
 

    
 

IN S T IT U T E  F O R  D E F E N S E  A N A L Y S E S  

   

 Initial Analysis of Underhanded Source 
Code 

 

 

David A. Wheeler, Project Leader 
 

 
 
 
 
 
 
 
 

April 2020 
 

Approved for public 
release; distribution is 

unlimited. 
 

IDA Document 
D-13166 

 
 

INSTITUTE FOR DEFENSE 
ANALYSES 

4850 Mark Center Drive 
Alexandria, Virginia 22311-1882 

 

 

 

  

  



The Institute for Defense Analyses is a nonprofit corporation that operates three 
Federally Funded Research and Development Centers. Its mission is to answer 
the most challenging U.S. security and science policy questions with objective 
analysis, leveraging extraordinary scientific, technical, and analytic expertise. 

 
 
 
 
 
 

About This Publication 

This work was conducted by the IDA Systems and Analyses Center under contract 
HQ0034-14-D-0001, Project C5206, “Underhanded Code,” for IDA. The views, 
opinions, and findings should not be construed as representing the official position 
of either the Department of Defense or the sponsoring organization. 

 
Acknowledgements  

Reginald N. Meeson, Jr 

For More Information 

David A. Wheeler, Project Leader 
dwheeler@ida.org, 703-845-6662 

Margaret E. Myers, Director, Information Technology and Systems Division 
mmyers@ida.org, 703-578-2782 

 
Copyright Notice 

© 2020 Institute for Defense Analyses 
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000. 

This material may be reproduced by or for the U.S. Government pursuant to the 
copyright license under the clause at DFARS 252.227-7013 (Feb. 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

mailto:flast@ida.org
mailto:flast@ida.org


 

 
 
 

 
IN S T IT U T E  F O R  D E F E N S E  A N A L Y S E S 

 

IDA Document D-13166 

Initial Analysis of Underhanded Source Code 
 
 

David A. Wheeler, Project Leader 

 

 
 

 

 
 





 

i 

Executive Summary 

It is possible to develop software source code that appears benign to human review 
but is actually malicious. In various competitions, such as the Obfuscated V Contest and 
Underhanded C Contest, software developers have demonstrated that it is possible to solve 
a data processing problem “with covert malicious behavior [in the] source code [that] easily 
passes visual inspection.” This is not merely an academic concern; in 2003, an attacker 
attempted to subvert the widely used Linux kernel by inserting underhanded software (this 
attack inserted code that used = instead of ==, an easily missed, one-character difference). 

This paper provides a brief initial look at underhanded source code, with the intent to 
eventually help develop countermeasures against it. The process was as follows: 

• Identify, acquire, and summarize existing public examples of underhanded 
code (aka maliciously misleading code)—in other words, source code that 
appears benign but does something malicious instead. I found various sources, 
including the Obfuscated V Contest, Underhanded C Contest, Underhanded 
Crypto Contest, Underhanded Rust Contest, and the JavaScript Misdirection 
Contest. 

• Briefly summarize literature related to underhanded code beyond contest 
information. 

• Identify promising mechanisms for countering underhanded code. 

• Examine one data set (the Obfuscated V Contest) in more detail to find the 
specific attack methods and whether or not there are countermeasures that 
would work (adjusting the promising countermeasures as needed). I then 
identified a small set of countermeasures and measured their effectiveness on 
this data set. 

This initial work suggests that countering underhanded code is not an impossible task; 
it appears that a relatively small set of simple countermeasures can significantly reduce the 
risk from underhanded code. I recommend examining more samples, identifying a 
recommended set of underhanded code countermeasures, and applying countermeasures in 
situations where countering underhanded code is important and the benefits exceed their 
costs. 
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1. Introduction 

There are various efforts that try to counter subversion of software used by the U.S. 
military, including work on Supply Chain Risk Management (SCRM), software assurance 
(SwA), system evaluations of software security, and higher-level Common Criteria 
evaluations. Countering subversion in critical software of all kinds typically depends in 
part on human review. 

Unfortunately, it is possible to develop software source code that may appear benign 
to human review but is actually malicious. In competitions, software developers have 
demonstrated that it is possible to solve a data processing problem “with covert malicious 
behavior [in the] source code [that] easily passes visual inspection.”1 This issue was 
discussed as “maliciously misleading code” in Fully Countering Trusting Trust through 
Diverse Double-Compiling [Wheeler 2009]. This is not merely an academic concern; in 
2003, an attacker attempted to subvert the widely used Linux kernel by trying to insert 
underhanded software. This attack used = instead of ==, an easily missed, one-character 
difference [Corbet 2003] [Felten 2013]. 

It may be possible to counter such attacks through simple countermeasures. Examples 
of such countermeasures include using software reformatters, syntax highlighting, and 
static analysis tools (including the warnings that some compilers can generate). However, 
I have not found evidence that someone has tried such countermeasures or measured their 
effectiveness for countering underhanded code. 

This paper provides a brief initial look at underhanded code and suggests ways to 
develop countermeasures against it. The process was as follows: 

• Identify, acquire, and summarize existing public examples of underhanded 
code (aka maliciously misleading code)—in other words, source code that 
appears benign but does something malicious instead. I found various sources, 
including the Obfuscated V Contest, Underhanded C Contest, Underhanded 
Crypto Contest, Underhanded Rust Contest, and the JavaScript Misdirection 
Contest. 

• Briefly summarize literature related to underhanded code (e.g., winner 
summaries and [Schrittwieser 2013]). 

                                                
1 “The Underhanded C Contest: About page” at http://www.underhanded-c.org/_page_id_2.html 
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• Identify promising countermeasures to counter underhanded code. 

• Examine one data set (the Obfuscated V Contest) in more detail to find the 
specific attack methods and determine whether or not there are effective 
countermeasures (adjusting the promising countermeasures as needed). I then 
identified a small set of countermeasures and measured their effectiveness on 
this data set. 

I expressly excluded obfuscated code (i.e., code that is obviously difficult for a human 
to understand). There are also various algorithms (including compression, minification, 
and compilation) that take normal source code and generate results that are more difficult 
to review in comparison with normal source code.2 In those cases, human reviewers can 
immediately report that these are hard to understand and review and use that fact (by itself) 
as a reason for not trusting the software. 

                                                
2 For example, the code at https://github.com/aemkei/jsfuck converts arbitrary JavaScript code into 

sequences of only six punctuation/mathematical marks: []()!+. 

https://github.com/aemkei/jsfuck
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2. Public Samples of Underhanded Code 

I identified the following samples of underhanded code for possible analysis: 

• Obfuscated V Contest (http://graphics.stanford.edu/~danielh/vote/vote.html). 
This contest was created by Daniel Horn in 2004 and is the earliest 
“underhanded” programming contest that I found. Note: I (David A. Wheeler) 
was one of the entrants. However, I submitted multiple times (the rules did 
not say you could not) and the contest judges discarded all but the first 
(easiest) of my entries in each of their categories. I no longer have the rest of 
my entries, so I will only include the two entries of mine that they judged. All 
judged entrants are published on the website. 

• Underhanded C Contest (http://www.underhanded-c.org/). Per its FAQ, “The 
Underhanded C Contest is an annual contest to write innocent-looking C code 
implementing malicious behavior.” It was first organized by Scott Craver at 
the State University of New York at Binghamton (aka Binghamton 
University). As of this time, it has run from 2005 to 2009 and then from 2013 
to 2015. The website discusses the winners, runners-up, and a few other 
contributors, but does not easily provide the complete set of sample 
underhanded code. I requested the complete set of entrants, but had not 
received them at the time of this writing. This contest even has a Wikipedia 
page (https://en.wikipedia.org/wiki/Underhanded_C_Contest). It was inspired 
by the previous “Obfuscated V Contest” by Daniel Horn. There are various 
articles discussing the contest or its winners: 

o  [Williams 2016] discusses one of the entrants in the 2015 contest. 

o [Prentice 2015] discusses the 2015 winner. 

• Underhanded Crypto Contest (https://underhandedcrypto.com/). As of this 
time, it has run from 2014 to 2018. The contest website does not directly note 
the 2018 winners; however, the 2018 winners are presented and discussed in 
a DefCon 26 presentation [Caudill 2018]. The set of all entries is available on 
GitHub (https://github.com/UnderhandedCrypto/entries). 

http://graphics.stanford.edu/%7Edanielh/vote/vote.html
http://www.underhanded-c.org/
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://underhandedcrypto.com/
https://github.com/UnderhandedCrypto/entries
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• Underhanded Rust Contest (https://underhanded.rs/en-US/)3. This contest 
does not seem to have gone anywhere. The contest was announced on 
December 15, 2016, and its deadline was extended to March 31, 2017, but no 
winners or samples have been posted since then. 

• JavaScript Misdirection Contest (http://misdirect.ion.land/).4 [Jaric 2015] 
announced the winner on September 27, 2015. There were 40 entries, and 34 
of those entries were valid. The announcement of the winner included a set of 
jsfiddle.net links to the entrants and observed that: 

o “Many contestants hid the evil code in a Base64-encoded block, often 
masked as a seed or key.” 

o “Using Image.src as a way to send the key was very common…” 

o “Another trick used by more than [one entry] was to include a link to 
StackOverflow in a comment. I think that was quite clever, because as 
a code reviewer (and creator) I am used to [finding] these kind of 
comments that explain unusual code.” 

o “Generally I find it easier to skip over code that has a good comment 
above it, so I think that is a good trick too.” 

• Underhanded Solidity Coding Contest (USCC) (https://u.solidity.cc/; details 
are available at its GitHub site https://github.com/Arachnid/uscc). Solidity is 
a contract-oriented programming language for writing smart contracts that can 
be implemented on blockchain platforms such as Ethereum. The 
announcement of the winners of the first (2017) contest is available at 
[Johnson 2017], and the complete set of 2017 winners is posted on GitHub at 
https://github.com/Arachnid/uscc/tree/master/submissions-2017/. The 
developers of Solidity used the contest results to improve their tooling. 

• The “Write a program that makes 2+2=5” discussion on StackExchange at 
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-
makes-2-2-5 shows how to do that in a variety of programming languages. 

• The “Underhanded code contest: Not-so-quick sort” (https:// 
codegolf.stackexchange.com/questions/19569/underhanded-code-contest-
not-so-quick-sort) is a small underhanded code contest. The goal of this 
contest was to “Write a program, in the language of your choice, that reads 

                                                
3 As of March 27, 2017, this site has become unavailable, but it is still available through the Internet 

Archive at https://web.archive.org/web/2019*/https://underhanded.rs/en-US/ 
4 As of March 27, 2019, this site has become unavailable, but it is still available through the Internet 

Archive at https://web.archive.org 

https://underhanded.rs/en-US/
http://misdirect.ion.land/
https://u.solidity.cc/
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc/tree/master/submissions-2017/
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-makes-2-2-5
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-makes-2-2-5
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://web.archive.org/
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lines of input from standard input until EOF, and then writes them to standard 
output in ASCIIbetical order, similar to the sort command-line program. … 
The underhanded part… is to prove that your favored platform is `better,’ by 
having your program deliberately run much more slowly on a competing 
platform.” 

• “April Fools Day!” (https://codegolf.stackexchange.com/questions/114891 
/april-fools-day) is a small underhanded code contest with a few underhanded 
code samples. The goal is to “write a program or function which appears to 
print the first ten numbers of any integer sequence (on OEIS, the answerer 
may choose which sequence), but instead prints the exact text “Happy April 
Fool’s Day!” if and only if it is run on April 1st of any year.” 

• The “Underhanded Python” posting (https://gist.github.com/L3viathan 
/e47d359470d5e18a357c67d9e4328c16) is quite clever. It uses the fact that 
“//” opens a comment in other languages to fool the reader. It is revealed by 
syntax coloring but even vim syntax coloring was not obvious enough to 
immediately reveal the attack. 

• The 2003 attack on the Linux kernel source code. An attacker attempted to 
subvert the Linux kernel in 2003 through underhanded code that used = 
instead of ==. This is discussed in [Corbet 2003] and [Felten 2013]. 

 
  

https://codegolf.stackexchange.com/questions/114891/april-fools-day
https://codegolf.stackexchange.com/questions/114891/april-fools-day
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16
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3. Literature 

Many samples of underhanded code are from contests, and those contests often 
publish information about their submissions (at least for the winners). In this chapter, I 
present other sources that discuss or initially appeared to discuss underhanded code: 

• Elaine Ou in [Ou 2016] commented on the Underhanded C Contest: 
“Common tactics include triggering an arithmetic overflow, pointer 
overwrites, and bad hash values. As a result, the code ends up doing the 
opposite of what a user might expect from a visual inspection. Last year’s 
winning entry put this line in a single header file: 
 
typedef double float_t; /* Desired precision for floating-point vectors */ 

 
By default, float_t is defined as single precision in math.h. The above file 
overrides the typedef as double precision. By #include-ing this header file in 
some C files but not others, the programmer passes an array of 8-byte numbers 
into a function that expects an array of 4-byte numbers. C interprets each 8-
byte number as two 4-byte numbers, leading to an array where every other 
value is 0.” 

• [Walker 2005] notes that the Underhanded C Contest was “dominated by a 
small number of tricks: buffer overflow; arrays bounds violation; and [getting] 
= and == the wrong way around.” The article argues that Java counters many 
of these problems, and then discusses some approaches to writing 
underhanded code in Java. 

• The language and compiler developers of Solidity used the Solidity contest 
(for underhanded code) to identify shortcomings of the Solidity language. 
They have since refined the language and its compiler to help counter 
underhanded code. [Reitwiessner 2017] discusses this: 

o “Many of the submissions exploited the fact that it was possible to 
shadow built-ins like now or msg. We already added warnings in such 
situations shortly before the beginning of the contest. The solution is 
not yet complete… but we are also working on that.” 

o “Another very common theme was to use the fact that it is possible to 
send Ether to a contract without triggering the fallback function, and 
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thus bypassing any internal accounting that might be done there… 
This is a quite tricky problem to tackle by means of the language…” 

• [Schrittwieser 2013] discusses covert computation, a related technique for 
hiding functionality in side effects of microprocessors to hide malicious code 
within harmless-looking executable code. This technique is focused on 
fooling automated malware detectors that analyze machine code by exploiting 
differences between the detector’s heuristic model of a machine as compared 
to the actual machine. Being aware of the difference between the heuristic 
model and the real machine is important in this case. However, [Schrittwieser 
2013] focuses on analyzing machine code by automated malware detection 
systems, whereas this paper focuses on analyzing source code by human 
reviewers, so this work is out of scope. 
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4. Countermeasures 

As creating underhanded code is a potent means of attack, it is important to identify 
countermeasures to underhanded code. In this chapter, we discuss the possibility of 
countermeasures and list some potential countermeasures. 

A. Discussion 
In the longer term, it would be valuable to categorize all underhanded code samples 

available based on the exploitations that they used and then use that categorization to 
develop maximally general countermeasures to prevent recurrences of similar attacks. 
Although that would not necessarily prevent all future attacks, it would at least counter 
known categories of attacks, and many other kinds of attacks are more likely to be detected 
by human reviewers (once the “easy ways to fool reviewers” are prevented). I did not fully 
categorize the underhanded code samples; indeed, it was challenging to collect this many 
of them. 

Nevertheless, a brief review of the information available and the collected samples 
made it clear that many underhanded code samples exploited a relatively small number of 
issues. In many cases, for example, they exploit known common mistakes that developers 
already make in the relevant programming language: 

• Joe Walker [Walker 2005] notes that many of the underhanded C contest 
entries exploited buffer overflows, array bounds violations, and misuse of = 
vs. ==. 

• Many samples worked by confusing humans about comments (e.g., 
misleading humans about where the comments started or having active code 
embedded in a comment). 

As noted earlier, one underhanded Python example involving comments is 
especially intriguing. This example contained a misleading comment that 
would only be misleading to a programmer who knew a language other than 
Python (Python uses “#” to begin a comment, but many other programming 
languages use “//”). As most professional programmers know multiple 
languages, a professional programmer is very likely to be misled by this 
construct. This suggests a need to consider subtle errors based on constructs 
in other programming languages. 



 

4-2 

• Many attacks on the Solidity language involved shadowing built-ins. Many 
programming languages support various kinds of shadowing, but shadowing 
can confuse human reviewers. The analysis of Solidity also determined that 
the Solidity tools could use a Satisfiability Modulo Theories (SMT) solver to 
detect some attacks so that those attacks would be automatically detected 
[Reitwiessner 2017]. 

The Underhanded Crypto Contest had very different kinds of winners where this was 
not the case. Many of the winners of the Underhanded Crypto Contest exploited highly 
technical weaknesses in cryptography technology. This suggests that in highly technical 
and specialized fields, such as cryptography, software reviews must be carried out in depth 
by specialists in that field. This should not be terribly surprising, and it is a reasonable 
requirement for important and specialized areas like cryptography. 

The Underhanded Rust Contest posted an article arguing for the use of fuzz testing, 
specifically American Fuzzy Lop (AFL) combined with mechanisms that enable per-
function fuzzing and assertions that check if the assertions were met 
(https://underhanded.rs/blog/2017/03/07/mitigating-underhandedness-fuzzing-your-
code.html). However, this advice comes from the only contest without any entrants. 

B. Potential Countermeasures 
Here are some potential countermeasures: 

1. Use syntax highlighting and/or programming fonts that clearly distinguish 
characters. 

Most text editors and integrated development environments (IDEs) used by 
today’s software developers provide syntax highlighting that helps developers 
identify (through color and font changes) different kinds of text (e.g., which 
text are comments, which are tokens, which are numbers, and so on). This 
information can also provide hints to reviewers that something is amiss (e.g., 
that active code is hiding within a comment). 

Unfortunately, current syntax highlighting methods may be too subtle for 
many software developers to detect some underhanded code, and some 
developers are color-blind (making highlighting less likely to be noticed). For 
example, I loaded the underhanded Python by L3viathan, which depended on 
misleading comments and did not notice the subtle differences in color that 
were occurring in the editor. In addition, editor syntax highlighting must be 
quick and is usually not written under the assumption that the highlighted code 
is malicious; as a result, underhanded code might be designed to cause the 
highlighting to work incorrectly. 
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Thus, although I recommend syntax highlighting, it is probably not enough; 
it’s simply too easy for this measure to fail. If highlighting is to be used as a 
security measure, the code that implements highlighting code should be 
reviewed for security to reduce the risk of its being misled. The highlighting 
should be configured to ensure that previous lines cannot invalidate the 
highlighting. For example, some tools only look a fixed number of lines 
backwards, and underhanded code might exploit this. 

In addition, when syntax highlighting is used, developers should consider 
making some distinctions more obvious if they are important. For example, 
the text editor vim’s configuration could be modified to make numbers more 
distinct with the command: hi Number cterm=reverse term=reverse 
gui=reverse. This command instructs vim to highlight all Number tokens for 
that language as “reverse video” in all vim display modes, making any 
Number token stand out. Such a configuration creates a much greater contrast 
between lowercase “l” and the digit “1” than the usual vim default (where they 
typically have different colors but those differences might not be as obvious). 

Programming fonts (aka coding fonts) are fonts designed for use during 
software development. These fonts often strive to clearly distinguish symbols 
that are more readily confused in other fonts (e.g., uppercase “O” with the 
digit “0” and lowercase “l” with the digit “1”). The same concerns about 
syntax highlighting also apply to programming fonts. I recommend using 
programming fonts when reviewing source code that may include 
underhanded code. However, programming fonts are probably not enough to 
detect underhanded code, even in cases where they can reveal some 
difference; it is simply too easy for this measure to fail as well. 

2. Require all comments to be on separate comment-only lines (via reformatting 
or a tool that checks the source code). 

This requirement can reveal non-comments masquerading as comments (e.g., 
one of the Underhanded Python examples). This counters code embedded in 
comments without the harsher approach of reformatting source code. Some 
developers would find this requirement annoying, as it forbids short comments 
on the same line as the code it comments on. 

3. Reformat source code to a standard format not under the attacker’s control. 

Forcible reformatting can reveal attacks such as non-comments hidden in 
comments, misleading indentation, and similar problems. More generally, a 
reasonable common format can ease later review by others, even when 
underhanded code is not considered a risk. In addition, there is at least one 
open source software reformatting program available for most widely used 
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programming languages. For example, the GNU indent program can 
automatically reformat C code. 

Such reformatting is common in some software development communities. 
For example, one survey found that 70% of all code in the Go programming 
language had the format as generated by the “go fmt” code formatter [Gerrand 
2013]. [Guest 2016] recommends that software developers using Go should 
use the “go fmt” formatter “ideally on save and certainly before submitting 
for review.” 

A disadvantage of this approach is that some developers may object to the 
new format of their code. Part of the problem is that although writing an 
automated code formatter that does some kind of reformatting is typically not 
difficult to do, writing a good automated code reformatter can be quite 
difficult. This matters because most developers and projects will not use a 
reformatter on their code unless it is a good one. Bob Nystrom [Nystrom 2015] 
reports that the “hardest program I’ve ever written… [was a good] automated 
code formatter. … Getting [great] quality [sufficient so people will use it] 
means applying pretty sophisticated formatting rules. That in turn makes 
performance difficult. I knew balancing quality and speed would be hard, but 
I didn’t realize just how deep the rabbit hole went. … [A good formatter must 
apply] some fairly sophisticated ranking rules to find the best set of line breaks 
from an exponential solution space.” 

If getting projects and developers to accept the use of a full reformatter is a 
serious problem, an alternative might be a reformatter that only changes the 
format in specific cases. For example, a reformatter could forcibly reformat 
code so that a line switched to a comment mode will not switch to a non-
comment-mode before the end of that line, but the reformatter would 
otherwise leave the format alone. 

A potential problem with code reformatting tools is that they are typically not 
developed with the assumption that the code they are reformatting is 
malicious. As a result, the code reformatters may themselves have bugs, and 
some might be exploitable. For example, see the BUGS section of GNU 
indent’s manual, which notes some of its known bugs [FSF 2008]. It may be 
wise to recompile code before and after reformatting to ensure that the 
reformatting did not change its meaning. Note that this can be done even in 
language implementations that do not compile to machine code (such as 
typical uses of Java, Python, and JavaScript). In these cases the compilation 
could be implemented as a translation to bytecode (for Java or Python) or as 
minification (for JavaScript). 
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4. Use compiler warnings and style checkers that perform static analysis to 
detect misleading or dangerous constructs. 

Many underhanded code examples depend on common mistakes. Tools such 
as compilers (with warnings enabled) and style checkers can warn about many 
common mistakes and thus should be useful in countering some kinds of 
underhanded code. In some cases, these tools will allow the potentially 
dangerous construct without a warning, but only after some marking on the 
construct is added to the source code. This marking signals to both developers 
and reviewers where a potentially dangerous construct is being used. Many 
style guides forbid some error-prone constructs, and their rules forbidding 
such constructs can be enforced by compiler warnings and style checkers. 

There are many style guides, and widely used programming languages 
typically have at least one style guide available. One especially well-known 
guide is the set of software development guidelines for the C programming 
language by the Motor Industry Software Reliability Association (MISRA). 
This set is called MISRA C, and its goal is to aid in the “consistent [and] safe 
use of C in critical systems.” [MISRA 2012]. There have been some published 
objections to the older 2004 version of MISRA C based on quantitative 
analysis. Les Hatton applied the 2004 MISRA C rules to a set of real code and 
found that the “real to false positive ratio is not much better in MISRA C 2004 
than it was in MISRA C 1998 and it is unacceptably low in both” [Hatton 
2005]. [Boogerd 2008] raised similar concerns. A longer discussion of 
MISRA C, through its 2012 version, is presented in [Bagnar 2018], which 
argues that MISRA C is not intended for “bug finding” but for “error 
prevention” in critical applications. This paper states that, “the use of MISRA 
C in its proper context is part of an error prevention strategy which has little 
in common with bug finding, i.e., the application of automatic techniques for 
the detection of instances of some software errors. … The deviation process 
is an essential part of MISRA C: the point of a guideline is not ‘You should 
not do that’ but ‘This is dangerous: you may only do that if (1) it is needed, 
(2) it is safe, and (3) a peer can easily and quickly be convinced of both (1) 
and (2).’ [Consider it an effective way] to rule out most C language traps and 
pitfalls. The attitude with respect to incompleteness is entirely different 
between the typical audience of bug finders and the typical audience of 
MISRA C. Bug finders are usually tolerant about false negatives and 
intolerant about false positives. ... This is not the right mindset for checking 
compliance with respect to MISRA C: false positives are a nuisance and 
should be reduced and/or confined as much as possible, but using algorithms 
with false negatives implies that those in charge of ensuring compliance will 



 

4-6 

have to use other methods. So, compliance to MISRA C is not bug finding 
and, of course, finding some, many or even all causes of run-time errors does 
not imply compliance to MISRA C.” 

Here are a few specific examples of such rules that could help find 
underhanded code (some of which are specific to C or C++): 

o Require special syntax for easily confused operators (e.g., = vs. == in 
C and C++). This can be enforced by the compiler or a style checker. 
This is less of an issue in Java (where in most cases only one is 
possible), but in languages such as C and C++, this is a significant 
issue. One approach, which can be enforced by the compiler, is to 
require “extra” parentheses that are not required by the language 
syntax when “=” is used instead of “==” inside a conditional, to signal 
to the compiler and human reviewers that the “=” is intentional (and 
that further review is warranted). This approach is implemented by the 
gcc warning flag -Wparentheses (this warning flag is enabled by gcc 
warning flag -Wall) and is used by the Linux kernel developers. 

o Require enforcement of the Software Engineering Institute (SEI) 
CERT C Coding Standard [SEI 2018] rule EXP19-C, “Use braces for 
the body of an if, for, or while statement.”5 

o Detect and prevent misleading indentation. The Apple “goto fail; 
goto fail;” vulnerability has already shown that misleading 
indentation can pass review and lead to a dangerous vulnerability 
[Wheeler 2017]. 

o Detect “dead” code, as reviewers might not realize that some of the 
code they are reviewing will not be executed. 

5. Use static source code analysis security analyzers (e.g., Fortify, Coverity, and 
cppcheck). 

These tools perform detailed security-related analysis to detect security 
problems, such as some buffer overflows and array out-of-bounds access in 
languages where these problems can occur. 

6. Forbid unnecessary use of dangerous constructs (e.g., C’s #define), or 
constrain them to reduce their risks. 

                                                
5 The exact text of rule EXP19-C, and a list of some of the tools that implement it, is at 

https://wiki.sei.cmu.edu/confluence/display/c/EXP19-
C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement 

https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
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Here are some examples: 

o In C and C++, forbid use of the dangerous #define macro system if 
there is some other way to express the construct (e.g., by using 
constants or normal functions). When #defines are used, require that 
the name must have only uppercase letters (at least one), underscores, 
and digits; this is the usual convention (as it makes macros stand out), 
and it also makes it impossible for macros to override keywords 
(which are lowercase). In addition, require that macros be fully 
parenthesized (e.g., every parameter use must be in parentheses to 
prevent surprise expansion). To reduce effort, an exception could be 
granted to allow macros of simple constants (e.g., #define NAME 0), 
as these are harder to exploit in underhanded code. Finally, require that 
every #define macro be carefully reviewed by multiple people to 
search for errors specifically caused by macro expansion. 

o Forbid using the same name in multiple visible scopes. Many 
languages allow names in an inner scope to “hide” or “shadow” the 
same name present in an outer scope, even when both scopes are 
lexically visible. Although doing this has clear semantics, it is easy to 
confuse developers and reviewers when the same name has multiple 
meanings. 

o Forbid the use of keywords or common library built-ins as names for 
other constructs (such as variable names), or at least require additional 
markings for their use. 

o Carefully review any compiler options (especially those other than 
warning flags), as such options can change how the source code is 
interpreted. 

7. Forbid (or at least strongly warn about) the use of characters that can be 
confused with other characters. 

o For example, prevent the use of lowercase “l” and uppercase “O” as 
individual tokens, as they are easily confused with the digits 1 and 0. 
It might be useful to warn about tokens where swapping these letters 
with digits could result in a different token or legal number. 

o This could be generalized further to prevent the use of similar-looking 
Unicode characters beyond ASCII characters (e.g., by requiring that 
only ASCII characters be used, or that only a certain set of clearly 
distinguishable characters are allowed in source code). This would 
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prevent, for example, swapping the Greek uppercase character alpha 
(“Α”) with the Latin uppercase character “A”. 

8. Require that only “good” characters be allowed in source files (or at least 
detect when a non-good character occurs). 

For example, there could be a rule that requires source code be only UTF-8 
(or even only ASCII characters) and that the only control characters allowed 
are newline, carriage return, and tab. In many projects, the tab character is 
either forbidden or is only allowed as a sequence of zero or more tabs at the 
beginning of a line; in such projects, this rule could be enforced by tools. 

Many source files are only supposed to contain ASCII characters; if so, that 
rule should be enforced. A variant would be to require UTF-8, but only allow 
ASCII outside of comments. It would be possible to allow arbitrary UTF-8 in 
constant strings, but it might be more challenging to counter underhanded 
code if this were allowed. If UTF-8 is allowed outside of comments, it might 
be useful to limit which character groups are permitted (e.g., to prevent 
swapping the Greek uppercase character alpha (“Α”) with the Latin uppercase 
character “A”). If UTF-8 is allowed, the source files should probably be 
required to use a single normalization method so that the “same” characters 
will have exactly the same sequence of bytes. 

9. Use runtime memory corruption detection when handling code from memory-
unsafe languages (e.g., by using address sanitizer (ASAN)). 

C and C++ programs are often vulnerable to various memory corruption 
problems, such as bounds-checking errors, pointer errors, and double-frees. 
Techniques such as ASAN can detect many kinds of memory problems during 
program execution. If combined with a good automated test suite, ASAN can 
detect memory problems throughout the execution of the test suite. Runtime 
memory corruption detection mechanisms can also be used during production; 
using ASAN in production can have a significant performance and memory 
cost when applied to C/C++ programs (it typically halves execution speed), 
but these costs may be acceptable in some cases. 

10. Use fuzzing with assertion checking, and also enable ASAN when doing so if 
the language (as used) is not memory-safe. 

Fuzzing can detect a variety of defects in software. When the language (as 
used) is not memory-safe, ASAN can help detect memory safety errors. While 
no guarantee, these methods can still detect certain kinds of defects that might 
elude other methods. 
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11. Test software with good test coverage (at least good branch and statement 
coverage). 

Testing can detect a variety of problems. Test coverage measures can help 
determine if code is untested or poorly tested. Poorly tested code may have 
good branch and statement coverage, but code with poor branch and statement 
coverage is, by definition, poorly tested (as many parts of the code never get 
tested at all). 

12. Force undefined or poorly defined constructs to have safer semantics, or at 
least detect such constructs. 

[Regehr 2010] discusses the often surprising impact of undefined behavior in 
C and C++; if undefined behavior is in the program, then the compiler is 
allowed to let it do anything—not just produce an unexpected result. This is 
not a theoretical problem. [Zdrnja 2009] discusses a vulnerability in the Linux 
kernel caused by undefined behavior, where in the construct “struct sock 
*sk = tun->sk; … if (!tun) return POLLERR;” the “if …” expression 
is silently removed by the compiler. This silent removal might be surprising 
to a reviewer, but it is allowed by the C language specification because the 
expression “tun->sk” causes the whole program to have undefined behavior 
if “tun” is NULL. [Wang 2012] discusses the problem with undefined behavior, 
demonstrates some examples, and provides some recommendations. 

In some cases, the gcc and clang compilers can detect and report constructs at 
compile time if given the flag -fcatch-undefined-behavior. They can also 
generate run-time checks to detect some undefined behavior using the option 
-fsanitize=undefined, but note that detection is not guaranteed. 

This problem can also sometimes be resolved by using compiler flags that 
cause normally undefined semantics to have much safer defined semantics. 
Examples of this include the gcc and/or clang flags -fwrapv (wrap signed 
integer overflow), -fno-strict-overflow, -fno-strict-aliasing, and -
fno-delete-null-pointer-checks. The Linux kernel, for example, enables 
several such flags to reduce risks from undefined behavior. I recommend that 
programs not be written to depend on such behavior; however, enabling these 
options may reduce the impact of a programming error. In some sense, this 
could be considered modifying the language specification through an option 
to reduce the risks from that language. 

13. Modify the programming language and/or its development environment to 
counter underhanded code or at least the constructs that some underhanded 
code exploits. 
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This is the approach taken by Solidity, as discussed in [Reitwiessner 2017]. 
Modifying a programming language’s specification so that formerly 
undefined constructs become officially defined could be considered part of 
this category. 

14. Use a programming language that has fewer misleading constructs and/or is 
harder to write underhanded code in. 

[Walker 2005] emphasizes this point, noting that many of the C and C++ 
constructs exploited by some underhanded code cannot occur in Java. In 
particular, switching from a memory-unsafe to a memory-safe language can 
prevent a large number of vulnerabilities. It is typically costly to translate or 
rewrite substantial code bases into another programming language, but in 
some cases it may be worth it. 

15. Learn continuously. 

There should be continuous efforts to look for new techniques for creating 
underhanded code. Continued underhanded code contests can help with this. 
These efforts to search for potential problems must be coupled with efforts to 
update languages, tools, and configurations to counter underhanded code as 
new techniques are discovered. Over time, this learning process should make 
it increasingly difficult for attackers to develop underhanded code that can slip 
through both human reviewers and other countermeasures. 
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5. Examination of Obfuscated V Contest 
Entrants 

A reasonable first step for determining if some countermeasures would be effective 
would be to examine, in more depth, a set of underhanded code. As noted earlier, the first 
known public set of underhanded code is from the Obfuscated V Contest in 2004. As this 
was the first data set available, it seemed appropriate to start with it. The goal of the 
programs from this contest was to miscount votes while appearing to count votes correctly; 
some programs even managed to miscount votes only on Election Day while appearing to 
be correct. In this chapter, I briefly discuss and analyze the data set. Details are presented 
in Appendix B. 

A. Obfuscated V Contest Data Set 
The Obfuscated V data is a set of underhanded code written in C or C++ (mostly in 

C). The data set includes commentary on each program explaining why the contest 
organizers believed the program did not work as expected. I used this summary to identify 
the specific lines of code that were part of the attack. 

Note that I looked at this data set as merely samples of underhanded code. I did not 
do an analysis of any real voting system’s security as a whole. For example, it is widely 
agreed by experts that mandating the use of voter-verified paper ballots is a necessary 
minimum step for secure voting [Gambhir 2019]. However, issues such as the need for 
paper ballots were beyond the scope of this paper. 

The efforts to find the specific malicious lines of code revealed an interesting 
problem: even if a human knows the code is malicious, and has a hint about why it is 
malicious, the problem can be hard to find. In four entries, I found that the original contest 
summaries were wrong, misleading, or lacking the attack code (I reported these problems 
to the contest runner, Daniel Horn): 

1. Ryan Cumings: The original summary was “Complex code to hide a simple 
O vs 0 swap.” Although the O vs. 0 is present on line 112, this is not the 
problem that causes the code to incorrectly count votes. Instead, the primary 
problem is the misuse of the modulus operator “%” on lines 130, 135, 140, 
and 144, which causes all votes to only apply to rows 0 or 1 of the table “tbl.” 

2. Travis Fisher: The original summary was “macro madness... replaces the 
unsigned char Vote with a crazy expression that does some vote skewing (this 
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is done on the gcc command line).” However, the compiler expression that 
caused the attack was not originally documented. After I reported the problem, 
Daniel Horn added the following text: 

Unfortunately since the exact command line was lost to the sands of 
time, this one will need to suffice: gcc -Disspace="'K'==" 
macro_tfisher.c 

This compiler option subverts the otherwise correct code by redefining isspace 
(which normally just returns true if the character given is a space) into a 
comparison to the letter “K” (that is, it becomes an expression that returns true 
if the character given is a “K”). While this option does subvert the system, it 
is extremely obvious. Compilers do support definition of macros, but it is 
suspicious to set a macro named with lowercase letters (by convention only 
uppercase letters are used), it is very suspicious to use a compiler to define a 
non-constant value (any value after an “=” would normally be an integer), and 
it is extremely suspicious to redefine a well-known standard name like isspace 
through a compiler option. 

3. Geir Thomassen: The original summary was “#define of EOF to changing 
input to bush using comma operator.” The attack code is missing; there is no 
#define of EOF and no use of the comma error. 

4. Brad Grzesiak: The original summary was “gets instead of equals.” There is a 
function named gets in C, but this sample never calls that function. The word 
“gets” is sometimes used informally to refer to assignment (“=”), and that is 
probably what was meant. I believe a clearer description of the problem would 
be “Use of = instead of the correct == in lines 8-10.” 

As the published sample from Geir Thomassen (gthomassen) does not have an attack, 
it was excluded from the analysis. The rest were used after their information was corrected. 
This left a total of 40 samples of underhanded code for analysis (once the sample by Geir 
Thomassen was removed). 

B. Brief Examination of the Obfuscated V Contest Data Set 
After examining the specific vulnerable lines of code for each of the 40 samples, I 

looked for some common patterns. Certain kinds of underhanded code were especially 
common. Out of these 40 samples, 5 involved write or read overflow, 9 involved misuse 
of the C #define macro mechanism, 7 involved character confusion (confusing lowercase 
“l” with the digit “1” or confusing uppercase “O” with the digit “0”), 2 involved code 
hidden within a comment, and 2 involved confusion between = (assignment) and == 
(equality). This means that 62.5% (25/40) of the sample attacks are covered by these 
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specific problems. This is already encouraging, as it appears that certain kinds of problems 
repeat (in some cases, many times). 

A related observation is that many of these underhanded code samples exploited 
common mistakes that occur in normal code. For example, switching between = 
(assignment) and == (equality) is a common well-known mistake many software 
developers have made. This means that tools designed to detect common mistakes (such as 
compiler warning flags) might be helpful for detecting underhanded code. 

I then selected five simple countermeasures, in part based on this simple 
categorization: 

1. ASN: Is this attack expected to be detected if run using Address Sanitizer 
(ASAN)? 

2. #d: Is this attack expected to be countered if the use of #define is sharply 
curtailed? The idea is to require that #define (which is easy to misuse) may 
only be used if the construct cannot be implemented another way (e.g., via 
const constants and normal functions), and by imposing limits on #define. 
This could be enforced during a code review. 

3. L1: Forbid the use of lowercase “l” and uppercase “O” in a name as these are 
too similar to the digits “1” and “0.” This includes the use as a variable name, 
constant name, or enumerated value. More generally, this rule should ensure 
that names in a scope must be distinguishable from each other and from 
integer constants if lowercase “l” and the digit “1” and uppercase “O” and the 
digit “0” are arbitrarily swapped. This could be implemented by a tool; for this 
paper, I simply determined if a tool (if implemented) could find the 
underhanded code. This approach could be further generalized to prevent the 
use of similar-looking Unicode characters that could lead to confusion. 

4. Co: Require developers to use syntax-coloring text editors (which reveal code 
in comments) and forcibly reformat code so that once a line has switched to a 
comment mode, it may not switch to a non-comment-mode before the end of 
that line. 

5. gcc: Process the code through various gcc warning flags to detect potential 
problems. In particular, run gcc with the options “-Wall -Wextra -pedantic -
Wbad-function-cast -Wstrict-prototypes -Wundef -Wshadow -Wlogical-op –
Wconversion.” This enables a large set of warnings about various potentially 
dangerous constructs; in particular, “-Wall” includes many other warnings. 

I then examined which samples from the Obfuscated V Contest would be detected by 
which countermeasure. For example, for the “gcc” countermeasure, I ran gcc (with the 
warning flags as listed above) on each sample to see if gcc provided a relevant warning. I 
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found that 75% (30/40) of the samples were detected by at least one of these five simple 
countermeasures (see Appendix B for details). I believe this is a remarkably high 
percentage of underhanded code that could be caught by such a small set of simple 
countermeasures. 

In fact, 77.5% (31/40) should have been detected by this set of simple 
countermeasures. The sample by Kristian Nielsen knielsen (file knielsen.c) should have 
been detected due to its misleading indentation (in this sample, a “while” loop repeated an 
“if” statement, but the keyword “if” and “while” had the same indentation). This suggests 
that there is a bug in the implementation of the misleading indentation detector in the 
version of gcc used. I reported this defect to its developer. This example suggests a larger 
lesson: if warning flags are to become an important part of security, it is important to have 
robust test suites for these tools that are run on every change so that they are unlikely to 
have serious defects. Otherwise, there is a significant risk that the tools will not find the 
underhanded code they are supposed to find. 

Of the 22.5% (9/40) that were not detected using these countermeasures (if they had 
all worked correctly), I judge that over half (6) of them would be suspicious to human 
reviewers (e.g., because they use highly nonstandard constructs, unusual formats, or an 
unusual amount of repetition). This leaves only 7.5% (3/40) code samples that are neither 
suspicious nor detectable using the simple set of countermeasures. These samples are: 

1. mrussotto: Line 18 looks like it initializes the “Tallymap” array, but it ranges 
over sizeof(Tally) instead of sizeof(Tallymap). As a result, it only initializes 
a few values instead of all of the values of Tallymap. The attack depends on 
an unusual initialization value of Tallymap to avoid warnings about 
uninitialized values, and that could be considered somewhat suspicious. In 
short, a reviewer might ask, “Why does this code initialize an array to an 
unusual initial value and then run a loop to initialize it to the correct value?” 
The answer, of course, is that changing the code to use a correct initial value 
from the beginning would make the program work correctly. This 
underhanded code might be detected by more advanced checks to warn when 
there is a loop over only part of an array or by requiring additional human 
review of initialization values other than 0 or 1. 

2. rseace: Line 24 performs a bad type conversion. It should be possible to add 
additional compiler warnings to detect bad type conversions like this and 
report a warning if there is no explicit cast. Underhanded code like this would 
be countered by such a warning; once this kind of dangerous cast became 
explicit, it would be far more obvious to a reviewer. 

3. jsohn: Line 27 incorrectly checks twice that a value is “n,” instead of both “n” 
and “N,” in the expression ((Vote == 'n') || (Vote == 'n')). This could be 
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detected by a compiler mechanism (or warning) that notices useless operations 
such as checking for the same condition twice in an OR expression. This 
would be a generally useful warning, as it could even detect some potential 
defects in non-underhanded code. In addition, compiler optimizers already 
look for common subexpressions, so this check might be relatively easy to add 
to optimizing compilers. 

In short, the few countermeasures were effective at countering many underhanded 
code samples, and I believe additional countermeasures could be developed to counter the 
rest of the underhanded code samples that were not already suspicious. 

On a more personal note, I found that although it was hard to find some of these 
attacks at first, it became easier over time. This effect could simply be because the samples 
were sorted from hardest to easiest to find. However, I believe that there is another factor—
once a reviewer reads some underhanded code, it becomes easier to find other underhanded 
code (especially when it uses a similar kind of attack). This suggests that training could be 
useful. If this effect is valid, then in cases where underhanded code could cause serious 
damage, reviewers could be trained to look for underhanded code (using samples), and this 
training might dramatically increase the probability of detecting such code. 

It could be claimed that this approach is unfair, as I knew what to look for before 
selecting countermeasures. However, the goal is to merely demonstrate that it is often 
possible to detect underhanded code using a small set of simple general countermeasures. 
For that goal, this is a reasonable approach, and I believe I have demonstrated that it is 
possible. 
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6. Conclusions 

Underhanded code is a challenge to counter, but this initial effort to collect samples 
and examine them suggests that it is possible. Indeed, the Solidity underhanded contest has 
already led to the developers of Solidity to change their system to counter or warn about 
dangerous constructs. The Solidity example is instructive; they could not necessarily 
counter everything, but they could reveal many attacks, make others hard to exploit, and 
document what reviewers should specifically look for. 

I performed a simple analysis of the Obfuscated V sample data set. In this analysis, I 
found that the five selected simple countermeasures were able to detect 75% (30/40) of the 
sample underhanded code. One was not detected due to an error in one of the tools, and I 
believe another six would be considered suspicious to reviewers, so only 7.5% (3/40) of 
the underhanded code would have slipped through these five simple countermeasures and 
initial review. I have also identified potential countermeasures that I believe would address 
the remaining underhanded code samples. This suggests that countering underhanded code 
is by no means an impossible task. Instead, I believe this provides evidence that a relatively 
small set of simple countermeasures can significantly reduce the risk from underhanded 
code. 

Attackers have an important pair of constraints when creating underhanded code: they 
must write code that does a specific wrong thing and the code must look like it is doing the 
right thing. That is a challenging pair of constraints. Today, an attacker’s job is much easier 
because countermeasures are rarely applied with the purpose of countering underhanded 
code. If a set of broadly useful countermeasures is used to counter underhanded code, the 
attackers’ task is likely to become much harder and their risk of exposure would 
dramatically increase, reducing the risk to end users. 

Underhanded code countermeasures need not be perfect. Instead, they simply have to 
be good enough to dissuade potential attackers from trying them or, if that fails, good 
enough to provide a decent likelihood of detection and/or reduced impact. It would 
probably be best if some of the countermeasures were publicly known, whereas the details 
of other countermeasures would be kept private. Some countermeasures are obvious, so it 
would be impractical to try to make all countermeasures private. The publicly known 
countermeasures would also help others be more aware of underhanded code and help 
detect many kinds of underhanded code in any software system. Keeping the details of few 
countermeasures private (while letting the world know that added countermeasures are 
being used) would ensure that adversaries would not know exactly how to work around the 
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entire set of countermeasures, increasing the risks to adversaries that they will be 
discovered. Ideally, those added risks would dissuade them from creating underhanded 
code in the first place. 

The countermeasures I examined in this paper focused on countering underhanded 
code that exploits issues in programming languages and their environment. Some 
underhanded code, such as many of the winners of the Underhanded Crypto Contest, 
focused instead on higher-level weaknesses in the algorithms they implemented. I did not 
try to examine this underhanded code in detail. However, these winners suggest that at least 
in highly technical and specialized fields, such as cryptography, software reviews must be 
carried out in depth by specialists in that field. This should not be terribly surprising, and 
it is a reasonable requirement for important and specialized areas like cryptography. It may 
be possible to develop additional countermeasures for these kinds of underhanded code. 
Even if it is not, if other kinds of countermeasures are developed and deployed, they will 
reduce the likelihood that a human reviewer would be misled by other tricks and could 
instead spend time on deeply understanding what the software does. 

The next step would be to examine more attack samples to categorize attacks in more 
detail, create a larger list of countermeasures, and create a larger matrix to show which 
countermeasure would counter which attack. This would then be used to identify a 
recommended set of underhanded code countermeasures that should be applied in 
important situations. Where possible, some of these countermeasures should be widely 
available (e.g., as extensions to existing open source software compilers), so that those 
countermeasures can be applied. Until that time, the short list of countermeasures I have 
developed should be considered by reviewers when the risk of underhanded code is 
heightened. The final goal would be to ensure that attacks using underhanded code on 
important systems are unlikely to pass undetected through the development process to end 
users. 
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. 
Downloading Samples 

I created a “makefile” to download and extract many samples of underhanded code. By 
creating a makefile, data sets can be re-downloaded if these sources change or if there is 
some other problem. One could simply put this information into a file named “makefile” 
and run “make” (once “make” is installed). This makefile presupposes that the 
subdirectory “raw” exists and that the program wget is installed. 

 
WGET = wget -r --level inf --convert-links --random-wait 
WGET_ONE = wget 
 
all: download 
 
tarball: 
 tar cvzf underhanded-samples.tar.gz raw/ makefile 
 
# The "raw" subdirectory contains the "mostly-raw" original website contents; 
# we assume "raw/" already exists. The contents of the "raw/" subdirectory 
# are not *exactly* the same as original websites in all cases 
# because we use --convert-links to convert the 
# hyperlinks into a version that will work correctly in a local copy. 
 
# To force a reload, just delete the ".t" timestamp file corresponding 
# to the data source. 
 
# The "underhanded C" website only shows winners, not all entries. 
raw/www.underhanded-c.org.t: 
 cd raw; $(WGET) http://www.underhanded-c.org/ 
 touch "$@" 
 
raw/obfuscated_v.t: 
 mkdir -p raw/obfuscated_v 
 cd raw/obfuscated_v ; $(WGET) -nH --cut-dirs=2 --no-parent \ 
  http://graphics.stanford.edu/~danielh/vote/vote.html 
 touch "$@" 
 
raw/underhanded_crypto.t: 
 cd raw ; \ 
  git clone https://github.com/UnderhandedCrypto/entries \ 
  underhanded_crypto 
 touch "$@" 
 
raw/underhanded.rs.t: 
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 cd raw; $(WGET) https://underhanded.rs/en-US/ 
 touch "$@" 
 
raw/misdirect.ion.land.t: 
 cd raw; $(WGET) http://misdirect.ion.land/ 
 touch "$@" 
 
 
# TODO: Not getting the jsfiddle.net files from javahacker, so 
# don't really have the samples 
# raw/javahacker.t: 
#  cd raw; $(WGET) --domains=javahacker.com,jsfiddle.net --level 2 \ 
#   https://javahacker.com/the-first-javascript-misdirection-contest/ 
#  touch "$@" 
 
raw/uscc.t: 
 cd raw; git clone https://github.com/Arachnid/uscc 
 touch "$@" 
 
# This is somewhat odd - maybe we shouldn't include these. 
raw/2-2-5.t: 
 cd raw; mkdir -p 2-2-5; cd 2-2-5; \ 
  $(WGET_ONE) https://codegolf.stackexchange.com/questions/28786/write-a-
program-that-makes-2-2-5 ; \ 
  mv write-a-program-that-makes-2-2-5 write-a-program-that-makes-2-2-
5.html 
 touch "$@" 
 
raw/sort.t: 
 cd raw; mkdir -p sort; cd sort; \ 
  $(WGET_ONE) 
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-
not-so-quick-sort ; \ 
  mv underhanded-code-contest-not-so-quick-sort underhanded-code-contest-
not-so-quick-sort.html 
 touch "$@" 
 
raw/upython.t: 
 cd raw; mkdir -p upython; cd upython; \ 
  $(WGET_ONE) 
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16 ; \ 
  mv e47d359470d5e18a357c67d9e4328c16 upython.html 
 echo 'NOTE: Must manually extract' 
 touch "$@" 
 
# Some of the code was hand-extracted into april-fools 
raw/april-fools.t: 
 cd raw; mkdir -p april-fools; cd april-fools; \ 
  $(WGET_ONE) https://codegolf.stackexchange.com/questions/114891/april-
fools-day 
 touch "$@" 
 
# Linux kernel attack hand-copied from: 
# https://lwn.net/Articles/57143/ 
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download: \ 
 raw/www.underhanded-c.org.t \ 
 raw/obfuscated_v.t \ 
 raw/underhanded_crypto.t \ 
 raw/underhanded.rs.t \ 
 raw/misdirect.ion.land.t \ 
 raw/uscc.t \ 
 raw/2-2-5.t \ 
 raw/sort.t \ 
 raw/upython.t \ 
 raw/april-fools.t 
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. 
Detailed Analysis of Obfuscated V Entries 

This appendix provides a detailed analysis of each entry to the Obfuscated V Contest, 
including the specific lines of code that cause the errors and a discussion of how their 
attacks could be countered. 

This 2004 contest produced helpful commentary on each scored submission 
(scores.html). Not all submissions were scored, but as the site only posted code for scored 
submissions, that is all I could use. There were two sub-categories, “Date Specific 
Programs” (shown first) and “Date Agnostic Programs.” The latter group begins with the 
entry for Michal Zalewski (mzalewski) below. All of the “Date Agnostic Programs” could 
be exposed by good tests (as they always produce wrong answers in some cases), but these 
entries still provide helpful examples of tricks an attacker might try. 

The following table examines each entry (where each row is an entry). The first few 
columns describe the contest entries as follows: 

• Score: Score per the contest organizers (10 is the maximum possible score). 

• Author: Author name. 

• File: Filename (the extension may be omitted). 

• Original Summary: The original summary from the Obfuscated V Contest. 

• My Summary: My summary, including identification of the specific line 
numbers that cause the code to be malicious. 

• SUS: “Suspiciousness.” The original Obfuscated V scoring system preferred 
programs “that [look] most correct,” but some of these programs used 
constructs that would be highly suspicious to a non-novice developer (even 
without hints such as syntax coloring by an editor). If code looks suspicious, 
it is not good underhanded code, because suspicious code invites further 
review regardless of whether the reviewer can quickly see the problem. 
Examples of suspicious code includes code with a large number of nonsense 
#define constructs, the use of #define with lowercase names (a nonstandard 
practice), and highly nonstandard compiler options that seem almost certain 
to cause problems. An “X” means I believe it is suspicious, while a “-” means 
I believe it is not. This is a judgment call, but I believe it is an important one; 
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even if the error is not apparent, code that looks suspicious is much more likely 
to get additional review in cases where its correctness is vital. 

The next columns briefly determine if a given entry fits into certain categories: 

• Ov?: Does this attack depend on an overwrite out-of-range read/write, such as 
a classic buffer overflow? 

• #d?: Does this attack depend on misuse of the #define macro? 

• L1?: Does the attack depend on confusing lowercase “l” with the digit “1” or 
uppercase “O” with the digit “0”? 

• Co?: Does the attack depend on misleading comments (code in comments)? 

•  ==?: Does the attack depend on confusing “=” (assignment) with “==” 
(equality)? 

The next columns determine if a particular countermeasure will counter that entry: 

• ASN: Is this attack expected to be detected if run using ASAN? ASAN works 
by monitoring every memory area to determine if it is allowed to be currently 
used (read or written); it approximately halves the speed of execution, but it 
may be acceptable if the task is important. Note that, due to lack of time, I did 
not actually run ASAN on every program, but given how ASAN works, I 
believe the results would be as shown. 

• #d: Is this attack expected to be countered if the use of #define is sharply 
curtailed? The idea is to require that the use of the #define macro (which is 
easy to misuse) may only be used if the construct cannot be implemented 
another way (e.g., by using const constants and normal functions). The name 
of any macro must have only uppercase letters (at least one), underscores, and 
digits; this makes macros stand out and also makes it impossible for them to 
override keywords. Macros must be fully parenthesized (every parameter use 
must be in parentheses to prevent surprise expansion, and non-trivial whole 
expressions must also be parenthesized). An exception may be granted for 
simple constants (e.g., #define NAME 0). Finally, every #define macro must 
be carefully reviewed by multiple people to search for errors specifically 
caused by macro expansion. 

• L1: Forbid the use of lowercase “l” and uppercase “O” in names as these are 
too similar to the digits “1” and “0.” This includes the use as a variable name, 
constant name, or enumerated value. More generally, this rule should ensure 
that names in a scope must be distinguishable from each other and from 
integer constants if lowercase “l” and the digit “1” and uppercase “O” and the 
digit “0” are arbitrarily swapped. 
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• Co: Require developers to use syntax-coloring text editors (which reveal code 
in comments) and forcibly reformat code so that a line switched to a comment 
mode may not be switched to a non-comment-mode before the end of that line. 

• gcc: Process the code through gcc with many warning flags enabled to detect 
potential problems. For these experiments, I ran gcc with the options “-Wall -
Wextra -pedantic -Wbad-function-cast -Wstrict-prototypes -Wundef -
Wshadow -Wlogical-op -Wconversion”. This enables a large set of warnings 
about various potentially dangerous constructs; in particular, “-Wall” enables 
many other warnings.6 

This countermeasure will detect simple misuse of = vs. ==, because “-Wall” 
enables “-Wparentheses,” an option that warns “if parentheses are omitted in 
certain contexts, such as when there is an assignment in a context where a 
truth value is expected…” Put another way, “-Wparentheses” requires extra 
parentheses when a = is used where == would normally be used. These extra 
parentheses indicate to developers and reviewers that they should look 
carefully at the construct. 

This countermeasure should also detect misleading indentation, because the 
option “-Wall” also enables the option “-Wmisleading-indentation” to detect 
misleading indentation. Note that the option “-Wunreachable-code” was not 
used; this option no longer works in gcc, so using it would be misleading. 

The table results shown below were created by running gcc version 7.5.0 on 
Ubuntu 18. 

I used gcc because it is a widely used compiler. There are many other 
compilers with warning flags (such as clang), and in addition, there are many 
other static analysis tools that can also detect various problems in code. If the 
task is important, many of those tools might be used together, but due to 
limited time, I used only one of them. 

• ALL: An “X” (true) is shown in this column if at least one countermeasure 
detected this underhanded code (that is, if any of the following columns has 
an “X”: ASN:, #d, L1, Co, or gcc). 

 

                                                
6 Note that all of the options here have a leading hyphen-minus and embedded hyphen-minus, where 

hyphen-minus is ASCII decimal 45 aka Unicode U+002D. Throughout the rest of this appendix only the 
hyphen-minus is used; if anything symbol appears to be a related but different symbol, such as the N 
dash “–“ or M dash “—,” it is a mistake and should be read as hyphen-minus. This is important because 
only the hyphen-minus is accepted by the programs discussed here. 
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Many of these underhanded programs make an unrelated common mistake: they use 
a printf format of “%d” but pass in a value with a different type, usually long int or long 
unsigned int. In many circumstances, it will work anyway, but the correct printf format to 
use is “%ld” for a long int and “%lu” for a long unsigned int. The gcc warning flag “-
Wformat” warns of this error. Another common mistake in these entries is a failure to 
#include the appropriate header files; in many circumstances, this works anyway, but gcc 
would often report a number of warnings (depending on the specifics). I did not count these 
(correct) reports as finding the underhanded code, as, in practice, a developer might just 
fix those problems and the result would still be underhanded. I only counted gcc as finding 
the underhanded code if gcc specifically identified a line with a report that directly revealed 
the underhanded code. 

 

 



 

B-5 

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 

7.0 Paul 
Parkanzky 

pparkanzky Uses the fact that 
the string "second" 
has more words 
than "first" or "third" 
to cause a buffer 
overrun and skew 
results. Just gives 
them to Bush, not 
uninitialized 
memory like Matt 
Eastman. 
 

Classic buffer overflow (CWE-120). 
Detectable with buffer overflow detectors 
(run-time & maybe static), certainly 
countered with ASAN. 
The key problem is line 48, which is an 
sprintf that prints to an array with inadequate 
space (as allocated in line 33). Complaining 
about sprintf (e.g., requiring snprintf instead 
of just using sizeof(LigMesg)) would do 
enough to detect it. 
Run-time mechanisms that create large "red 
zones" between memory allocations inside 
the stack would not detect it, but they would 
make this exploit fail. 
Aside: Function getDay uses malloc() in 
some cases and a pointer to constant in 
others, making it impossible to deallocate its 
results safely (and thus guaranteeing a 
memory leak). That's ugly, but by itself that's 
not a vulnerability. 
This is detected by gcc warning -Wformat-
overflow. 

- X - - - - X - - - X X 

7.0 Jasvir 
Nagra 

jnagra Uses the fact that 
the string "second" 
has more words 
than "first" or "third" 
and the fact that 
the times between 
10 and 12am have 
2 characters to 
cause a buffer 
overrun and skew 
results. Just gives 

Classic buffer overflow (CWE-120). This is a 
derived version of Paul Parkanzky's code, 
so similar comments about 
countermeasures apply. This is detectable 
with buffer overflow detectors (run-time & 
possibly static ones). This is certainly 
countered by ASAN. The key problem is line 
68, which is an sprintf that prints to a fixed 
buffer allocated on line 44. This is detected 
by gcc warning -Wformat-overflow. 

- X - - - - X - - - X X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
them to Bush, not 
uninitialized 
memory like Matt 
Eastman. 
(Submitted past 
deadline, no 
victory) 

6.7 Matthew 
Eastman 

meastman pointer arithmetic, 
stack smashing 

CWE-787: Out-of-bounds Write (child of 
CWE-119: Improper Restriction of 
Operations within the Bounds of a Memory 
Buffer). The vulnerability is in function 
isElectionDay(). Line 44 passes "&now" to 
isElectionDay as the parameter "givenTime", 
a pointer to time_t. Line 102 executes 
"givenTime--", which does not produce "one 
second earlier" as it might appear. This is a 
pointer decrement, and thus this decrement 
produces a pointer to the *earlier* data. It 
calls "struct tm *localtime_r( const time_t 
*timer, struct tm *buf );" It's passed 
"givenTime", which is valid for the type 
(since it's a pointer to a time), but now it 
points to the voting data instead of a time. 
Line 108 then overwrites the value. The 
comments around 102 and 108 do a good 
job of fooling the human into believing that 
what's being done is reasonable (there's 
really no good reason for the write on line 
108, but the comment does a decent job of 
justifying the code). No problems were found 
by gcc -Wall -Wextra, because the types are 
valid. 

- X - - - - X - - - - X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 

6.0 Jamie 
Strachan 

sov.cpp Uses shell script to 
compile a file, run 
it, morphing it into 
another file to run 
and skew the 
votes. 

Shell script manipulation. 
Human review is likely to be sufficient to 
reveal this underhanded code, or at least 
raise significant suspicions, because it uses 
an extremely unusual approach for 
compilation and the shell script to do so is 
obviously obfuscated. In short, this is not 
well-hidden underhanded code. Its text says 
it's a "script and a source file" but lines 1-8 
use a sequence of "set" commands that 
don't work on typical command interpreters 
like bash or dash. This code appears to 
assume that the default script system is csh, 
which would be extremely unusual. 
Lines 1-8 (the script sequence) looks very 
much like obfuscated code, which gives it 
away all by itself to a human reviewer. In 
addition, lines 136-137 expressly give away 
the "Sleight", which would probably be 
immediately rejected by a human review. 

X - - - - - - - - - - - 

5.6 Chris 
Ruppert 

cruppert pushes bush to 
nader after nov2 
deadline by 
#defining a strange 
macro that inserts 
itself into a case 
statement. 
#defining break, a 
language keyword, 
is pretty giveaway 
that something is 
up. 

Misuse of #define. This requires compilation 
to redefine language keyword "break". 
Human review is likely to be sufficient to 
reveal this underhanded code. Redefinition 
of a language keyword is highly unusual and 
suspicious. Line 54 detects the 
recommended setting of "break" to 1, 
undefines it in lines 56-57, and then 
redefines it in line 65+ in a multi-line 
definition that splits the keyword across 
multiple lines to try to hide what it's doing 
(but isn't very good at it). The gcc compiler 

X - X - - - - X - - - X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
warnings might be enough of a hint, but they 
are vague enough that I do not count them. 

5.3 Michal 
Forisek 

mforisek 5.3 Michal Forisek: 
mforisek: Clever 
political messages, 
uses #define to 
change "another 
number" to number 
instead of 
another_number 
,when verifying that 
the number of 
votes don't exceed 
the number of 
registered voters. 
the call to time 
could have been 
hidden better. 

Misuse of #define. Human review is likely to 
be sufficient to reveal this underhanded 
code, because this has a huge sequence of 
highly suspicious #defines. Usually #define 
would be sparing and define names in 
UPPERCASE, but these have many lower-
case definitions (which are suspicious all by 
themselves). Requiring #define to be 
sparing, and all-uppercase, would eliminate 
this attack. Line 11 "#define news" means 
"news" will be interpreted as empty, line 12 
"#define another news" defines "another" as 
"news" (thus "another" is also considered 
empty). Line 27 defines "arbitrary" as "*" so 
the line 39 "arbitrary number" is interpreted 
as "*number" instead of the more expected 
"arbitrary_number"; Line 44 uses "another 
number" instead of the "another_number" 
used elsewhere, which becomes "number", 
and note that number has been subtly 
declared as a *pointer* to an int instead of 
an int (because it's been declared as 
*number). Line 49 sets "arbitrary number = 
0", so this is really *number=0 (an 
assignment of the value 0 to whatever the 
pointer named number points to). Line 15 
defines "prime" as "time news", so the later 
call to it on line 60 is really a call to 
time().The gcc compiler warnings might be 
enough of a hint, but they are vague enough 
that I do not count them. 

X - X - - - - X - - - X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 

5.0 Scott 
Craver 

scraver Local variable l 
gets assigned to 
104 on the big day. 
When l is later used 
in place of 1 to 
multiply bush's 
count by 104. 

Confusion of letter "l" with number "1". The 
use of the single lowercase letters "l" and "o" 
as variable names is suspicious by itself, 
since they are easily confused with "1" and 
"0". Line 53 says "total = total+l;" – note that 
in this line, the variable total is incremented 
by lowercase L, not by one. That said, the 
entire sequence of lines 51-54 are 
suspicious. It's not clear that this would work 
on typical systems. 

X - - X - - - - X - - X 

4.3 Corey 
Edwards 

cedwards #define madness #define misuse. Human review is likely to be 
sufficient to reveal this underhanded code; it 
has a huge sequence of bizarre and 
unnecessary #defines. Forbidding #define 
misuse would certainly counter this. See 
lines 4-15. 

X - X - - - - X - - - X 

3.3 David 
Wheeler 

dwheeler5 Uses different code 
on election day. 

Election-day code runs incorrect code. This 
shouldn't be too hard for humans to find, but 
it isn't trivial because it uses nothing 
sophisticated to hide the problem, and thus 
will be hard to find with static analysis tools. 
That said, this remarkable amount of 
duplication – which makes the underhanded 
code slightly harder to find – would easily be 
considered suspicious by itself. Note that 
100% test coverage would trivially find the 
problem. Line 50 checks if "is_official", and if 
so, uses code on lines 59-60 which use the 
wrong tally entries (e.g., "N" for Nader). 

X - - - - - - - - - - - 

7.3 Michal 
Zalewski 

mzalewski Gives 1/10 of the 
votes to bush. 
Relies on macro 
pasting to alter the 

Misuse of #define that hides another 
variable scope with same name. This is an 
especially sneaky attack and the attack is 
not obvious to human review, so this is an 

- - X - - - - X - - X X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
apparent meaning 
of code (suddenly 
locally declared t 
hides t in the outer 
scope) 
 

especially good example of underhanded 
code. That said, it uses a macro in a way 
that is totally unjustified; by itself that is a 
little suspicious (and would be countered by 
discouraging unnecessary macro use), and 
any analysis that warned about hiding a 
variable of the same name would reveal it. 
Lines 55-70 define a lengthy macro 
VOTE_AND_CHECK; it is then invoked by 
line 78 (match case) and line 83 (unmatched 
case). Line 55 and on set up a pointer "t" to 
walk the "tally" array of "struct candidates". 
However, the macro on line 56 follows a 
special branch 1/10 of the time. The macro 
on line 57 defines its own pointer "t", so 
when line 67 increments the vote, it 
increments the first tally entry instead of the 
one requested. The gcc warning –Wshadow 
warns about the shadowing that is the 
essence of this attack. 

6.3 Kenneth 
Davis 

kdavis printf returns 0 or 1 
depending on 
debug, so if debug 
is turned on it 
returns correct 
values, other 
moves values 
there. 

Complex nested use of terniary operator 
“?:”. This is very odd code, and human 
review is likely to complain about it. Also: 
this doesn't seem to produce wrong answers 
regardless of the value of debug, so this 
doesn't seem to be a *working* attack as 
posted (at least in this test environment). 
Line 19 sets variable "debug" to value of 
DEBUG (default 1). Line 33 implements the 
attack, which is a huge Tally[...] += 1 
statement where "..." includes multiple ?:, 
calls to printf, and use of debug. printf 
returns the number of characters 
transmitted, so when nothing is output it 

X - - - - - - - - - X X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
returns 0, but when it outputs text it will 
modify results. The attack is revealed by -
Wunused-value (warning that the left-hand 
operand of comma expression has no 
effect). 

6.0 Michael 
Moore 

mmoore Comments 
obfuscate ?: 
statement that 
blocks out index. 

Misformatted comment (early termination 
due to an embedded */). This can be 
countered by reformatting comments. Line 
108 begins a comment. Line 134 ends the 
comment, but it's formatted to obscure this. 
Lines 136-144 include live code but 
formatted to try to appear as a comment. 
Line 146 *appears* to end the comment. 
Significant hints about the attack occur in 
syntax coloring (lines 136-144 are 
immediately revealed to be code not 
comments, and line 146 shows a warning in 
vim because it ends a comment that has 
already closed). The gcc warning -
Wcomment detects this. 

- - - - X - - - - X X X 

6.0 Jean-
Philippe 
Martin 

jmartin query-replace 1 l 
where l==-1, buffer 
overrun 

Classic buffer overflow (CWE-120). The 
#defines in lines 6-7 are highly suspicious, 
and trivially countered by requiring #define 
to use uppercase. This uses lowercase "l" 
as a token that is easily misunderstood as 
"1", counterable by preventing using of 
lowercase "o" and "l". Line 6-7 use #define 
to define "l" as really "t", and "t" as "-1"; Line 
29 allocates space, but instead of allocating 
enough with plus one, it uses plus 
lowercase-L which is really minus 1. Line 57 
assigns to greeting, which is now too short 
(it assigns to element 64 and 65, but the 

X X - X - - X - X - - X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
maximum index allowed is actually 63). Line 
58 overwrites greeting[LASTINDEX] with 0, 
which is now beyond the array. This is very 
dependent on exploiting the overlap 
between the "party" array defined on line 27 
and the "greeting" array defined on line 29; 
inserting extra unused space here destroys 
the attack. Note that the definition of "TRUE" 
as -1 is very nonstandard in C (bool.h 
defines true as 1) and is a little suspicious. 
In general, there are a number of 
unnecessary #defines. Note: "cromulent" 
means "acceptable or adequate" (!). 

5.7 Kester 
Maddock 

kmaddock Arrays begin at 0, 
not 1; hence 
uninitialized 
memory for the 
initial bush tally 

CWE-125: Out-of-bounds Read (child of 
CWE-119: Improper Restriction of 
Operations within the Bounds of a Memory 
Buffer) and CWE-787: Out-of-bounds Write 
(child of CWE-119: Improper Restriction of 
Operations within the Bounds of a Memory 
Buffer). 
Line 11 does a "#define 
NUM_CANDIDATES 4". Line 48 declares 
"unsigned long Tally[NUM_CANDIDATES] = 
{0}" which allocates index values 0..3 (the 
legal values) but nothing else. Line 16 does 
a "#define BUSH 4"; this means that line 77 
that does "Tally[BUSH]++;" probably 
increments something, but that value being 
increment is outside of the allocated array. 
Line 13 "#define OTHER 1" makes line 16 
look less suspicious. Line 27+ have a lot of 
useless temp* variables, which are 
somewhat suspicious. This could be called 
CWE-457: Use of Uninitialized Variable, 

- X - - - - X - - - - X 
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
though I wouldn't; the *variable* is initialized, 
just not at this out-of-bounds index value. 

5.7 Fredrick 
Oehrstroem 

foehrstroe
m 

misparenthesized 
#define statement 
causes ! to cancel 
out with !BUSH and 
makes it only true if 
!!BUSH==input 

Misused #define. Line 27 says "#define 
OTHER(v) !BUSH(v) && !KERRY(v) && 
!NADER(v)" - note the failure to surround 
the replacing #define expression with (...). 
Line 33 says "if (!OTHER(input))", however, 
this expands to "!!BUSH(v) && !KERRY(v) 
&& !NADER(v)". This can quickly countered 
by style rules that require parentheses for 
macro replacements, and also by forbidding 
the use of #define when not required. 

- - X - - - - X - - - X 

5.7 Adam Barth abarth #define, Order of 
Operations 

Line 37 (etc.) define macros that are not 
properly surrounded with (), e.g., "#define 
isKerry(v)  v==Kerry". Lines 65, 67, and 69 
invoke the macros with "!", E.g., line 65 has 
"!isKerry(v)", which would expand to 
"!v==Kerry" (a highly improbable construct). 
This has a ridiculous number of #define 
statements, counterable by limiting their use 
to "only when must occur," and can also be 
detected by requiring (...) to prevent 
unexpected expansions. The gcc warnings 
provide adequate hints about the real 
problem. 

- - X - - - - X - - X X 

5.7 Travis 
Fisher 

tfisher macro madness... 
replaces the 
unsigned char Vote 
with a crazy 
expression that 
does some vote 
skewing (this is 

Dangerous compiler options. Note: The 
code itself is fine, and the "crazy expression" 
was not originally documented. After I 
reported the problem, Daniel Horn added 
the following text: Unfortunately since the 
exact command line was lost to the sands of 
time, this one will need to suffice: 
 gcc -Disspace="'K'==" macro_tfisher.c 

X - X - - - - X - - - X 
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done on the gcc 
command line) 

This compiler option is highly suspicious and 
would probably be immediately obvious to 
any human reviewer. 

5.3 John 
Waymouth 

jwaymouth Exploits the fact 
that order in which 
arguments are 
evaluated is 
undefined in C++ 
(postincrement in 
call to doTally) 

Undefined order of evaluation. 
This occurs on line 33. This violates SEI rule 
EXP30-C, “Do not depend on the order of 
evaluation for side effects” per 
https://wiki.sei.cmu.edu/confluence/display/c
/EXP30-
C.+Do+not+depend+on+the+order+of+evalu
ation+for+side+effects 
Note that gcc -Wsequence-point warns 
about this, noting that “operation on ‘i’ may 
be undefined.” 

- - - - - - - - - - X X 

5.3 Matthew T 
Russotto 

mrussotto Uninitialized other 
variable could 
cause the map 
from char to int to 
point to zero for the 
'Other' category 

Failure to process entire range of an array to 
be written to. Line 18 *looks* like it initializes 
the "Tallymap" array, but it ranges over 
sizeof(Tally) instead of sizeof(Tallymap), so 
it only initializes a few values instead of all of 
them. Lines 22-24 initializes specific values, 
but doesn't set "other", which would be okay 
if line 18 had a correct range but it didn't. It's 
not *uninitialized* nor is it out-of-range 
because line 12 does an initialization of the 
Tallymap array with an unusual value, the 
unusual initialization value does make it look 
somewhat suspicious. This is challenging to 
find. The attack doesn't always work (the 
attack doesn't work on Cygwin). 

- - - - - - - - - - - - 

5.3 David 
Mazieres 

dmazieres local macro 
variable c hides the 
outer c. Pasting 

#define and shadowed variable. Lines 84-91 
defines macro tabulate(val), which says in 
line 86 "ptrdiff_t c = val"; note that this 
macro is NOT defined in uppercase (which 

- - X - - - - X - - X X 

https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
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Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
causes this variable 
to be shadowed. 

would warn a developer). Line 105 says 
"tabulate (c);", but since C macros are not 
hygienic, this doesn't work as expected, it 
just means that it's "initialized" with its unset 
value. The gcc warning -Wshadow 
specifically warns about this, noting that 
“declaration of ‘c’ shadows a previous local” 
and pointing out both the use and shadowed 
declaration. 

5.0 Rachel 
ParkeHoub
en 

rparke Utilizes the fact that 
constructed order 
matters. Produces 
a warning in gcc 

CWE-457: Use of Uninitialized Variable (due 
to construction order). On lines 71-74 it 
initializes private values, but the later 
initializations use the values of m_total, but 
m_total itself is being initialized in the same 
construct and there is no guarantee m_total 
has an assignment when it is loaded, e.g., 
by "m_kerry(m_total)". The gcc warning flag 
–Wreorder warns about this. 

- - - - - - - - - - X X 

5.0 Joshua 
Hudson 

jhudson Passes in the 
number of bytes 
read instead of the 
byte read, while 
obscuring it with 
setjmp and other 
nasties. 

Line 16 says"vcc(read(0, results, 1), 
results);" - the function "read" returns the 
*number of bytes* read (which will typically 
be 1 since that was the count provided, or 0 
on end of file), not the value read. The fact 
that “read” returns the number of bytes has 
been true since the early 1970s, so it is not 
clear how many human reviewers would 
miss this. The code has many ugly 
constructs that make it hard to understand in 
general, though that partial obfuscation 
suggests there is a bigger problem and 
would almost certainly make this code 
suspicious to a reviewer. The gcc warning -
Wconversion warns about this, reporting 

X - - - - - - - - - X X 
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“warning: conversion to ‘int’ from ‘ssize_t 
{aka long int}’ may alter its value” 

5.0 Ryan 
Cumings 

rcumings Modulus operator 
'%' forces all votes 
to go to table rows 
0 or 1 in lines 130-
144. Unrelated, 
complex code to 
hide a simple O vs 
0 swap. 

Unnecessary modulus operator (%). The 
problem is in lines 130, 135, 140, and 144, 
which all use the construct "tallyCan(& 
tbl[vote % 2], ...)". However, "vote % 2" uses 
the modulus operator "%"; the result is that 
all the votes can only apply to the address of 
table tbl rows 0 or 1. There's a mess of 
commented-out code that make the code 
this harder to read, which could signal a 
problem with the code. The original 
summary was wrong; it said “Complex code 
to hide a simple O vs 0 swap.” Line 112 
does have "0ther" instead of "Other", but 
that is not the primary problem. 

X - - - - - - - - - - - 

4.3 Robert A 
Seace 

rseace Casts from ulong* 
to uchar* and then 
accesses it. Also 
issues a warning in 
gcc with 
appropriate 
options. 

Cast to wrong type. Line 24 is the key 
problem, a bad type conversion. That line 
says, "uchar vote = arg1, *totals = arg2", 
and the second part converts arg2 to the 
wrong type. Line 48 declares "ulong 
totals[NUM_CANDIDATES]" (an array on 
unsigned longs), and line 53 passes a 
pointer to that array to function count_vote(). 
Line 22 defines the count_vote second 
parameter as "void*", which accepts 
anything and quietly discards the original 
type. Line 24 casts "totals" to a new (wrong) 
type. While gcc warns about the first part of 
line 24, as configured it did not report the 
key problem of line 24. 

- - - - - - - - - - - - 
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4.0 Henrik 
Abelsson 

habelsson #defines to gotos! 
Considered 
harmful. 

Line 11 has a malicious definition with an 
embedded goto. This nonsense is unlikely to 
pass serious human review and preventing 
unnecessary #define use would counter it. 
The gcc -pedantic warning flag reports this 
problem. 

X - X - - - - X - - X X 

4.0 Eric Noyau enoyau Uses l instead of 1 Use of variable lowercase letter "l" instead of 
the digit "1". Line 23 adds using variable "l" 
(lowercase "L") instead of number 1 in 
"k=l+k". Line 12 defines variable "l" 
(lowercase "L"). This code has ugly 
formatting. 

- - - X - - - - X - - X 

4.0 David 
Wheeler 

dwheeler1 no break after 
Other case. 

No expected break (unexpected fall through) 
within a case statement. Line 53 is in a case 
statement and increments other, but doesn't 
have a "break" following, so it falls and 
"other" also increments a candidate in lines 
54-55. Line 65 does not print the calculated 
"other" but instead recalculates an "other" 
that hides the attack. The filename is 
actually dwheeler1.c. This attack is revealed 
by gcc -Wimplicit-fallthrough (which is 
enabled by -Wextra). 

- - - - - - - - - - X X 

3.7 Craig A 
Rich 

crich Hides a Tally[] = 0 
in a comment. Only 
works on notepad 
users. 

Hidden code in a comment. Lines 27 and 33 
have embedded code hidden in a comment. 
Vim’s syntax highlighting system highlights 
part of line 33 in red, hinting at the problem. 

- - - - X - - - - X  X 

3.7 Thiago 
Campos 

tcampos uses wrong ascii 
value in part of 
program. Teaches 
the value of 
constants in code. 

Line 15 says "int B = 64;" but B is ASCII 66, 
so Bush values won't be displayed. This is 
likely to be suspicious to a human and might 
not pass human review, because this is a 
weird way to handle ASCII values. It is 

X - - - - - - - - -  - 



 

B-18 

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL 
highly unusual to directly define values in 
code instead of using the compiler to look 
them up, when simple constructs are 
available to do so. Such an unusual 
approach would encourage human 
reviewers to check it. The values also aren't 
set as constants, which isn't part of the 
attack but might cause extra scrutiny. Later 
in line 32, the values ("constants") are not 
used, but integers that don't match are used 
instead (75, 66, and 77 are used, but those 
don't match the numbers above, and they 
also don't match the correct values 75, 66, 
and 78). 

3.7 Jared Sohn jsohn Typo in nader 
section checking if 
Vote is 'n' or 'n' 
instead of 'n' or 'N': 
votes delivered to 
Other. Guess its' 
writein. Creative 
alternative 
comments. 

Conditional checks for 'n' or 'n' instead of 'n' 
or 'N' (capital letter). On line 27, which says 
"((Vote == 'n') || (Vote == 'n'))", one of the 'n' 
constants here should be 'N'. 

- - - - - - - - - - - - 

3.7 Philip 
Willoughby 

pwilloughby Replaces 1 with l Uses variable lowercase "l" instead of 
constant digit "1". Line 43 uses lowercase "l" 
instead of constant 1 ("BushVotes += l;"). 
This is enabled through the definition of a 
variable named "l" on line 23. Remarkably, 
gcc -Wsign-conversion detects this situation 
because the “conversion to ‘long unsigned 
int’ from ‘int’ may change the sign of the 
result” 

- - - X - - - - X - X X 
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3.7 Oleg 
Kibirev 

okibirev uses l instead of 1 
when adding to 
bush's tally. (this is 
what the ++ 
operator is for ;-) ) 

Uses variable lowercase "l" instead of 
constant "1"; line 16 uses "b+=l;" instead of 
"b+=l;". 

- - - X - - - - X - - X 

3.7 Hacksprint hacksprint Replaces 1 with l Uses variable lowercase "l" instead of 
constant "1". Lines 26, 33, 40, 46 use 
lowercase "l" instead of constant 1. This 
uses lowercase "l" instead of constant "1" in 
*many* places, which is different from 
entries such as Oleg Kibirev's (okibirev) 
(which uses lowercase "l" in just one place). 
The results thus depend greatly on the 
ASCII value of characters. The results are 
especially different from expected values, so 
practically any testing at all (even when the 
exact correct answers were not considered) 
would reveal the attack. 

- - - X - - - - X - - X 

3.7 Alan 
Krueger 

akrueger Replaces 1 with l Uses lowercase 'l' instead of '1'. Line 28 
uses "++c[l]" instead of the correct "++c[1]". 

- - - X - - - - X - - X 

3.7 Kristian 
Nielsen 

knielsen.c Puts the kerry case 
in a while 
statement that 
looks for spaces. 

Misleading indentation, while loop without 
{...} following lines 21-26 are a while loop, 
but the later lines have the same 
indentation, misleading the reader into 
thinking that the while loop in line 21 saying 
"while(isspace(next = getchar()))" simply 
skips spaces. Note that this violates the 
recommendation of SEI EXP19-C, "Use 
braces for the body of an if, for, or while 
statement".  
Note: gcc’s -Wmisleading-indentation should 
have caught this problem, but for some 
reason it did not. This defect in gcc has 

- - - - - - - - - - - - 
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been reported to its developer. This defect 
suggests it’s important to have test cases to 
verify warning flag functionality if these 
warning flags are important to security. 

3.3 Derek 
Warnick 

dwarnick.c Zero instead of O in 
the code gives 
Other votes to 
Kerry 

Malicious switch between zero (0) and 
isolated letter capital O. Line 27 miscounts 
the vote, incrementing index 0 (zero) instead 
of index capital O. It is always possible to 
use index 0, but this misleading code made 
sense only because line 11 defines an 
enumerated value capital "O" as well. 

- - - X - - - - X - - X 

3.3 Matti 
Niemenma
a 

mniemenm
aa 

= instead of == Use of = instead of the correct ==. Line 39 
has the error. No matter what the previous 
value of "Vote" was, it is forced to "K" and 
then counted as "K". This attack is 
immediately detected by gcc -Wall, which 
includes "-Wparentheses", with the warning 
"suggest parentheses around assignment 
used as truth value" displayed. 

- - - - - X - - - - X X 

3.3 Drew Vogel dvogel bitwise and instead 
of logical and 

Use of "&" instead of the "&&" operator. 
More specifically line 16 uses "&" instead of 
the "&&" operator. This construct is 
suspicious anyway, as it's not in a 
conditional and there's no obvious reason to 
use either "and" operator in this situation. 

X - - - - - - - - - - - 

3.3 Brad 
Grzesiak 

bgrzesiak (OFFICIAL 
SUMMARY 
INCORRECT) gets 
instead of equals 

Use of = instead of the correct == in lines 8-
10. The claimed problem in the official 
summary is wrong. Detected by gcc –Wall 
via -Wparentheses. 

- - - - - X - - - - X X 

3.0 Jonathan 
Drechsler 

jdrechsler Uses lower case 'k' Lines 15 and 18 use lowercase 'k' to retrieve 
values, when it should have been uppercase 
'K'. This sample had the lowest score in the 

X - - - - - - - - - - - 
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contest; it is a relatively obvious mistake to 
an experienced developer. 

 

The sample by Geir Thomassen was excluded, since it does not have an attack. It can be summarized as follows: 

 

4.0 Geir 
Thomassen 

gthomassen #define of EOF to 
changing input to bush 
using comma operator. 

This is an error in the data set. There is no #define of EOF and 
no use of the comma operator. The program as posted appears 
to work correctly and is not malicious. Note: lines 19-22 use 
printf %d format, which uses int, but the arguments passed are 
long unsigned int (not always equivalent); this is detected by gcc 
-Wall. 
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