PSS will link these to the encrypted

material and the target(s).

9. The PSS will provide notification, if desired, to the

subscriber list. The PSS will assist with message

selection and target details, or the publisher may

script his own.

10. The publisher closes the session.

Note: the target must be on the list and have authorization to

view content. The steps are shown in Figure 4.

B. Retrieving Content for Known Claimants

Retrieval of targeted content may be achieved without the

targeted identities contacting the publisher. The following

steps are followed:

Fig. 4. Publishing of Targeted Content

0. Subscriber does a full bi-lateral authentication using

TLS 1.2 with SAML authorizations for session

establishment with the PSS. The claims identify him

as a subscriber. He may also be a publisher, so the

PSS ascertains the reason for his session.

1. The PSS offers subscriber content available for the

claims in queues for which the claimant has an

encrypted key available, and the subscriber chooses

and retrieves the encrypted content (rock).

2. The PSS provides the encrypted key package (jewel).

3. The PSS notifies the publisher. When expiration time

occurs, the server deletes the packages and notifies

the publisher which packages were not delivered.

The publisher may republish to that list if desired.

4. The subscriber decrypts the content encryption key

(jewel) with his private key and accesses the content

(rock) decryption key.

5. The subscriber decrypts the content.

6. The subscriber verifies and validates signature.

7. The subscriber closes the session or retrieves

additional content.

Note: the target must be on the list and have a content

claim. The steps are shown in Figure 5.

C. Retrieving Content for Unknown Claimants

Unknown claimants cannot retrieve the content until

registering with the content provider. The steps in that

process are described below:

0. The subscriber does a full bi-lateral authentication TLS

1.2 with SAML authorizations for session establishment

with the PSS. The authentication identifies him as a

subscriber. He may also be a publisher, so the PSS

ascertains the reason for his session.

1. The PSS checks the content claims available and the

subscriber chooses and retrieves the content for which

full packages exist.

2. For the unknown list, the encrypted key package is not

available. The PSS replies “the publisher has no record

of your membership. I need to contact the publisher. I

will send you a notice if the publisher agrees.”

3. The PSS stores a message for the publisher and notifies

him that he has a message.

4. The PSS and subscriber await publisher action.

5. The subscriber closes the session or retrieves additional

content.

Note: the target has a content claim, but is not on the list.

The steps are shown in the next figure.

Fig. 5. Subscriber Retrieval(s) from a Known Target

Fig. 6. Subscriber Retrieval(s) from an Unknown Target

D. Adjusting Publishing Targets (Untrusted PSS)

0. The publisher does a full bi-lateral authentication TLS 1.2

with SAML authorizations for session establishment with

the PSS. The authorization process identifies him as a

publisher. He may also be a subscriber, or he may be

modifying a previous publish or he may be retrieving

messages, so the PSS ascertains the reason for his session.

1. Retrieve messages. These are retrieved one by one

with action taken (or not) and deletion of the

message.

 The publisher asks for credentials of previously

unknown claimants he wishes to add to his lists.

 The publisher may add claimants to the

publisher’s list

 The publisher computes jewels.

 The publisher posts jewels.

 The PSS notifies the subscriber that he has

content available. This makes the entity a

known target and SECTION V B applies.

 PSS provides messages to requester.

2. The publisher closes the session.

The steps are shown in Figure 7.

E. Distribution of Burdens

Several burdens are incurred in this high security mode. The

publisher has to do key management and list maintenance.

The publisher has to frequently contact the PSS for

messages for publishers. The PSS must maintain message

queues for publishers. The PSS has to keep a linked

wrapped key package by target with published content. The

PSS is responsible for additional notifications that are sent

out. The unknown claimant may have a delay in receiving

content to which he has claims.

Fig. 7. Publisher Message Retrieval and Subsequent Actions

V. SUMMARY

We have reviewed the basic approaches to asynchronous

communication in computing environments. We have also

described high assurance approaches to the process. The

proliferation of standards in this area has created a problem

with high assurance. In many instances the high assurance

elements require additional steps in the asynchronous

process, but they provide a way to proceed when some

intermediaries are untrusted. This work is part of a body of

work for high assurance enterprise computing using web

services. Elements of this work are described in [24-37].

REFERENCES

[1] World Wide Web Consortium (W3C):

a. XML Encryption Syntax and processing, 10 December 2002.

b. XML Signature Syntax and Processing (Second Edition), 10
June 2008.

c. Canonical XML Version 1, March 2001.

d. Exclusive Canonical XML Version 1, July, 2002.
[2] Organization for the Advancement of Structured Information

Standards (OASIS) open set of Standards:

a. “WS-Security Specification 1.1,” OASIS, November 2006.
b. “WS-Trust Specification 1.4,” OASIS, February 2009.

c. “WS-ReliableMessaging Specification 1.1,” OASIS, November

2004.
d. “WS-SecureConversation Specification 1.4,” OASIS, February

2009.

e. “WS-BaseNotification,” 1.3 OASIS, October 2006.
f. “WS-BrokeredNotification,” 1.3 OASIS, October 2006.

g. N. Ragouzis et al., Security Assertion Markup Language
(SAML) V2.0 Technical Overview. OASIS Committee Draft,

March 2008.

h. P. Mishra et al. Conformance Requirements for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS

Standard, March 2005.

i. S. Cantor et al. Assertions and Protocols for the OASIS Security

Assertion Markup Language (SAML) V2.0. OASIS Standard,
March 2005.

a. OASIS Advanced Message Queuing Protocol, (AMQP) Version

1.0, OASIS Standard, 29 October 2012.
[3] Standard for Naming Active Entities on DoD IT Networks, Version

3.5 (or current), Sept. 23, 2010.

[4] National Institute of Standards, Gaithersburg, MD:
a. FIPS PUB 197, Advanced Encryption Standard (AES),

November 2001.

b. FIPS PUB 800-67, November 2008.
c. FIPS PUB 800-67, Version 1.2, Recommendation for the Triple

Data Encryption Algorithm (TDEA) Block Cipher, Revised

July 2011.
d. FIPS PUB 140-2, Security Requirements for Cryptographic

Modules, May 25, 2001.

e. FIPS PUB 180-2, Secure Hash Standard. August 2002, U.S.
Department of Commerce/National Institute of Standards and

Technology.

f. FIPS PUB 186-3, Digital Signature Standard (DSS), June, 2009.
g. FIPS PUB 800-38, Recommendation for Block Cipher Modes

of Operation: 38A, Methods and Techniques, December 2001;

38B, The RMAC Authentication Mode, November 5 2002
draft; 38C, The CCM Mode for Authentication and

Confidentiality.

h. FIPS PUB 800-53, Recommended Security Controls for Federal
Information Systems and Organizations, Revision 3, August

2009.
[5] Internet Engineering Task Force (IETF) Standards:

a. STD 9 (RFC0959) File Transfer Protocol, J. Postel, J. Reynolds,

October 1985.
b. STD 5 (RFC0791) Internet Protocol, J. Postel, September 1981,

and subsequent RFCs 791/950/919/922/792/1112.

c. STD 66 (RFC3986) Uniform Resource Identifier (URI): Generic
Syntax, T. Berners-Lee, R. Fielding, L. Masinter, January 2005.

d. RFC 1321, “The MD5 Message-Digest Algorithm,” April 1992.

e. RFC 2104, HMAC: Keyed-Hashing for Message Authentication,
Feb 1997.

f. RFC 2406, IP Encapsulating Security Payload, November 1998.

g. RFC 2459, Internet X.509 PKI – Certificate and CRL Profile,
January 1999.

h. RFC 2560, X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol – OCSP, June 1999.
i. RFC 2829, Authentication Methods for LDAP. M. Wahl, H.

Alvestrand, J. Hodges, R.L. Morgan. May 2000.

j. RFC 4510 Lightweight Directory Access Protocol (LDAP):
Technical Specification Road Map, June 2006.

k. RFC 5246: “The Transport Layer Security (TLS) Protocol Version

1.2,” August 2008.
l. RFC 5751 Secure/Multipurpose Internet Mail Extensions

(S/MIME) Version 3.2 Message Specification, January 2010.

m. RFC 5751, Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2, July 2010.

n. RFC 6151: “Updated Security Considerations for the MD5

Message-Digest and the HMAC-MD5 Algorithms,” March 2011.
[6] PKCS #1: RSA Cryptography Standard: ASN Module for PKCS #1

v2.1, June 14, 2002.

[7] MSMQ Queuing (MSMQ) http://msdn.microsoft.com/en-
us/library/ms711472(v=vs.85).aspx.

[8] DoDI 8500.2 DoD Instruction, Information Assurance (IA)

Implementation, 6 February 2003.
[9] Security Technical Implementation Guide (STIG), Version 5, R1, 28

March 2006.

[10] DoD 5200.1-R “Information Security Program,” January 1997.

[11] DoD Directive 8320.2, “Data Sharing in a Net-Centric Department of

Defense,” December 2, 2004, certified current April 23, 2007.

[12] MSMQ Queuing (MSMQ) http://msdn.microsoft.com/en-
us/library/ms711472(v=vs.85).aspx.

[13] Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf,

http://eaipatterns.com/index.html.
[14] Why developers do need an Enterprise Service Bus? –

http://www.ibm.com/developerworks/webservices/library/ws-

whyesb/.
[15] The Message Bus Pattern –

http://www.ibm.com/developerworks/webservices/library/ws-tip-

altdesign4/.
[16] Eventing in SOA – http://crishantha.com/wp/?p=885.

[17] Message Broker Comparison–
http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-been-

given-task-to-find.html.

[18] RabbitMQ – http://www.rabbitmq.com/.
[19] Apache ActiveMQ – http://activemq.apache.org/.

[20] Apache Qpid – http://qpid.apache.org/.

[21] JBoss HornetQ – http://www.jboss.org/hornetq.
[22] ZeroMQ – http://www.zeromq.org/.

[23] WebSphereWMQ–http://www-01.ibm.com/software/integration/wmq/.

[24] William R. Simpson, Coimbatore Chandersekaran and Andrew Trice,
Electronic Digest of the 2008 System and Software Technology

Conference, “A Persona-Based Framework for Flexible Delegation

and Least Privilege,” Las Vegas, Nevada, May 2008.
[25] William R. Simpson, Coimbatore Chandersekaran and Andrew Trice,

The 1st International Multi-Conference on Engineering and

Technological Innovation: IMET2008, “Cross-Domain Solutions in
an Era of Information Sharing,” Volume I, pp.313–318, Orlando, FL,

June 2008.

[26] Coimbatore Chandersekaran and William R. Simpson, World Wide
Web Consortium (W3C) Workshop on Security Models for Device

APIs, “The Case for Bi-lateral End-to-End Strong Authentication,” 4

pp., London, England, December 2008.
[27] William R. Simpson and Coimbatore Chandersekaran, The 2nd

International Multi-Conf. on Engineering and Technological

Innovation: IMETI2009, Volume I, pp. 300–305, “Information
Sharing and Federation,” Orlando, FL, July 2009.

[28] Coimbatore Chandersekaran and William R. Simpson, The 3rd
International Multi-Conf. on Engineering and Technological

Innovation: IMETI2010, Volume 2, “A SAML Framework for

Delegation, Attribution and Least Privilege,” pages 303–308,
Orlando, FL, July 2010.

[29] William R. Simpson and Coimbatore Chandersekaran, The 3rd

International Multi-Conference on Engineering and Technological
Innovation: IMETI2010, Volume 2, “Use Case Based Access

Control,” pages 297–302, Orlando, FL, July 2010.

[30] Coimbatore Chandersekaran and William R. Simpson, The First
International Conference on Computer Science and Information

Technology (CCSIT-2011), “A Model for Delegation Based on

Authentication and Authorization,” Springer Verlag Berlin-
Heildleberg, Lecture Notes in Computer Science, 20 pp.

[31] William R. Simpson and Coimbatore Chandersekaran, The 16th

International Command and Control Research and Technology
Symposium: CCT2011, Volume II, pp. 84–89, “An Agent Based

Monitoring System for Web Services,” Orlando, FL, April 2011.

[32] William R. Simpson and Coimbatore Chandersekaran, International
Journal of Computer Technology and Application (IJCTA), “An

Agent-Based Web-Services Monitoring System,” Vol. 2, No. 9,

September 2011, pp. 675–685.
[33] William R. Simpson, Coimbatore Chandersekaran and Ryan Wagner,

Lecture Notes in Engineering and Computer Science, Proceedings

World Congress on Engineering and Computer Science 2011,
Volume I, “High Assurance Challenges for Cloud Computing,” pp.

61–66, San Francisco, October 2011.

[34] Coimbatore Chandersekaran and William R. Simpson, Lecture Notes
in Engineering and Computer Science, Proceedings World Congress

on Engineering 2012, The 2012 International Conference of

Information Security and Internet Engineering, Volume I, “Claims-
Based Enterprise-Wide Access Control,” pp. 524–529, London, July

2012.

[35] William R. Simpson and Coimbatore Chandersekaran, Lecture Notes
in Engineering and Computer Science, Proceedings World Congress

on Engineering 2012, The 2012 International Conference of

Information Security and Internet Engineering, Volume I, “Assured

Content Delivery in the Enterprise,” pp. 555–560, London, July 2012.

[36] William R. Simpson and Coimbatore Chandersekaran, Lecture Notes

in Engineering and Computer Science, Proceedings World Congress
on Engineering and Computer Science 2012, Volume 1, “Enterprise

High Assurance Scale-up,” pp. 54–59, San Francisco, October 2012.

[37] Coimbatore Chandersekaran and William R. Simpson, International
Journal of Scientific Computing, Vol. 6, No. 2, “A Uniform Claims-

Based Access Control for the Enterprise,” December 2012, ISSN:

0973-578X, pp. 1–23.

http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://eaipatterns.com/index.html
http://www.ibm.com/developerworks/webservices/library/ws-whyesb/
http://www.ibm.com/developerworks/webservices/library/ws-whyesb/
http://crishantha.com/wp/?p=885
http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-been-given-task-to-find.html
http://lifecorporatedev.blogspot.com/2012/07/recently-i-have-been-given-task-to-find.html
http://www.rabbitmq.com/
http://activemq.apache.org/
http://www.jboss.org/hornetq
http://www.zeromq.org/
http://www-01.ibm.com/software/integration/wmq/

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

24-10-15 Non-Standard

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Maintaining High Assurance in Asynchronous Messaging HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Kevin E. Foltz, William R. Simpson BC-5-2283

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

NS D-5490

H 15-000428

Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

SAF CIO/CTO Frank P. Konieczny

USAF HQ USAF SAF/CIO A6
11. SPONSOR’S / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Project Leader: William R. Simpson

14. ABSTRACT

Asynchronous messaging is the delivery of a message without waiting for the intended recipient to respond or acknowledge

the message. This solution works for distributed systems communication, in which different systems may or may not be

available at the same time. Asynchronous messaging solutions often use a message queue that holds messages to be picked

up by the recipient. Although communication with the queue can be secured using lower layer protocols, such as Transport

Layer Security (TLS), this does not provide end-to-end security for the sender and receiver. The queuing system acts as a

man-in-the-middle, negating authentication, integrity, and confidentiality guarantees. End-to-end security for asynchronous

messaging must be provided by the asynchronous messaging layer itself. This paper discusses current asynchronous

messaging models and proposes methods for providing end-to-end asynchronous messaging security in a high assurance

environment.

15. SUBJECT TERMS

Asynchronous Communication, Publish Subscribe, IT Security, Encryption, Key Management

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

6

19a. NAME OF RESPONSIBLE PERSON

Frank P. Konieczny

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 (703) 697-1308 Unclassified Unclassified Unclassified

