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Executive Summary 

Military manpower and personnel policy analyses can benefit greatly from the use of 
structural dynamic discrete choice (DDC) models. Policy makers design compensation and 
personnel policies with specific objectives in mind, such as meeting a retention target in a 
given occupation or increasing the average length of service obligation. To evaluate 
whether a proposed policy would achieve its objective, we need models that can tell us 
how service members would behave under the new policy.  

Structural DDC models can do that, because they specify how compensation and other 
individual and career characteristics affect service members’ decisions. This formulation 
enables researchers to predict retention outcomes under a new policy. Retention predictions 
can be used to assess the effect a proposed policy would have on the military’s ability to 
meet manpower and readiness objectives. 

In contrast with machine learning (ML) models that emphasize prediction, structural 
DDC models are designed to uncover causal relationships. In the case of military personnel 
policy analysis, a DDC model can be specified to identify the causal effect of a policy lever 
(such as a retention bonus) on service members’ retention decisions. Predictive ML models 
and structural DDC models alike can be used to predict future outcomes under the 
assumption that no policy changes occur that would affect service members’ decisions. 
However, DDC models can also provide valid predictions of future outcomes under 
hypothetical new policies. This capability makes them uniquely well-suited for personnel 
policy analysis. 

Traditional estimation methods for structural DDC models have relied on dynamic 
programming (DP) methods, which come with some drawbacks. In particular, the 
computational complexity that comes from the curse of dimensionality has always been a 
major obstacle when using DP. Models that are easy enough to solve are generally too 
simplistic for applied work, which has left DDC as a mostly academic pursuit. To be useful 
for policy makers, models must be able to capture all of the salient features of the decisions 
that are being modeled. 

Recent developments in approximation and econometric methods, combined with 
greater availability of computational power, allow us to estimate complex and realistic 
models. Conditional choice probability (CCP) methods can be used to incorporate 
unobserved taste for military service, enabling the model to identify selection out of the 
service on the basis of unobservable characteristics. Neural networks and other ML 
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algorithms can be used to approximate solutions to DP models, significantly reducing the 
computational time required to solve them. 

This Institute for Defense Analyses paper presents a DDC model that is designed to 
analyze the effects of military personnel policies on service members’ retention. It is 
intended to introduce the model to researchers who are interested in using these methods 
to analyze questions about military retention and to illustrate how advancements from the 
academic literature can be applied to improve DDC models for compensation and 
personnel policy analysis. 
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1. Introduction 

Analyses of military manpower and personnel issues can benefit greatly from the use 
of structural dynamic discrete choice (DDC) models. Policy makers design compensation 
and personnel policies with specific objectives in mind, such as meeting a retention target 
in a given occupation or increasing the average length of service obligation. To evaluate 
whether a proposed policy would achieve its objective, we need models that can tell us 
about how service members would behave under the new policy.  

These models need to take into account not just compensation, but all aspects of the 
service members’ careers that are relevant to the retention decision. Structural DDC models 
can do that. These models specify how compensation and other individual and career 
characteristics affect service members’ decisions. This formulation enables researchers to 
predict retention outcomes under a new policy. Retention predictions can be used to assess 
the effect a proposed policy would have on the military’s ability to meet manpower and 
readiness objectives. 

DDC models have a long history in economics and are one of the main tools 
economists use to analyze decisions that involve intertemporal trade-offs. Two of the best 
known applications studied machine replacement (Rust 1987) and educational attainment 
(Keane and Wolpin 2001). Aguirregabiria and Mira (2010) provide a comprehensive and 
relatively recent survey of the academic literature. Service members’ retention decisions 
are a natural fit for DDC models because service members compare their future military 
career to a potential future life as a civilian when deciding whether to stay in the military. 
Military personnel policy researchers have used DDC models to study retention since 
RAND introduced the Dynamic Retention Model (DRM) in 1984 (Gotz and McCall 1984). 

Despite their usefulness, DDC models have some limitations. Rust (2019) argues that 
the primary obstacle to broad application of DDC models in policy and decision making is 
the difficulty in specifying and estimating models that are sufficiently complex to reflect 
real life circumstances. In this paper we focus on methods that can help overcome this 
limitation using techniques that make it possible to specify and estimate realistic models 
of individual behavior. 

This Institute for Defense Analyses paper presents a structural DDC model that is 
designed to analyze the effects of military personnel policies on service members’ 
retention. Our objective in writing this paper is to introduce the model to researchers who 
are interested in using these methods to analyze questions about military retention. As such, 
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we discuss technical nuances and details of model implementation that may typically be 
relegated to an appendix or not included at all in an empirical paper.  

Section 1.B presents theory for a structural DDC model that is designed to analyze 
the effects of military personnel policies on service members’ retention, and Section 2 
discusses estimation methods. We demonstrate our preferred method for specifying and 
estimating a DDC model of military retention decisions, which is the conditional choice 
probability (CCP) estimation procedure developed by Hotz and Miller (1993) and 
Arcidiacono and Miller (2011). The CCP formulation simplifies the estimation procedure, 
enabling the use of a model that more accurately represents the real-life decisions made by 
service members. Consequently, it provides more credible policy analyses. 

Sections 3.A through 3.F discuss standard ways to relax some of the assumptions 
made in the stylized model. Then, Sections 3.G through 3.J develop several model 
extensions and adjustments to the estimation procedure that are relevant in the context of 
military retention. First, we present a method for estimating the model using a short panel 
data set, alleviating the need to use multiple decades of historical data while still allowing 
us to estimate the structural utility parameters of the model. Next, we extend the model to 
incorporate decision points where the service member is unable to leave, such as early 
reenlistment or contract renegotiation. We then propose two methods for approximating 
the value of leaving the military that reduce the computational burden of estimation. 
Finally, we outline an extension to jointly model the active duty and reserve participation 
decisions. 

A. Modeling Retention Decisions 
When choosing whether to stay in the military, service members consider how their 

future military career compares to their potential future life as a civilian. Characterizing 
the service members’ retention decision using a structural DDC model allows us to 
explicitly capture the trade-offs involved in this decision. The model specifies how service 
members tradeoff between current and future compensation, and how non-monetary 
aspects of their career and family life, such as the type of assignment and marital status, 
affect the retention decision.  

As with most career decisions, pay is an important consideration; service members 
making a retention decision compare what they will earn in the military to what they could 
earn in the civilian labor market. Importantly, service members consider both current and 
deferred compensation. For example, the defined-benefit military retirement pay provides 
a significant incentive to stay in the service for those who are approaching retirement 
eligibility. 

The value of staying in the military and that of leaving are defined by a utility function 
that represents service members’ preferences. This function translates variables such as 
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compensation, type of assignment, and marital status into a numeric value of each available 
action, and the relative values of staying versus leaving determine the service member’s 
retention probability. The structure and parameters of the utility function determine the 
way the variables affect service members’ retention decisions. We use economic theory to 
make the necessary assumptions about the structure of the utility function, and then use 
historical data on observed retention decisions and associated variables to estimate the 
structural parameters of the function. 

Once we have estimated the utility function that characterizes how service members 
make retention decisions, we can use it for counterfactual policy analyses. Counterfactual 
analysis considers how an outcome of interest (in this case, retention) is affected by 
changes in the environment in which individuals make decisions. This type of analysis is 
the best available method for prospective evaluations of the impacts of policies that are 
being considered for implementation, because it provides an estimate of the effect of a 
policy change while holding other factors constant.  

For example, we can use the model to answer, “What would happen to retention if 
officers were offered a $10,000 bonus for three additional years of obligation after their 
initial active duty service obligation (ADSO)?” Furthermore, we can exploit the 
intertemporal specification of the model to analyze policies involving different lengths of 
obligation, such as a bonus that incentivizes six-year versus three-year contracts. The 
model describes individual behavior, so the retention probabilities it produces can be 
aggregated flexibly to produce estimates of aggregate effects that are important to policy 
makers. For example, we can compute the average impacts of a policy within community, 
race, and gender categories to understand its effect across different groups of service 
members. 

Importantly, structural models also allow for counterfactual analyses of policies that 
have no precedent in the historical data. Because we estimate the utility function describing 
the underlying preferences that determine service members’ retention decisions, we can 
evaluate the impact of a change in any variable that is included in the utility function. For 
example, a service may want to know how effective retention bonuses would be at retaining 
officers at 20 years of service (YOS) long enough for them to be considered for promotion 
to the rank of Colonel/Captain. Even if such a bonus has never been offered at this point in 
the career, a structural model can provide a credible estimate of its impact before it is 
implemented. There are no non-structural models (aka, "reduced form") that produce valid 
results for these kinds of analyses. 

B. Stylized Model 
The goal of this section is to illustrate how the DDC model works and what the CCP 

estimation procedure entails. The stylized model presented here is undoubtedly a 
simplification of a more full-fledged retention model, but it retains the key features of the 
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full model, including persistent unobserved taste for military service that varies across 
individuals. Appropriately dealing with this unobserved heterogeneity is particularly 
important for making the model realistic, and it is also non-trivial from the technical 
perspective. The simplifications in this section allow us to illustrate how the CCP method 
deals with this feature of the model while avoiding particularly cumbersome notation. We 
discuss how to relax many of the simplifying assumptions later in the paper. 

Throughout their military careers, service members periodically make decisions about 
whether to stay in the military or to leave. In the model, we assume that these retention 
decisions occur every few years, typically when a service member is nearing the 
completion of an existing service obligation. Each service member has a small, finite 
number of decision points during their military career. At each decision point, the service 
member chooses whether to stay in the military or to leave.  

If the service member chooses to leave, they exit military service and make no further 
decisions. If the service member chooses to stay, they remain in the military for a few more 
years and then decide again. In general, the interval between decision points varies based 
on individual circumstances. For example, enlisted service members may have the option 
to choose the length of their next contract when reenlisting. However, we simplify the 
exposition in this section by assuming that decision points always occur at three-year 
intervals. Section 3.F discusses how this assumption can be relaxed. 

For the purpose of this stylized model, our goal will be to use the model to set military 
compensation policy. Specifically, we would like to find the level of retention bonuses at 
each decision point that achieves a target level of retention. The target may be based on 
readiness requirements or some other considerations that are important to the policy 
makers. Note that this question includes an intertemporal component; service members 
may decide to retain at a decision point with relatively low compensation if they know that 
the compensation at the next decision point will be high. Because of these intertemporal 
considerations, the solution is a set of bonus amounts at different decision points that 
together achieve the retention target. 

Let 𝑖𝑖 ∈ {1, . . . ,𝑁𝑁} index service members and 𝑡𝑡 ∈ {1, . . . ,𝑇𝑇} index time periods, which 
we assume to be years. Each service member will make at least one decision in the model 
and will continue to make decisions every three time periods as long as they remain in the 
military. Let 𝑑𝑑 ∈ {1, . . . ,𝐷𝐷𝑖𝑖} index decision points, and let 𝑡𝑡𝑑𝑑 be the time period in which 
decision point 𝑑𝑑 occurs. 𝐷𝐷𝑖𝑖 may differ across individuals; a service member who chooses 
to leave at the end of their initial obligation will have only one decision point, while 
someone who stays until retirement will have multiple. 

At decision point 𝑑𝑑, service member 𝑖𝑖 chooses an action 𝑎𝑎𝑖𝑖,𝑡𝑡𝑑𝑑 ∈ 𝐴𝐴 = {𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,  𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙} 
based on the expected utility associated with each action. A service member’s utility 𝑢𝑢𝑖𝑖,𝑡𝑡 
in each time period is a function of that individual’s state, which contains both observed 
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variables and persistent unobserved heterogeneity. Observed variables are denoted by 𝑥𝑥𝑖𝑖,𝑡𝑡 
and while the service member is in the military they include variables such as gender, 
family status, military occupational specialty (MOS), and military compensation.  

If the service member has left the military then 𝑥𝑥𝑖𝑖,𝑡𝑡 includes only civilian 
compensation. We follow the Heckman and Singer (1984) finite mixture framework to 
model persistent unobserved heterogeneity: we assume there are a small number of distinct 
types of individuals with different latent preferences for serving in the military. We assume 
that the unobserved type, denoted by 𝑠𝑠𝑖𝑖 ∈ {1, . . . , 𝑆𝑆}, is constant over time. For convenience 
we will sometimes denote the entire state space as 𝑧𝑧𝑖𝑖,𝑡𝑡 = �𝑥𝑥𝑖𝑖,𝑡𝑡, 𝑠𝑠𝑖𝑖�. 

Some observed state variables are likely to change over time. The state at some future 
period 𝜏𝜏 > 𝑡𝑡 may depend on whether the service member chose to stay in service or to 
leave at time 𝑡𝑡. For example, a service member who remains in the military may convert 
to a different MOS, which would change their military career and their potential civilian 
earnings. Let 𝑓𝑓�𝑥𝑥𝑖𝑖,𝜏𝜏|𝑥𝑥𝑖𝑖,𝑡𝑡,𝑎𝑎� denote the probability that observed variables take on values 
𝑥𝑥𝑖𝑖,𝜏𝜏, conditional on them having values 𝑥𝑥𝑖𝑖,𝑡𝑡 and taking action 𝑎𝑎 at time 𝑡𝑡.  

In particular, 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑑𝑑+1|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠� is the distribution of observed variables at the next 
decision point (three years in the future), conditional on the service member choosing to 
stay in service at time 𝑡𝑡. This will represent what the service member expects to happen 
during their next tour, including events like promotions, marriage, having children, and 
changes in the civilian economy. 

To streamline notation, we define an aggregate utility function, suppress the 
individual subscript 𝑖𝑖, and let 𝑧𝑧𝑑𝑑 denote the state at time period 𝑡𝑡𝑑𝑑 for the remainder of this 
section. Service members generally consider their entire expected future military career 
and compare it to their expected civilian career when making the retention choice. The 
model captures this forward-looking nature of the decision problem. The function 𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑎𝑎) 
represents the total expected utility between decision point 𝑑𝑑 and the next decision point, 
conditional on choosing action 𝑎𝑎.  

If 𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠, 𝑈𝑈 is a sum over the next three years of utility that the service member 
expects to receive while in the military, before reaching the next decision point. If 𝑎𝑎 =
𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙, this is the last decision in the model, and 𝑈𝑈 is the sum of the remainder of expected 
lifetime utility. Service members discount utility they expect to receive in the future 
according to an exponential discount factor 𝛽𝛽 ∈ (0,1). 

𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎) =

⎩
⎪
⎨

⎪
⎧�𝛽𝛽𝜏𝜏−𝑡𝑡
𝑡𝑡+2

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠] if 𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠

�𝛽𝛽𝜏𝜏−𝑡𝑡
𝑇𝑇

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙] if 𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙

 (1) 



6 

In addition to the utility from state variables, the value of each action is affected by a 
choice-specific shock. This shock represents circumstances that are unique to the service 
member, independent of the state variables, and not persistent over time. Perhaps the 
service member received an unusually good civilian job offer, or maybe their next 
assignment is at the location where their best friend is stationed. Service members know 
the value of the current shocks, but we as researchers do not. Service members know that 
future decision points will also have choice-specific shocks, but do not know what they are 
ahead of time. Denote the shock associated with action 𝑎𝑎 as 𝜖𝜖𝑑𝑑(𝑎𝑎). We assume it is 
independently distributed Type 1 Extreme Value and is additively separable from the rest 
of the utility associated with that action. 

The timing of the model is as follows. Consider a service member who needs to make 
a retention decision at 𝑡𝑡𝑑𝑑. At the start of period 𝑡𝑡𝑑𝑑 the service member observes the realized 
values of the current state 𝑧𝑧𝑑𝑑 = (𝑥𝑥𝑑𝑑 , 𝑠𝑠) and the utility shocks 𝜖𝜖𝑑𝑑. Next, the service member 
chooses 𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴 = {𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠,  𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙} and receives the current period utility associated with 
𝑎𝑎𝑑𝑑, 𝑢𝑢(𝑧𝑧𝑑𝑑, 𝑎𝑎𝑑𝑑) + 𝜖𝜖𝑑𝑑(𝑎𝑎𝑑𝑑). Finally, the state transitions to 𝑧𝑧𝑑𝑑+1 according to 𝑓𝑓(𝑥𝑥𝑑𝑑+1|𝑥𝑥𝑑𝑑,𝑎𝑎𝑑𝑑) 
and the next period begins. The service member collects discounted period utility 
associated with the state until the next decision period and then repeats the process. 

We assume that service members chose the best action from their point of view, taking 
into account current utility from that action as well as the effect of the action on their future 
utility. Formally, service members choose a sequence of actions 𝐚𝐚∗ = {𝑎𝑎1∗ , . . . ,𝑎𝑎𝐷𝐷∗ } that 
maximizes expected present discounted lifetime utility. Recalling that 𝑈𝑈 is the expected 
discounted sum of utility from a single decision, we now write the service members’ 
optimization problem as 

𝐚𝐚∗ = argmax
𝐚𝐚
𝔼𝔼 ��𝛽𝛽3(𝑑𝑑−1)

𝐷𝐷

𝑑𝑑=1

[𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎𝑑𝑑) + 𝜖𝜖𝑑𝑑(𝑎𝑎𝑑𝑑)]�. (2) 

It is easier to work with the decision problem using value functions. We denote by 
𝑉𝑉‾ (𝑧𝑧𝑑𝑑) the value associated with state 𝑧𝑧𝑑𝑑 at the beginning of time period 𝑡𝑡𝑑𝑑. This is the 
expected discounted sum of current and future utility, before 𝜖𝜖𝑑𝑑 are realized, and 
conditional on taking the optimal action, both in this period and in the future, given that 
the current state is 𝑧𝑧𝑑𝑑. Recall that the state is a collection of observed variables 𝑥𝑥𝑖𝑖,𝑡𝑡𝑑𝑑 together 
with the unobserved taste for military service 𝑠𝑠𝑖𝑖, so the value function gives the total payoff 
associated with the optimal sequence of actions 𝐚𝐚∗ for a service member with a specific 
combination of observed variables and taste for service. 

To understand the value of a specific action, define the alternative-specific value 
function 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎) as the value of taking action 𝑎𝑎 in state 𝑧𝑧𝑑𝑑, and then taking the optimal 
action at all future points. Because there are no decision points after taking the leave action, 
𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) is just the sum of the remainder of expected lifetime utility. For the stay 
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action, it is the utility associated with that action, plus the utility associated with taking the 
optimal action at the next decision point, which we defined above as 𝑉𝑉‾ . The alternative-
specific value functions can be written as 

𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎) = �𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) + 𝛽𝛽3𝔼𝔼[𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1)] if 𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠
𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) if 𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 (3) 

To estimate the model, we need to connect this value function representation of the 
problem with observable outcomes. Specifically, we need to know what the value functions 
imply about the probability of observing a service member stay versus leave. Our 
parametric assumption regarding the distribution of the idiosyncratic shocks, 𝜖𝜖, implies 
that the choice probabilities follow the standard multinomial logit form. The CCP of 
choosing action 𝑎𝑎 = 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 is given in (4); the probability of choosing to leave takes the 
same form. 

𝑝𝑝(𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠|𝑧𝑧𝑑𝑑) =
exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠)�

exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠)� + exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙)�
 (4) 

C. CCP Representation 
Equation (4) for 𝑝𝑝(𝑎𝑎|𝑧𝑧𝑑𝑑) may look like a standard multinomial logit, but it cannot yet 

be estimated directly. We have defined the CCPs in terms of 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎), but 𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) is 
defined in (3) in terms of 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1), which generally lacks a closed form. The inversion 
property from Hotz and Miller (1993) and the properties of the Type 1 Extreme Value 
distribution provide a closed form for the value function in terms of the alternative-specific 
value and CCP for an arbitrary action 𝑎𝑎� ∈ 𝐴𝐴 (and the Euler’s constant 𝛾𝛾). 

𝑉𝑉‾ (𝑧𝑧𝑑𝑑) = 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎�) − ln�𝑝𝑝(𝑎𝑎�|𝑧𝑧𝑑𝑑)� + 𝛾𝛾 (5) 

Essentially, (5) tells us that the value associated with a specific state can be expressed 
as the value of taking any specific action, adjusted for the probability of taking that action. 
The following example may provide some intuition. Suppose we know the value a service 
member might expect if they leave the service at 18 YOS because we have estimated their 
likely civilian earnings. We also know that a service member deciding to leave at 18 YOS 
is extremely unlikely; practically no service member voluntarily leaves at that point, 
because they will be eligible for the military pension in just two years. Equation (5) tells 
us that we can adjust the known value of leaving by the very low probability of actually 
leaving to arrive at the (much higher) value of being in the service at 18 YOS. We will use 
this intuition to construct our value functions in a way that makes the model simple to 
estimate. 

To make the best use of the closed form representation in (5), we need to choose 𝑎𝑎� 
such that 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎�) is known. We have assumed that leaving the service is a terminal 
decision and 𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) = 𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙), which involves no further decision points and 
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actions. Therefore, 𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) is known (up to structural parameters); we can calculate 
it for any 𝑧𝑧𝑑𝑑. We set 𝑎𝑎� = 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 and rewrite the alternative-specific value function for 
staying using the CCP representation for 𝑉𝑉‾ . 

𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) = 𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) + 𝛽𝛽3𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) − ln�𝑝𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧𝑑𝑑+1)�) + 𝛾𝛾� (6) 

Equation (6) implies that the value of staying can be broken down into the current 
utility from staying plus the utility of leaving at the next decision point adjusted for the 
probability of actually leaving at the next decision point. We now have representations of 
both 𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) and 𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) that do not involve the future value function. Note that 
(6) includes the CCP for leaving at the next decision point, 𝑝𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧𝑑𝑑+1). If there were 
no persistent unobserved heterogeneity across individuals, then these CCPs could be 
computed directly from the data and the multinomial logit in (4) could be used to estimate 
the model directly. In our example, retention decisions are affected by the service 
member’s taste for service, so the CCPs have to be estimated jointly with the parameters 
of the utility function, a process which we turn to in the next section. 
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2. Estimation 

To estimate the model we use the CCP method, which was first described by Hotz 
and Miller (1993) and extended to include persistent unobserved heterogeneity by 
Arcidiacono and Miller (2011). The CCP method exploits the mapping between CCPs and 
alternative-specific value functions, shown in (6). This avoids solving the dynamic 
programming problem for every value of the model parameters, which can quickly become 
computationally infeasible.  

The CCP method is particularly attractive when the model includes terminal actions, 
as our model does with the leave action. For the purposes of exposition, we first describe 
a CCP estimator of our model without unobserved taste for military service. We then show 
how the unobserved taste can be included in the model using the well-known expectation-
maximization (EM) algorithm. 

Our goal is to estimate the structural parameters 𝜃𝜃 of the service members’ utility 
function 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎;𝜃𝜃). We can then use the utility function to evaluate the impact of different 
policies on the retention decisions of service members. Our data consist of a sample of 𝑁𝑁 
service members observed for 𝐷𝐷𝑖𝑖 decision points. At each decision point, we observe the 
relevant variables 𝑥𝑥𝑑𝑑 and action 𝑎𝑎𝑑𝑑 for each service member. For now, assume there is no 
difference in the taste for military service between service members so that 𝑧𝑧𝑑𝑑 = 𝑥𝑥𝑑𝑑 . We 
assume the discount factor 𝛽𝛽 is known, and the idiosyncratic error 𝜖𝜖 is independently 
distributed Type 1 Extreme Value across alternatives, as before. We again simplify the 
exposition of the problem by assuming that decisions occur at three-year intervals. 

Recall that the CCPs that link the observed data to the model are given by the 
multinomial logit form, and the alternative-specific value functions for these CCPs can be 
expressed in a closed form, as discussed in the previous section: 

𝑝𝑝(𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠|𝑧𝑧𝑑𝑑) =
exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠)�

exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠)� + exp�𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙)�
 (7) 

 

𝑙𝑙(𝑧𝑧𝑑𝑑 , 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠) = 𝑈𝑈(𝑧𝑧𝑑𝑑 , 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠;𝜃𝜃) + 𝛽𝛽3𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙;𝜃𝜃) − ln�𝑝𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧𝑑𝑑+1)�) + 𝛾𝛾� (8) 

 

𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) = 𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙;𝜃𝜃) (9) 

Equation (8) shows that the value of remaining in the military can be summarized by 
the current utility of staying (𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠;𝜃𝜃)), the expected utility of leaving the military at 
the next decision point (𝑈𝑈(𝑧𝑧𝑑𝑑+1, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙;𝜃𝜃)), and the probability of leaving at the next 
decision point (𝑝𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧𝑑𝑑+1)). The key insight of Hotz and Miller (1993) is that 
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𝑝𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧𝑑𝑑+1) can be estimated separately from 𝜃𝜃. We do not need to know the structural 
parameters of the utility function to estimate the relationship between the observed 
variables and the CCPs. If we observe all of the variables in 𝑧𝑧𝑑𝑑, as we have assumed for 
now, then estimation can be done in two easy stages. 

In this case, all of the components of 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎) other than 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎;𝜃𝜃) are estimated in 
a first stage. Reintroducing the subscript 𝑖𝑖 to enable indexing over individuals, the CCPs 
and transition functions can be estimated using bin estimators: 

�̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑧𝑧) =
∑ ∑ 𝟙𝟙𝑑𝑑𝑖𝑖 �𝑎𝑎𝑖𝑖,𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙�𝟙𝟙�𝑧𝑧𝑖𝑖,𝑑𝑑 = 𝑧𝑧�

∑ ∑ 𝟙𝟙𝑑𝑑𝑖𝑖 �𝑧𝑧𝑖𝑖,𝑑𝑑 = 𝑧𝑧�
 (10) 

 

𝑓𝑓(𝑧𝑧′|𝑧𝑧,𝑎𝑎) =
∑ ∑ 𝟙𝟙𝑑𝑑𝑖𝑖 �𝑧𝑧𝑖𝑖,𝑑𝑑+1 = 𝑧𝑧′�𝟙𝟙�𝑧𝑧𝑖𝑖,𝑑𝑑 = 𝑧𝑧�𝟙𝟙�𝑎𝑎𝑖𝑖,𝑑𝑑 = 𝑎𝑎�

∑ ∑ 𝟙𝟙𝑑𝑑𝑖𝑖 �𝑧𝑧𝑖𝑖,𝑑𝑑 = 𝑧𝑧�𝟙𝟙�𝑎𝑎𝑖𝑖,𝑑𝑑 = 𝑎𝑎�
 (11) 

Alternatively, these functions can be estimated using flexible logits. For the CCPs in 
particular, it is important to estimate them as precisely as possible in the first stage, since 
they play a crucial role in our formulation of 𝑙𝑙�𝑧𝑧𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠� in the second stage. 

With these pre-computations complete, 𝑙𝑙�𝑧𝑧𝑖𝑖,𝑑𝑑, 𝑎𝑎� is known up to 𝜃𝜃 and we can use 
(7) to form the likelihood: 

𝑙𝑙�𝑎𝑎𝑖𝑖,𝑑𝑑|𝑧𝑧𝑖𝑖,𝑑𝑑;𝜃𝜃� = 𝑝𝑝�𝑎𝑎|𝑧𝑧𝑖𝑖,𝑑𝑑;𝜃𝜃�. (12) 

In some applications, it may be convenient to normalize the utility of the outside 
option 𝑈𝑈�𝑧𝑧𝑖𝑖,𝑑𝑑 , 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙� to zero. This normalization makes sense when individuals have an 
outside option that essentially has them opt out of the process being modeled (e.g., decision 
to not participate in the labor force or to not purchase a particular good). In our model the 
outside option is for service members to leave the military and participate in the civilian 
economy by working in an appropriate job.  

Because service members’ civilian incomes likely vary based on their occupation and 
experience in the military, we keep utility parameterized as 𝑈𝑈�𝑧𝑧𝑖𝑖,𝑑𝑑 , 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙;𝜃𝜃�. Hotz and 
Miller (1993) prove that the maximum likelihood estimates (MLE) 𝜃𝜃� are consistent and 
asymptotically normal with √𝑁𝑁 convergence under their regularity assumptions, and can 
be estimated using a logit or any other M-estimator. 

The downside of the Hotz and Miller (1993) CCP estimator is the assumption that all 
variables in 𝑧𝑧𝑖𝑖,𝑑𝑑 are observed in the data. Both intuition and prior research suggest that 
there are important and persistent differences between service members in the way they 
view military service. We now show how unobserved state variables can be integrated into 
the CCP estimation procedure. Typically, the unobserved information is grouped together 
under the moniker “taste for military service,” although nothing in the model limits what 
this variable is capturing. Persistently good or bad civilian job prospects, the belief that 



11 

military service is not compatible with family life, and many other unobservable factors 
may all be captured here. 

We reintroduce a permanent unobserved component to the state such that 𝑧𝑧𝑖𝑖,𝑑𝑑 =
�𝑥𝑥𝑖𝑖,𝑑𝑑 , 𝑠𝑠𝑖𝑖�, where 𝑥𝑥𝑖𝑖,𝑑𝑑 are the observed state variables and 𝑠𝑠𝑖𝑖 is persistent unobserved 
heterogeneity, which we refer to as the taste for military service. As mentioned earlier, we 
follow Heckman and Singer (1984) and assume that the taste for military service can be 
captured by a fixed number of discrete types  𝑠𝑠𝑖𝑖 ∈ 𝒮𝒮 = {1, . . . , 𝑆𝑆}.  

For now, we make a number of important assumptions about how taste for military 
service can interact with other parts of the model. First, we assume that service members’ 
taste for military service does not change over time. Next, we assume that the taste for 
military service does not affect the transitions of observed variables, meaning 
𝑓𝑓�𝑥𝑥𝑖𝑖,𝑑𝑑+1|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑎𝑎𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖� = 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑑𝑑+1|𝑥𝑥𝑖𝑖,𝑑𝑑 ,𝑎𝑎𝑖𝑖,𝑑𝑑�. With these two assumptions, we can estimate 
𝑓𝑓�𝑥𝑥𝑖𝑖,𝑑𝑑+1|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑎𝑎𝑖𝑖,𝑑𝑑� as in (11). Finally, we assume that the taste for military service does 
not affect the utility of working in the civilian sector, so 𝑈𝑈�𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙� =
𝑈𝑈�𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙�. 

Due to the presence of unobserved taste for military service, it is no longer possible 
to estimate CCPs in the first stage because �̂�𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖� is conditioned on the 
unobserved type 𝑠𝑠𝑖𝑖. Let 𝜋𝜋(𝑠𝑠) denote the distribution of types in the population. This 
distribution can be conditional on 𝑥𝑥𝑖𝑖,1, but for now we assume that every service member 
has the same underlying type distribution. We integrate this distribution out of the 
likelihood to arrive at the MLE: 

{𝜃𝜃�,𝜋𝜋�} = argmax
𝜃𝜃,𝜋𝜋

� ln
𝑁𝑁

𝑖𝑖=1

�� 𝜋𝜋
𝑆𝑆

𝑠𝑠𝑖𝑖=1

(𝑠𝑠𝑖𝑖)�𝑝𝑝
𝐷𝐷

𝑑𝑑=1

�𝑎𝑎𝑖𝑖,𝑑𝑑|𝑥𝑥𝑖𝑖,𝑑𝑑 , 𝑠𝑠𝑖𝑖;𝜃𝜃��. (13) 

Direct estimation of the MLE is complicated by the fact that the likelihood is not 
additively separable in 𝜃𝜃 and 𝜋𝜋. Arcidiacono and Miller (2011) demonstrate how the 
expectation-maximization (EM) algorithm can be adopted to compute the MLE. They 
present three different algorithms that iterate between estimating 𝜋𝜋(𝑠𝑠), �̂�𝑝�𝑎𝑎|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖�, and 𝜃𝜃 
and converge to the MLE solution. These estimators retain the √𝑁𝑁-consistency and 
asymptotic normality of the full MLE estimates under regularity conditions in Arcidiacono 
and Miller (2011). We discuss two of these estimators here, and return to their “two-stage” 
estimator later in the paper. 

In order to compute an estimate of �̂�𝑝�𝑎𝑎|𝑥𝑥𝑖𝑖,𝑑𝑑 , 𝑠𝑠𝑖𝑖� we need an estimate of the probability 
distribution of 𝑠𝑠𝑖𝑖. This distribution is conditional on all of the decisions of service member 
𝑖𝑖, denoted by the vector 𝐚𝐚𝐢𝐢. Intuitively, service members who repeatedly choose to stay in 
the military likely have a higher taste for service than those who leave at an early career 
point. We can use Bayes’ rule to write this probability distribution as: 
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𝑞𝑞�𝑖𝑖(𝑠𝑠) = 𝑃𝑃𝑃𝑃{𝑠𝑠𝑖𝑖 = 𝑠𝑠|𝐚𝐚𝐢𝐢, 𝐱𝐱𝐢𝐢;𝜋𝜋�} =
𝜋𝜋�(𝑠𝑠)∏ 𝑝𝑝𝑑𝑑 �𝑎𝑎𝑖𝑖,𝑑𝑑|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠�

∑ 𝜋𝜋�𝑠𝑠′ (𝑠𝑠′)∏ 𝑝𝑝𝑑𝑑 �𝑎𝑎𝑖𝑖,𝑑𝑑|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠′�
 (14) 

The overall population probability distribution for each type can be found by 
summing all of the individual probabilities: 

𝜋𝜋�(𝑠𝑠) =
1
𝑁𝑁
�𝑞𝑞�𝑖𝑖
𝑖𝑖

(𝑠𝑠) (15) 

Given an estimate of the type distribution 𝑞𝑞�𝑖𝑖(𝑠𝑠), we can compute the CCPs. 
Specifically, if we take the types as given, then we are back to a setting where all relevant 
state variables are observed. Because (14) gives a probability distribution of types, we use 
these 𝑞𝑞�𝑖𝑖(𝑠𝑠) as weights in a bin estimator: 

�̂�𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖� =
∑ ∑ 𝑞𝑞�𝑖𝑖𝑑𝑑𝑖𝑖 (𝑠𝑠)𝟙𝟙�𝑎𝑎𝑖𝑖,𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙�𝟙𝟙�𝑥𝑥𝑖𝑖,𝑑𝑑 = 𝑥𝑥�

∑ ∑ 𝑞𝑞�𝑖𝑖𝑑𝑑𝑖𝑖 (𝑠𝑠)𝟙𝟙�𝑥𝑥𝑖𝑖,𝑑𝑑 = 𝑥𝑥�
 (16) 

With an estimate of �̂�𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖� we can now estimate 𝜃𝜃. We take 𝑞𝑞�𝑖𝑖(𝑠𝑠) as given 
again and use it as population weights in an estimator where the types are observed. The 
estimator for 𝜃𝜃 is 

𝜃𝜃� = argmax
𝜃𝜃

� � �𝑞𝑞�𝑖𝑖
𝑑𝑑𝑠𝑠𝑖𝑖

(𝑠𝑠)ln�𝑝𝑝�𝑎𝑎𝑖𝑖,𝑑𝑑|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖, �̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙),𝜃𝜃�� (17) 

Note that this estimator is not the likelihood given in (13). The two estimators have 
the same first order conditions, and so are maximized at the same 𝜃𝜃�. The estimator given 
in (17) is easier to use in the EM framework, is globally concave under our assumptions, 
and is simple to compute. It converges to the MLE under standard regularity conditions. 

The estimation proceeds by iterating on equations (14), (15), (16), and (17) until 
convergence. The first three steps are computationally straight-forward. The maximization 
over 𝜃𝜃 treats the unobserved taste for military service as known, so each step in the 
algorithm is approximately as computationally expensive as estimating one model without 
the unobserved taste. While this can still be computationally burdensome, it is significantly 
faster than a full-solution method that requires solving the dynamic problem for every trial 
value of parameters. 

The second estimator in Arcidiacono and Miller (2011) uses a different approach to 
obtain �̂�𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖�. For any given estimate of 𝜃𝜃� and �̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙), the model will generate 
𝑝𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖, �̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙),𝜃𝜃��. This suggests that we can replace the empirical bin 
estimator in (16) with model predictions �̂�𝑝�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖� = 𝑙𝑙�𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙, 𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖, �̂�𝑝,𝜃𝜃��. If the 
bin estimator can be thought of as getting �̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) “from the data” then we can think of 
this method as obtaining it “from the model.” In practice, the bin estimator may be difficult 
to implement if some values of the variables are relatively rare (or if some 𝑥𝑥 are 
continuous), and so updating �̂�𝑝(𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙) from the model may be preferred. 
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A. Data and Specifications 
To estimate the model, we need individual-level data on retention decisions. Each 

observation represents a single retention decision point, and includes information about the 
alternatives available to the service member at that point and which alternative was chosen. 
Observations for the same service member are linked using a unique identifier, which 
allows us to use information across multiple decision points to estimate the service 
member’s taste for military service. In addition to observed decisions, we use data on both 
military and civilian labor markets to fully characterize the alternatives available to the 
service member. 

The military data include variables that affect the utility that a service member 
receives from staying in the military. These variables form the observable state 𝑥𝑥𝑖𝑖,𝑡𝑡, though 
not all observable variables enter the utility function directly. For example, military 
compensation is a key variable of interest, and is included in the utility function. Deciding 
how to calculate military compensation is up to the researcher; typically, it is either based 
on published policy documents or estimated as a function of service members’ observed 
characteristics. Certain characteristics, such as YOS and pay grade, are necessary to 
correctly calculate military compensation even though they may not directly influence 
service members’ utility. 

In addition to military compensation, expected wages in the civilian labor market are 
an important state variable. Military data only contain information on service members 
who have not yet left the military, so we do not observe a service member’s civilian pay 
once they leave. We make assumptions about how the observable variables translate into 
expected civilian pay, so we can treat it as an “observed” state variable.  

For example, assume that civilian wages are a function of the service member’s career 
field, experience, and education level. We can estimate a wage equation using civilian data 
from the American Community Survey (ACS) or the Annual Social and Economic 
Supplement of the Current Population Survey (CPS-ASEC), and use this equation to 
predict civilian wages for the service members in our military data. 

Spouse wages may also be a component of the state space, particularly if the retention 
decision is a household, rather than an individual, decision. If the utility function is 
nonlinear in income, then we need to carefully consider whether individual or household 
income is the relevant state variable. For example, suppose 𝑢𝑢(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙) = 𝜃𝜃ln(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙); 
this imposes a decreasing marginal utility of income.  

In this case, spouse wages shift household income up, and reduce the marginal utility 
from the service member’s income, suggesting that married service members may be less 
responsive to compensation incentives than single service members. Additionally, there is 
evidence that spouses of service members earn less than spouses of veterans; if household 
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income is the relevant variable for utility, the effect of the retention decision on the spouse’s 
wages should also be taken into account. 

Service members’ utility from being in the military may be affected by variables other 
than pay, such as their marital status, their duty station location, and the likelihood of 
deployment during the next tour, as well as the duration and nature of deployment, which 
may itself depend upon persistent geopolitical shocks. The set of variables that enter the 
utility function should include anything that the researcher is interested in using during 
policy evaluation. In addition, it should include variables that: 

1. Directly affect the utility that a service member expects to receive from staying in 
the military, and 

2. Are correlated with the variables of interest for policy evaluation 

Here, the variable of interest is compensation, so we endeavor to include variables in 
the utility function that directly affect utility and are correlated with military or civilian 
compensation. This includes variables that are correlated with differences in compensation 
across individuals (e.g., gender) as well as those that are correlated with changes in 
compensation for the same person over time (e.g., pay grade). Failing to include utility 
variables that are correlated with the variables of interest for policy evaluation may lead to 
omitted variable bias in the estimated coefficients of interest. 

Service members in the model are forward-looking, so the utility function captures 
the future utility that they expect to receive, conditional on the retention decision they 
make. Accurate predictions of future state variables are a key part of the model because 
they represent service members’ beliefs about future utility. Expectations of promotions, 
conversions to different communities, changes in location, marriage, having children, and 
other factors play a role in retention decisions.  

To be useful in the utility function, a variable must be predictable (from the 
perspective of the researcher) at least to some degree. We define a variable to be predictable 
to the researcher if the data contains information that facilitates construction of a prediction 
that is more accurate than a random guess. For example, service members may have 
information about the quality of housing or the command climate at the units they expect 
to go to, and this knowledge affects their retention decisions. Unfortunately, housing 
quality and command climate are typically unobservable to the researcher. Effects like 
these would therefore have to be captured via other observable variables in the utility 
function, or with the idiosyncratic shocks.  

 



15 

B. Using DDC for Policy Evaluation 
Estimating a structural DDC model of retention makes it possible to evaluate the 

effect of counterfactual personnel or compensation policy changes on retention. The most 
direct way to assess the effect of a proposed policy change is to modify the state variables 
in 𝑥𝑥 in existing data to reflect the anticipated effect of the policy, and then predict new 
choice probabilities using the structural model.  

This method of policy evaluation is often called a “counterfactual” policy evaluation; 
it answers the retrospective question, “What decisions would service members have made 
in the past, if the hypothetical policy had been in effect?” Often, this is not the relevant 
question of interest. The true question might be, “What will service members do in the 
future if the hypothetical policy is put into place?” To the extent that the service member 
population and their career and family circumstances in the future resemble those of the 
past, the counterfactual approach can provide valuable insight. However, if the salient 
features of the environment or the population are different, we can simulate new data to 
provide a better answer to this question. 

Retention bonuses and other compensation policies are often of interest because these 
are expected to have a direct effect on retention decisions. However, structural DDC 
models can be used to evaluate a wide variety of personnel policies, including changes to 
promotion/advancement rates or to the assignment process. In general, the model can 
assess hypothetical policies that meet three criteria: 

1. The policy affects observable state variables. 

2. The affected state variables could be accurately predicted before the policy 
change. 

3. The policy has a predictable effect on the state variables. 

Condition 1 requires that policy operates on at least one observable state variable. An 
easy example is a retention bonus; it increases military compensation for at least some 
service members if they decide to stay. But not all policies that may affect retention do so 
through observable variables. Service members may value access to high-quality on-base 
childcare, and a policy that increases the availability of childcare may increase retention.  

However, unless the historical availability of childcare is observed in the data, we 
cannot capture the role of childcare in the model. It is crucially important to consider what 
policies the model will be used to evaluate, and ensure that the utility function specification 
includes variables that capture the policies’ effect. If a policy affects state variables that are 
not modeled (whether they are observable or not), the model-predicted retention decisions 
cannot capture the full effect of the policy. 

Condition 2 requires that the affected state variables can be accurately predicted using 
available data. In the model, retention decisions depend on the service member’s 
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expectations about the future in the future utility terms. For a variable to affect the retention 
decision, the service members have to be able to predict, at least to some extent, the future 
values of the variable. If location assignment was unpredictable before the policy change, 
then it could not have affected the behavior of service members, and we cannot estimate 
their preferences for one location versus another.  

Even if location assignment is perfectly predictable after the policy change, the model 
cannot predict the impact of this policy on retention because the data before the policy 
change were not informative about service members’ location preferences. More generally, 
if the policy affects something that service members could not or did not consider when 
making previous retention decisions, then the model estimated using the past data will not 
be useful in evaluating the effect of this policy. 

Finally, Condition 3 requires that the policy have a predictable effect on the state 
variables. To perform a counterfactual policy evaluation, we simulate the effect of the 
policy on the state variables in the utility function. A bonus that is targeted to certain service 
members based on observed characteristics, such as MOS and pay grade, is easy to simulate 
and evaluate.  

However, a bonus that is offered to service members based on a recommendation 
from their supervisor would not be easy to simulate. We do not know who would be 
recommended or why, and while we may try to make some assumptions, they are unlikely 
to fully capture the supervisors’ decision process. In this case, the policy has an 
unpredictable effect on the state variable; we cannot reliably tell who will be offered higher 
compensation under this policy. The model may provide predictions of different scenarios 
under different assumptions, but these would need to be interpreted with the appropriate 
degree of caution. 

Retaining service members with the right set of skills and expertise is important 
because they fill critical jobs in the military and maintain a capable and ready military 
force. Policies that affect retention therefore affect the inventory of service members with 
different skills, the job match quality of service members, and the readiness of military 
units. Understanding the connection between retention decisions and these additional 
metrics requires additional post-processing.  

Inventory projection models take predictions from retention models and simulate 
changes in the personnel inventory and unit assignment of service members to evaluate the 
downstream effects of a retention policy. Because the retention model operates at an 
individual level, predicted retention decisions can be aggregated along any dimension 
necessary to work with an inventory projection model. 
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3. Model Extensions 

The stylized model of retention presented in the previous section has the essential 
features of a retention model, but it also makes a lot of simplifications that may not be 
appropriate in specific applications. The CCP estimation framework reduces the 
computational burden of estimation to the point where we can construct models that are 
rich enough to reflect real-life conditions under which retention decisions are made.  

This section outlines several extensions that allow us to provide more accurate and 
credible estimates of the impact of personnel and compensation policies on retention. Some 
of these extensions are straight-forward and are largely covered in Arcidiacono and Miller 
(2011). We briefly discuss these first, before turning to topics that are specific to the 
military retention application. 

A. Error Distribution 
The stylized model assumed that 𝜖𝜖 are distributed Type 1 Extreme Value, leading to 

standard multinomial logit specification. In general, CCPs can be numerically calculated 
for any Generalized Extreme Value (GEV) distribution, but this is typically unattractive on 
computational grounds. In the special case of a nested logit model, the CCPs have an 
analytic solution. Nested logit models may be attractive when there is reason to believe 
that 𝜖𝜖 shocks are not independent across alternatives.  

For example, if there are multiple stay options, such as shorter and longer contracts, 
the shocks associated with the stay actions may be correlated among themselves, but be 
independent of the shock for the leave action. The nested logit specification would imply 
that if one of the stay actions were removed, a service member who previously chose that 
action would be more likely to switch to a different stay action, all else equal. This 
extension is particularly important in settings where service members have choices over 
the characteristics of their next contract and assignment. 

B. State Variable Transitions 
Some of the assumptions we made about the transition function may be relaxed at the 

cost of additional computational burden. State variables may transition differently 
depending on the action taken; for example, service members who choose to commit to a 
longer obligation may receive systematically different assignments. Transitions of 
observed variables may depend on the unobserved taste for military service.  

For example, we may hypothesize that service members with a high taste for military 
service are more likely to get promoted. The unobserved taste for military service itself 
may also change over time. In both cases, the transition function 𝑓𝑓(𝑥𝑥𝑑𝑑+1, 𝑠𝑠𝑑𝑑+1|𝑎𝑎𝑑𝑑, 𝑥𝑥𝑑𝑑 , 𝑠𝑠𝑑𝑑) 
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has to be estimated as part of the EM algorithm. In practice, identifying the relationship 
between transitions and the unobserved taste for military service requires repeated 
observations of the same service member, but most service members leave the military at 
the first or second decision point. This may be a plausible and desirable extension in 
applications dealing with specific communities where the identification is possible. 

C. Simulating Future States 
Most theoretical DDC papers assume that the state space is discrete, allowing for an 

easy construction of 𝑓𝑓(𝑧𝑧𝑡𝑡+𝑘𝑘|𝑧𝑧𝑡𝑡,𝑎𝑎𝑡𝑡) as a Markov transition matrix. In practice, some 
variables in 𝑧𝑧 may be continuous. Additionally, in military retention applications, the state 
space is usually large, complex, and sparse enough that it is impractical to directly use the 
full Markov transition matrix to calculate expected utility.  

Instead, we numerically approximate expectations over 𝑧𝑧𝑡𝑡+𝑘𝑘 using simulations, a 
process which is easily extended to continuous variables. With the CCP methodology, we 
need to simulate 𝑧𝑧𝑡𝑡+𝑘𝑘 only until the next decision point, which is usually only a few years 
in the future. Using simulations to approximate expected utility enables us to capture more 
complexity in the utility function than would otherwise be possible. 

D. Unobserved States 
In the stylized model, we assumed that taste for military service is the only relevant 

unobserved variable. In general, there could be multiple unobserved state variables that 
influence the transitions 𝑓𝑓(𝑧𝑧𝑡𝑡+𝑘𝑘|𝑧𝑧𝑡𝑡) and utilities 𝑢𝑢(𝑧𝑧𝑡𝑡,𝑎𝑎) in different ways. For example, 
we may think that taste for military service directly affects service members’ utility, but 
does not affect transitions, while unobserved ability affects the promotion probability, but 
does not directly affect utility. Identifying this two-dimensional unobserved state variable 
may be possible, depending on the available data and how each variable is assumed to 
affect utility and transitions.  

Note that treating ability as an unobserved state variable is not as simple as it may 
seem. Ability is likely related to the civilian wage; service members with high ability and 
good promotion prospects may also have better job prospects in the civilian labor market. 
It can be difficult to make assumptions a priori about which unobserved variable is 
affecting which part of the model, and mis-specification may confound interpretation. 
However, this extension may be useful if the policy question at hand is directly related to 
unobserved variables such as ability. 

E. Utility Function Specification 
We often represent utility 𝑢𝑢�𝑧𝑧𝑖𝑖,𝑡𝑡,𝑎𝑎� as a linear function of the state variables. 

However, 𝑢𝑢 does not need to be linear, and the aggregate utility 𝑈𝑈 does not have to be a 
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sum of annual utilities. In some cases, economic theory may provide guidance about the 
shape of the utility function. A linear specification is popular and easy to interpret, but it is 
possible to estimate other variations; examples include hyperbolic absolute risk aversion 
and isoelastic utility functions. The additional structural parameters that come with these 
specifications increase the computational cost of estimation, but are possible to implement 
given our estimation procedure outlined above. 

A simple and useful way to extend the utility specification is to add variables that 
only appear at the decision period and not every year. Recall that 𝑈𝑈 captures the utility 
associated with a decision, conditional on the current state. Some parts of the utility are 
annual events or flows such as income, but it may also include per-decision components. 
The utility function must be time-separable across decisions (i.e., we must be able to 
separate 𝑈𝑈(𝑧𝑧𝑑𝑑, 𝑎𝑎𝑑𝑑) from 𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝑎𝑎𝑑𝑑+1)).  

However, it does not need to be separable across time periods within 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎𝑑𝑑); this 
is an unusual feature that stems from the fact that service members do not have an 
opportunity to make decisions every year. In fact, our specification in the stylized model 
already includes one component that is per-decision: the idiosyncratic error term. Some 
other examples of potential per-decision utility components are: 

• An indicator for whether a service member will deploy during the next tour 

• A one-time utility for leaving the service and for retiring 

We can incorporate information about the recent past in a similar way. We could 
include data on whether a service member recently returned from a deployment, the 
command climate at their last unit, or other variables. These do not directly fit into the 
framework of utility based on future state variables, but they may provide important 
information about a service member’s retention probability. Care must be taken to interpret 
model parameters, especially when there is a mixture of per-period utility flow and per-
decision utility. However, in some cases, this flexibility can be used to capture important 
aspects of a service member’s retention decision. 

F. Choices Over Obligation Length 
In the stylized model, all stay decisions incurred three additional years of obligation. 

In practice, service members often have the ability to choose how long they will stay in the 
military. Retention bonuses, such as Selective Reenlistment Bonuses (SRBs), frequently 
offer higher amounts of money for longer obligations, so incorporating a choice of 
obligation length is an important generalization relative to the simple stay/leave model. 

The fundamental change from this generalization is that the service member has 
control over when the next decision point 𝑑𝑑 + 1 will occur. Decision points might not occur 
at regular intervals; a service member may choose to extend for one year, then reenlist for 
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six years, then leave. Not all stay options may be available at every decision point; a short 
one-year extension may be available at one decision point, but not at another one. For the 
remainder of the paper, we will use 𝑎𝑎 to index available actions and to represent the length 
of the obligation associated with each action. For example, action 𝑎𝑎 = 3 represents the 
decision to stay for three more years, while 𝑎𝑎 = 0 represents the decision to leave. 

We can accommodate this generalization via an aggregate utility function 𝑈𝑈. For a 
stay action, 𝑎𝑎 > 0, 𝑈𝑈 sums expected utility over 𝑎𝑎 periods. If the service member chooses 
the leave action, 𝑎𝑎 = 0, there are no further decision points, and the function aggregates 
the remainder of expected lifetime utility. 

𝑈𝑈(𝑧𝑧𝑡𝑡,𝑎𝑎) =

⎩
⎪
⎨

⎪
⎧ � 𝛽𝛽𝜏𝜏−𝑡𝑡
𝑡𝑡+𝑎𝑎−1

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧𝑡𝑡,𝑎𝑎] 𝑎𝑎 > 0

�𝛽𝛽𝜏𝜏−𝑡𝑡
𝑇𝑇

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧𝑡𝑡, 0] 𝑎𝑎 = 0

 (18) 

The rest of the changes are equally straight-forward. The continuation value 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1) 
in the alternative-specific value function now depends on the length of obligation 
associated with the stay action 𝑎𝑎𝑑𝑑. Choosing 𝑎𝑎𝑑𝑑 > 0 implies that the next decision point 
𝑑𝑑 + 1 occurs 𝑎𝑎𝑑𝑑 periods in the future. Therefore, the state at decision point 𝑑𝑑 + 1 may be 
different for each 𝑎𝑎𝑑𝑑 ∈ 𝐴𝐴. Additionally, the continuation value must be appropriately 
discounted to reflect when the next decision point will occur. 

We again use the terminal property of the leave decision 𝑎𝑎 = 0 to obtain the closed 
form representation of the alternative-specific value functions. There are no changes to the 
estimation procedure. The CCPs and their components take the following form: 

𝑝𝑝(𝑎𝑎|𝑧𝑧𝑑𝑑) =
exp�𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎)�

∑ exp𝑎𝑎′∈𝐴𝐴 �𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎′)�
 (19) 

 

𝑙𝑙�𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎 > 0� = 𝑈𝑈�𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎� + 𝛽𝛽𝑎𝑎𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1, 0) − ln�𝑝𝑝(0|𝑧𝑧𝑑𝑑+1)�) + 𝛾𝛾� (20) 

 

𝑙𝑙�𝑧𝑧𝑡𝑡𝑑𝑑 , 0� = 𝑈𝑈�𝑧𝑧𝑡𝑡𝑑𝑑 , 0� (21) 

G. Estimating on Short Panels 
We previously assumed that every service member is observed starting with the first 

decision point, 𝑑𝑑 = 1. For this assumption to be true, we would need a panel that covers 
entire careers of the service members in our sample. Given that military careers can last in 
excess of 30 years, this is a burdensome requirement. Furthermore, the behavior of service 
members who entered the military three decades ago is unlikely to represent in a 
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satisfactory manner the behavior of service members who have recently entered service. 
Young service members today have different attitudes and experiences and face a different 
military and civilian environment than service members in prior generations. 

We can make some assumptions that allow us to estimate the model using a short 
panel. Our approach takes inspiration from the Keane and Wolpin (2001) simulation 
method for dealing with the initial conditions problem. If the first period of our data 
contains a mid-career service member, we can infer that this service member made at least 
one decision to stay in the past.  

With this in mind, we can use the observed data to backwards simulate the salient 
features of this service member’s career, and then infer the past decisions the service 
member must have made to reach the point where they are observed at the beginning of 
our dataset. Doing this requires an assumption that the distribution of unobserved types 
𝜋𝜋�𝑠𝑠|𝑥𝑥𝑖𝑖,1� is invariant over time. While this assumption is not innocuous, it allows us in 
practice to estimate the model with only one stay-leave decision per individual – as few as 
four years of data. 

Our method proceeds as follows. Assume we have observations of all service 
members who make decisions over a short time period, such as four or five years. Some 
service members make their first retention decisions during this time period, and other 
service members at a later point in their careers. Based on observable characteristics such 
as MOS, we assign to service members the modal decisions and timing of those decisions 
that would result in the state we observe them in during the first period of our data.  

For example, if we see a service member for the first time at 14 YOS finishing a six-
year contract, we would look at other service members in their MOS at 8 YOS (when the 
service member must have started their current contract) and find that most of them are 
finishing a four-year contract. We would then assign to this service member two 
“unobserved” decisions: the first at 4 YOS to stay for four years and the second at 8 YOS 
to stay for six years. 

We use the unobserved decisions to help us correctly estimate the selection process 
based on the unobserved taste for military service, but we do not want to use these decisions 
in the estimation of the structural parameters. We include unobserved decisions in our 
calculation of 𝑞𝑞𝑖𝑖(𝑠𝑠) in (14) so we can correctly condition the distribution of types for a 
service member in the middle of the career on their full history of decisions to not leave 
the service.  

We do not fully characterize the unobserved decisions in the model, as doing so would 
require more assumptions regarding the circumstances faced by the service members in the 
past. Instead, we simply match the unobserved decisions to observed decisions based on a 
subset of observable characteristics, such as career field and YOS, and use the probabilities 
from the observed decisions to update 𝑞𝑞𝑖𝑖(𝑠𝑠). We then use these 𝑞𝑞𝑖𝑖(𝑠𝑠) as weights in the 
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likelihood estimation, but include in the likelihood only the decisions we do observe. 
Although we have to make the additional assumption on 𝜋𝜋 for this method to work, it 
allows us to estimate the model using relatively recent decisions of service members. We 
believe this is a good trade-off because estimating utility function parameters using recent 
decisions mitigates the possible effects of changes in the true parameters over time.  

H. Path to a Terminal Action 
In the stylized model, we assumed that the individual has an opportunity to leave at 

every decision point and used the value of leaving at the following decision point (𝑑𝑑 + 1) 
to obtain a closed form for 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1). In some cases, an option to leave may not be available 
at every retention decision point. For example, some service members are offered an 
extension in the middle of their contract, and the available options are to accept the 
extension or to reject it and finish their current obligation.  

In cases where the leave action is not available at 𝑑𝑑 + 1, we can instead use the value 
of leaving at 𝑑𝑑 + 2 to calculate 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1). To see this, let 𝑎𝑎�1 > 0 be an arbitrary action at 
𝑑𝑑 + 1 and 𝑎𝑎�2 = 0 be the leave action at 𝑑𝑑 + 2. We can then write the continuation value 
𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1) as follows. First, since the terminal action is assumed to be unavailable at 𝑑𝑑 + 1, 
at we replace it with 𝑎𝑎�1 when applying (5). 

𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1) = 𝑙𝑙(𝑧𝑧𝑑𝑑+1,𝑎𝑎�1) − ln�𝑝𝑝(𝑎𝑎�1|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾 

Next, we apply (3) to replace 𝑙𝑙(𝑧𝑧𝑑𝑑+1,𝑎𝑎�1) as usual. 

𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1) = 𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝑎𝑎�1) + 𝛽𝛽𝑎𝑎�1𝔼𝔼[𝑉𝑉‾(𝑧𝑧𝑑𝑑+2)]− ln�𝑝𝑝(𝑎𝑎�1|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾 

However, since 𝑎𝑎�1 is not a terminal action, this step now introduces a continuation 
value 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+2). Therefore, we apply (5) again to expand 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+2). Because a terminal 
action is assumed to be available at 𝑑𝑑 + 2, this yields closed form for 𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1). 

𝑉𝑉‾ (𝑧𝑧𝑑𝑑+1) = 𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝑎𝑎�1) + 𝛽𝛽𝑎𝑎�1𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+2, 0) − ln�𝑝𝑝(0|𝑧𝑧𝑑𝑑+2)� + 𝛾𝛾� − ln�𝑝𝑝(𝑎𝑎�1|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾 

𝑉𝑉‾  is used to represent the continuation value, so it depends on the expected values of 
state variables at 𝑑𝑑 + 1. Calculating 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎�1) and 𝑈𝑈(𝑧𝑧𝑑𝑑+1, 0) requires the expectation over 
state variables at 𝑑𝑑 + 2. Without a terminal action available at 𝑑𝑑 + 1, the model now relies 
on state variables at 𝑑𝑑 + 2, which is further in the future. More generally, we need to 
compute or simulate the expected state variables at the next decision point where the leave 
option is available, however far in the future this may be. 

Additionally, we may want to avoid using 𝑝𝑝(0|𝑧𝑧𝑑𝑑) to identify 𝑉𝑉‾  in some cases even 
when the leave option is available. Specifically, if 𝑝𝑝(0|𝑧𝑧𝑑𝑑) is near zero, then the value 
associated with 𝑧𝑧𝑑𝑑 may not be well identified. For example, the probability of voluntarily 
leaving the military within a couple of years prior to retirement eligibility is exceptionally 
low. Consider a service member whose decision point 𝑑𝑑 takes place when they have 16 
YOS, whose available stay action at this point is to remain in service for three additional 
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years. Denote the state at this point as 𝑧𝑧16, and the state at decision point 𝑑𝑑 + 1 as 𝑧𝑧19 
because it would take place at 19 YOS. Applying (3) and (5) as usual, the value of staying 
at 16 YOS is given by 

𝑙𝑙(𝑧𝑧16, 3) = 𝑈𝑈(𝑧𝑧16, 3) + 𝛽𝛽3𝔼𝔼�𝑈𝑈(𝑧𝑧19, 0) − ln�𝑝𝑝(0|𝑧𝑧19)� + 𝛾𝛾� 

However, suppose that 𝑝𝑝(0|𝑧𝑧19) = 0.01. The CCP estimation method uses model-
predicted CCPs to iteratively update �̂�𝑝(0|𝑧𝑧𝑑𝑑) during the estimation process. These model-
predicted probabilities are the result of a multinomial logit specification, which requires 
dramatic differences in values to produce such small CCPs. It is therefore likely that 
�̂�𝑝(0|𝑧𝑧19) > 𝑝𝑝(0|𝑧𝑧19) in cases like this. Suppose �̂�𝑝(0|𝑧𝑧19) = 0.03, which may not seem like 
a particularly large discrepancy. However, note that ln(0.01) = −4.6 while ln(0.03) =
−3.5.  

At very low probabilities, a small change in the CCPs can lead to a large difference 
in the continuation value, which in this example would bias 𝑙𝑙(𝑧𝑧16, 3) and therefore 
𝑝𝑝(3|𝑧𝑧16) downward. Because the likelihood is calculated by comparing observed decisions 
to the estimated probabilities of those decisions, this also biases the likelihood 
contributions of stay decisions made at YOS 16. 

We can mitigate this issue by choosing a different arbitrary action 𝑎𝑎�19 at the 19 YOS 
decision point that is more representative of the actions of service members. Suppose that 
many service members making retention decisions at YOS 19 choose to stay for two years; 
we can then use 𝑎𝑎�19 = 2 instead of a terminal action when expanding 𝑙𝑙(𝑧𝑧16, 3). 

𝑙𝑙(𝑧𝑧16, 3) = 𝑈𝑈(𝑧𝑧16, 3) + 𝛽𝛽3𝔼𝔼�𝑙𝑙(𝑧𝑧19, 2) − ln�𝑝𝑝(2|𝑧𝑧19)� + 𝛾𝛾�
 = 𝑈𝑈(𝑧𝑧16, 3) + 𝛽𝛽3𝔼𝔼�𝑈𝑈(𝑧𝑧19, 2) + 𝛽𝛽2𝔼𝔼[𝑉𝑉‾ (𝑧𝑧22)]− ln�𝑝𝑝(2|𝑧𝑧19)� + 𝛾𝛾�

 

This introduces a continuation value 𝑉𝑉‾ (𝑧𝑧22) where previously there was only a utility 
function. However, if service members making retention decisions at YOS 22 often choose 
to leave, we can use a terminal action at that decision point to obtain a closed form solution. 

𝑙𝑙(𝑧𝑧16, 3) = 𝑈𝑈(𝑧𝑧16, 3)                                                                                                                   
+ 𝛽𝛽3𝔼𝔼�𝑈𝑈(𝑧𝑧19, 2) + 𝛽𝛽2𝔼𝔼�𝑈𝑈(𝑧𝑧22, 0) − ln�𝑝𝑝(0|𝑧𝑧22)� + 𝛾𝛾� − ln�𝑝𝑝(2|𝑧𝑧19)� + 𝛾𝛾� 

This adds to the computational burden to calculating 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎) at some decision points, 
but it avoids identification of parameters using the sharp changes in the natural log function 
for values near zero. 

I. Reducing the Computational Burden of the Outside Option 
Using the terminal property of the leave action requires the utility of that action to be 

known. 𝑈𝑈(𝑧𝑧𝑑𝑑, 0) must be estimated for all possible states 𝑧𝑧𝑑𝑑 from which a service member 
may choose to leave the military. Some applications normalize this value to zero for all 𝑧𝑧𝑑𝑑, 
but this normalization is not appropriate in our case. Current and future compensation is 
one of the most important factors in a retention decision. Expected civilian wages can differ 
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substantially based on the service member’s occupation, training, and experience. Failing 
to account for this variation in wages may lead the model to incorrectly associate 
differences in retention probabilities with other related variables. 

Calculating 𝔼𝔼[𝑈𝑈(𝑧𝑧𝑑𝑑, 0)] exactly for all 𝑧𝑧𝑑𝑑 is impractical. Income depends on 
occupation, experience, non-work income, investment returns, tax credits, and many other 
factors. Our goal is to incorporate those factors that account for the largest predictable 
variation in expected income.  

We can use data on a service member’s MOS, training, and certifications to match 
them to likely civilian occupations. Data on the service member’s current YOS and pay 
grade can be used to estimate military retirement pay, if any. In general, we estimate a 
reduced form function for civilian income (typically only wage income) using civilian data, 
and make assumptions about state variable transitions that allow us to calculate a service 
member’s hypothetical lifetime wage trajectory in the civilian world. 

This calculation is straight-forward but due to the size of the state space for 𝑧𝑧𝑑𝑑 it is 
too computationally intensive to be feasible at each step of the estimation. Therefore, the 
utility of leaving is usually restricted to be a continuous and monotonic function of 
expected income; it can then be precomputed and re-used during estimation. We propose 
two potential simplifications to reduce the complications involved in estimating 𝑈𝑈(𝑧𝑧𝑑𝑑, 0).  

First, it may be possible to cancel a portion of the value of the terminal action. This 
would reduce the computational burden of calculating the value of the terminal action, and 
may make it more feasible to relax other assumptions. Suppose that at some future time 
period, the distribution of relevant state variables conditional on choosing to leave at 𝑑𝑑 is 
the same as the distribution of state variables conditional on choosing to stay at 𝑑𝑑 and leave 
at 𝑑𝑑 + 1. That is, let 

𝑓𝑓��̃�𝑧𝑡𝑡𝑑𝑑+𝜌𝜌|𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎𝑑𝑑 = 0� = 𝑓𝑓��̃�𝑧𝑡𝑡𝑑𝑑+𝜌𝜌|𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎𝑑𝑑 = 𝑠𝑠 > 0, 𝑎𝑎𝑑𝑑+1 = 0� (22) 

where �̃�𝑧 contains only the state variables relevant to the value of the terminal action. This 
is similar to finite dependence, which we discuss in more detail in Section 3.J.  

For example, if both 𝑑𝑑 and 𝑑𝑑 + 1 occur before the service member is eligible for 
retirement, then the YOS and pay grade at the time of separation is arguably not relevant 
because there is no military retirement pay to consider. If one or both decision points occurs 
after retirement eligibility, the annual military retirement pay could be added as a variable 
in �̃�𝑧 to remove the dependence on YOS and pay grade.  

If we can argue that (22) holds for some 𝜌𝜌 > 𝑠𝑠, we can cancel part of the continuation 
value by splitting up 𝑈𝑈(𝑧𝑧𝑑𝑑, 0) in the alternative-specific value functions as follows: 
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𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑠𝑠)= 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑠𝑠) + 𝛽𝛽𝑦𝑦𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1, 0) − ln�𝑝𝑝(0|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾�

= 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑠𝑠) + 𝛽𝛽𝑦𝑦 � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑+1
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑+1

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑎𝑎𝑑𝑑+1 = 0] − 𝛽𝛽𝑦𝑦𝔼𝔼�ln�𝑝𝑝(0|𝑧𝑧𝑑𝑑+1)�� + 𝛽𝛽𝑦𝑦𝛾𝛾

= 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑠𝑠) − 𝛽𝛽𝑦𝑦𝔼𝔼�ln�𝑝𝑝(0|𝑧𝑧𝑑𝑑+1)�� + 𝛽𝛽𝑦𝑦𝛾𝛾

  +𝛽𝛽𝑦𝑦 � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑+1
𝑡𝑡𝑑𝑑+𝜌𝜌−1

𝜏𝜏=𝑡𝑡𝑑𝑑+1

𝔼𝔼�𝑢𝑢�𝑧𝑧𝑡𝑡𝑑𝑑+1+𝑘𝑘�|𝑎𝑎𝑑𝑑+1 = 0�

  +𝛽𝛽𝑦𝑦 � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑+1
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑+𝜌𝜌

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑎𝑎𝑑𝑑+1 = 0]

 

Noting that 𝑡𝑡𝑑𝑑 + 𝑠𝑠 = 𝑡𝑡𝑑𝑑+1 and therefore 𝑠𝑠 + 𝜏𝜏 − 𝑡𝑡𝑑𝑑+1 = 𝜏𝜏 − 𝑡𝑡𝑑𝑑 and rewriting 
expected utility as the integral with respect to the distribution of relevant state variables, 
the last term becomes: 

� 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑+𝜌𝜌

∫ 𝑢𝑢(�̃�𝑧𝜏𝜏)𝑓𝑓��̃�𝑧𝜏𝜏|𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎𝑑𝑑 = 𝑠𝑠,𝑎𝑎𝑑𝑑+1 = 0�𝑑𝑑�̃�𝑧𝜏𝜏 (23) 

Next, we expand the value of leaving at 𝑡𝑡𝑑𝑑. 
𝑙𝑙(𝑧𝑧𝑑𝑑, 0)= 𝑈𝑈(𝑧𝑧𝑑𝑑, 0)

 = � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑎𝑎𝑑𝑑 = 0]

 = � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑
𝑡𝑡𝑑𝑑+𝜌𝜌−1

𝜏𝜏=𝑡𝑡𝑑𝑑

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑎𝑎𝑑𝑑 = 0] + � 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑+𝜌𝜌

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑎𝑎𝑑𝑑 = 0]

 

Note that the last term can be rewritten as: 

� 𝛽𝛽𝜏𝜏−𝑡𝑡𝑑𝑑
𝑇𝑇

𝜏𝜏=𝑡𝑡𝑑𝑑+𝜌𝜌

∫ 𝑢𝑢(�̃�𝑧𝜏𝜏)𝑓𝑓��̃�𝑧𝜏𝜏|𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎𝑑𝑑 = 0�𝑑𝑑�̃�𝑧𝜏𝜏 (24) 

If (22), then (23) is equal to (24) and we are left with a closed form for 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎′) −
𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑎𝑎) (and therefore 𝑝𝑝(𝑎𝑎|𝑧𝑧𝑑𝑑)) that does not require us to calculate the expected lifetime 
utility of the terminal action past 𝑡𝑡𝑑𝑑 + 𝜌𝜌. 

If we do not believe (22) holds for some reasonable value of 𝜌𝜌, it may still be possible 
to simplify the calculation of the outside option. We propose replacing the sums in (23) 
and (24) with a parametric function ℎ�𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎𝑑𝑑� that captures the most important differences 
in �̃�𝑧𝑡𝑡𝑑𝑑+𝜌𝜌 that result from taking different actions at 𝑡𝑡𝑑𝑑. For example, suppose that the service 
member is at 17 YOS at 𝑡𝑡𝑑𝑑; leaving at this point will result in the service member receiving 
no military retirement benefit, while staying for at least three years will result in eligibility 
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for retirement. In this case, a significant difference in future state variables persists for the 
rest of the individual’s life, and there is no 𝜌𝜌 such that (22) plausibly holds. 

Instead of canceling the time periods from 𝑡𝑡𝑑𝑑 + 𝜌𝜌 to 𝑇𝑇, we could summarize the 
relevant differences using ℎ�𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎� = 𝜃𝜃𝑟𝑟𝟙𝟙�𝑌𝑌𝑌𝑌𝑆𝑆𝑡𝑡𝑑𝑑 + 𝑎𝑎 ≥ 20�. This function uses a simple 
retirement eligibility indicator; for 𝑎𝑎 = 0 the indicator is equal to 1 if the individual is 
eligible to retire at the current decision point, while for 𝑎𝑎 > 0 the indicator represents 
retirement eligibility if the individual were to leave at the next decision point.  

Substituting ℎ�𝑧𝑧𝑡𝑡𝑑𝑑 ,𝑎𝑎� in for the last term in 𝑙𝑙(𝑧𝑧𝑑𝑑 ,𝑎𝑎), we now have a closed form for 
𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑎𝑎′) − 𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎) that again requires us to calculate only 𝜌𝜌 periods of transitions and 
utility past the current decision point. A single indicator for retirement eligibility may be 
too simple, but the principle holds. 𝑈𝑈(𝑧𝑧𝑑𝑑, 0) is not required to be a sum of annual utilities, 
so we can significantly reduce the computational burden of calculating 𝑈𝑈(𝑧𝑧𝑑𝑑, 0) for all 𝑧𝑧𝑑𝑑 
by using a parametric function to approximate part of the value. 

J. Modeling the Reserve Participation Decision 
In addition to expanding the set of stay options, we may want to understand more 

about service members’ decisions to participate in the reserves after leaving active duty. 
The baseline model assumes that leaving active duty is a terminal action, after which 
service members do not make any more decisions in the dynamic model. Here, we consider 
two ways to relax this assumption to accommodate the reserve participation decision.  

First, suppose that active duty service members can choose to join the reserves or 
become a civilian upon leaving active duty, and each year service members in the reserve 
component choose whether to continue in the reserves or become a civilian. Additionally, 
suppose that they cannot rejoin the active or reserve components once they leave to become 
a civilian.  

In this example, we might have separate value functions for service members in the 
active and reserve components. Let 𝑙𝑙𝐴𝐴 be the alternative-specific value function for stay 
actions; let 𝑅𝑅 represent the choice to join the reserves and 𝐶𝐶 be the choice to become a 
civilian. Choosing to leave to become a civilian is still a terminal action, so we can use this 
property to obtain a closed form for the continuation value just as before. 

𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎 ∈ 𝐴𝐴) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑎𝑎) + 𝛽𝛽𝑎𝑎𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝐶𝐶) − ln�𝑝𝑝𝐴𝐴(𝐶𝐶|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾� 

Note that the state 𝑧𝑧𝑑𝑑 must now track whether the service member is in the active or 
reserve components because this may influence the current period utility and the 
probability of leaving to become a civilian (𝑝𝑝(𝐶𝐶|𝑧𝑧𝑑𝑑+1)). We add a superscript on the CCP 
to emphasize this distinction. We can also use the terminal action property to write the 
alternative-specific value of choosing to join (or stay in) the reserves. 

𝑙𝑙(𝑧𝑧𝑑𝑑,𝑅𝑅) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑅𝑅) + 𝛽𝛽𝔼𝔼�𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝐶𝐶) − ln�𝑝𝑝𝑅𝑅(𝐶𝐶|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾� 
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Participation decisions for reservists are assumed to be annual, so we do not need to 
use 𝑎𝑎 to discount the continuation value or aggregate utility. The value of the civilian option 
is unchanged from the baseline model. 

𝑙𝑙(𝑧𝑧𝑑𝑑,𝐶𝐶) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝐶𝐶) 

The value of being in state 𝑧𝑧𝑑𝑑 prior to choosing an action is equal to the maximum 
value of the available actions. Therefore, the choice probabilities take the same form as in 
the baseline model, for 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴 = {𝐴𝐴,𝑅𝑅,𝐶𝐶}. 

𝑝𝑝𝐴𝐴(𝑎𝑎|𝑧𝑧𝑑𝑑) =
exp�𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎)�

∑ exp𝑎𝑎′∈𝐴𝐴𝐴𝐴 �𝑙𝑙(𝑧𝑧𝑑𝑑, 𝑎𝑎′)�
 

In our example, reserve component service members do not have the option to re-
enter the active component, so the set of available actions is 𝐴𝐴𝑅𝑅 = {𝑅𝑅,𝐶𝐶}. 

𝑝𝑝𝑅𝑅(𝑎𝑎|𝑧𝑧𝑑𝑑) =
exp�𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎)�

∑ exp𝑎𝑎′∈𝐴𝐴𝑅𝑅 �𝑙𝑙(𝑧𝑧𝑑𝑑,𝑎𝑎′)�
 

Depending on the service member population or the policy question of interest, it 
might be undesirable to assume that a service member can never rejoin the reserves after 
becoming a civilian. If we include the reserve participation decision in the same model as 
we did earlier in this section, we can no longer use the terminal action property to obtain a 
closed form for 𝑉𝑉‾ . 

However, we can split the reserve participation decision into a separate second model, 
and use a property called finite dependence to solve it. Actions 𝑎𝑎 and 𝑎𝑎′ are defined to be 
𝜌𝜌-period dependent if there exist sequences of actions starting with 𝑎𝑎 and 𝑎𝑎′ that lead to 
the same distribution of state variables 𝜌𝜌 periods in the future.  

For example, consider the decision of a current reservist. They can continue as a 
reservist next year or become a civilian; because military status (active, reserve, civilian) 
is part of the state, these two actions lead to different states at 𝑑𝑑 + 1. Comparing the 
sequences of actions {𝑅𝑅,𝐶𝐶} and {𝐶𝐶,𝐶𝐶}, note that the state at 𝑑𝑑 + 2 is different even if the 
action at 𝑑𝑑 + 1 is 𝐶𝐶 in both cases because years of service is an important component of 
the state space.  

Sequences {𝑅𝑅,𝐶𝐶} and {𝐶𝐶,𝑅𝑅} lead to the same years of service at 𝑑𝑑 + 2, but still differ 
in the military status upon entering 𝑑𝑑 + 2. However, sequences {𝑅𝑅,𝐶𝐶,𝐶𝐶} and {𝐶𝐶,𝑅𝑅,𝐶𝐶} 
satisfy finite dependence: the distribution of state variables at 𝑑𝑑 + 3 is the same in both 
cases. We can iterate with equation (5) to expand the alternative-specific value function as 
follows: 
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𝑙𝑙𝑅𝑅(𝑧𝑧𝑑𝑑,𝑅𝑅) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑅𝑅) + 𝛽𝛽𝔼𝔼𝑑𝑑[𝑉𝑉‾ 𝑅𝑅(𝑧𝑧𝑑𝑑+1)]
 = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑅𝑅) + 𝛽𝛽𝔼𝔼𝑑𝑑�𝑙𝑙(𝑧𝑧𝑑𝑑+1,𝐶𝐶) − ln�𝑝𝑝𝑅𝑅(𝐶𝐶|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾�

 = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑅𝑅) + 𝛽𝛽𝔼𝔼𝑑𝑑 ��𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝐶𝐶) + 𝛽𝛽𝔼𝔼𝑑𝑑[𝑉𝑉‾ 𝐶𝐶(𝑧𝑧𝑑𝑑+2)]� − ln�𝑝𝑝𝑅𝑅(𝐶𝐶|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾�
 

Iteration of this expansion yields the following equation for the value of choosing 𝑅𝑅 
at 𝑑𝑑, using the sequence of actions {𝑅𝑅,𝐶𝐶,𝐶𝐶}. 

𝑙𝑙𝑅𝑅(𝑧𝑧𝑑𝑑,𝑅𝑅) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝑅𝑅) +𝛽𝛽𝔼𝔼𝑑𝑑�𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝐶𝐶) − ln�𝑝𝑝𝑅𝑅(𝐶𝐶|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾�
 +𝛽𝛽2𝔼𝔼𝑑𝑑�𝑈𝑈(𝑧𝑧𝑑𝑑+2,𝐶𝐶) − ln�𝑝𝑝𝐶𝐶(𝐶𝐶|𝑧𝑧𝑑𝑑+2)� + 𝛾𝛾�
 +𝛽𝛽3𝔼𝔼𝑑𝑑[𝑉𝑉‾ 𝐶𝐶(𝑧𝑧𝑑𝑑+3)]

 

Similarly, we can write the value of choosing 𝐶𝐶 at 𝑑𝑑 using the sequence {𝐶𝐶,𝑅𝑅,𝐶𝐶}. 

𝑙𝑙𝑅𝑅(𝑧𝑧𝑑𝑑,𝐶𝐶) = 𝑈𝑈(𝑧𝑧𝑑𝑑,𝐶𝐶) +𝛽𝛽𝔼𝔼𝑑𝑑�𝑈𝑈(𝑧𝑧𝑑𝑑+1,𝑅𝑅) − ln�𝑝𝑝𝐶𝐶(𝑅𝑅|𝑧𝑧𝑑𝑑+1)� + 𝛾𝛾�
 +𝛽𝛽2𝔼𝔼𝑑𝑑�𝑈𝑈(𝑧𝑧𝑑𝑑+2,𝐶𝐶) − ln�𝑝𝑝𝑅𝑅(𝐶𝐶|𝑧𝑧𝑑𝑑+2)� + 𝛾𝛾�
 +𝛽𝛽3𝔼𝔼𝑑𝑑[𝑉𝑉‾ 𝐶𝐶(𝑧𝑧𝑑𝑑+3)]

 

The continuation value 𝛽𝛽3𝔼𝔼𝑑𝑑[𝑉𝑉‾ 𝐶𝐶(𝑧𝑧𝑑𝑑+3)] is the same in both cases (the individual is 
currently a civilian and has one additional year of reserve service compared to 𝑧𝑧𝑑𝑑). This 
portion of the continuation value will cancel when we take the difference between the two 
alternative-specific values to calculate the choice probabilities. The finite dependence 
assumption has now allowed us to obtain closed forms for the choice probabilities in the 
reserve participation decision model. 

In the active duty retention model, we can treat reserve/civilian as a single terminal 
action, just as we did before in the motivating example and the baseline model. This may 
require some changes to the value that we calculate for 𝑈𝑈(𝑧𝑧𝑑𝑑,𝐶𝐶), but the structure of this 
model is fundamentally unchanged. 
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4. Other Considerations 

We have described a structural DDC model of military retention and a number of 
possible extensions that fit into the simple CCP estimation framework. There are some 
other considerations that are relevant to determining whether the structural DDC approach 
is appropriate in a given application, and what we may need to keep in mind if we chose to 
implement it.  

The first consideration is identification, which we briefly mentioned earlier in the 
paper. It is important to understand what we can and cannot learn from the data that we 
have and what assumptions allow us to do so. It is also necessary to consider alternative 
estimation strategies and approximations, as even with the CCP method the computational 
requirements for estimating these models can become burdensome. Finally, testing the 
degree to which our assumptions about rationality and time preferences – and the presence 
or absence of peer effects – change our results may be an important part of applying a DDC 
model in certain situations. 

A. Identification of Structural Parameters 
We are particularly concerned with identification of the structural parameters of the 

model. The usefulness of the model in counterfactual policy analyses depends on our 
ability to recover the true parameters that determine individual behavior. As such, it is 
important to understand what assumptions and what variation in the data provide the 
information that we use to estimate our model. There are two practical concerns here: first 
are the assumptions that we need to make to ensure identification justifiable, and second, 
do we have the kinds of data we need to identify the parameters we are interested in. In 
practice, we specify structural forms for our models while considering the limitations 
implied by the non-parametric identification results to ensure we do not rely on the 
structural form assumptions beyond what is necessary. 

The key identification result for DDC models is given by Magnac and Thesmar 
(2002). These models are not generically non-parametrically identified. In the absence of 
unobserved heterogeneity, identification requires specifying the distribution of unobserved 
preference shocks, the discount factor, and the value of one reference alternative. Semi-
parametric identification results describing the case where the payoff function is known up 
to a set of parameters and the preference shock distribution is non-parametric are available 
in Buchholz, Shum, and Xu (2021). We make the assumptions required for identification 
by specifying the distribution of 𝜖𝜖, the value of 𝛽𝛽, and normalizing the intercept in the 
utility of the outside option to zero. These assumptions guarantee that the parameters of 
the utility functions are uniquely identified from the data. 
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Identification in the presence of unobserved heterogeneity is more difficult. Heckman 
and Singer (1984) show that mixture models are not generically identified, resulting in 
inconsistent estimators of the structural parameters. This makes it crucially important to 
correctly non-parametrically identify the distribution of unobserved heterogeneity. Fox et 
al. (2012) give conditions for the identification of the mixed logit model and Kasahara and 
Shimotsu (2009) give the conditions for general dynamic models.  

In both cases, identification relies on sufficient variation in the characteristics of 
alternatives that induces variation in the actions of individuals based on the heterogeneity. 
In the dynamic case studied by Kasahara and Shimotsu (2009), a panel of three periods is 
required for this variation to identify the distribution of unobserved heterogeneity. 

This leaves the practical concern of what sort of parameters can be identified by the 
available data. An important consideration is that DDC models are forward-looking, so 
only parameters associated with “forecastable” variables can be estimated.1 Consider, for 
example, the question of whether service members prefer a specific location over another.  

In order to estimate this preference, the researcher must forecast the transition of 
locations, and the forecasted locations must capture meaningful variation in observed 
outcomes. That is, expected outcomes must be different for some service members versus 
others.  The estimated 𝑓𝑓(𝑥𝑥𝑑𝑑+1|𝑥𝑥𝑑𝑑, 𝑎𝑎𝑑𝑑) shows us whether the expectation of a particular 
variable varies across service members in a meaningful way. After estimating these 
transitions, we can use them to understand what specifications and parameters we can 
expect our data to be informative about. 

The following question often comes up: how can we separately identify the effect of 
a covariate 𝑥𝑥 on the per-period utility 𝑢𝑢(𝑥𝑥) and its effect on the initial distribution of 
unobserved types 𝜋𝜋(𝑥𝑥)? Let us try to offer some intuition through an example.  

Suppose 𝑥𝑥 is gender and we want to know whether women (who retain at lower rates 
than men) receive an additional disutility from being in the military or are more likely to 
be of the type 𝑠𝑠 that has a low taste for military service. If the effect of gender is via the 
per-period utility, then we would expect to see women retain at lower rates than men at all 
points in the career. If the effect is via the unobserved types, we would expect more women 
to leave at the first opportunity and the retention rates to eventually equalize. This 
distinction is important because it helps us understand the behavior and the potential 
impacts of policies on service members of different genders. 

                                                 
1  By forecastable, we mean that the data must contain information that facilitates construction of a 

prediction that is more accurate than a random guess.  
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B. Identification of the Discount Factor 
Though we typically specify the value of the discount factor, in theory it is possible 

to estimate the discount factor jointly with the other structural parameters. Identification of 
the exponential discount factor is addressed by Abbring and Daljord (2020). This paper 
applies an exclusion restriction on utilities to extend the identification strategy of Magnac 
and Thesmar (2002). Under the required exclusion restriction, there exist known values 𝑎𝑎, 
𝑎𝑎′, 𝑧𝑧, 𝑧𝑧′, and 𝑖𝑖 such that 

𝑈𝑈(𝑧𝑧,𝑎𝑎) = 𝑈𝑈(𝑧𝑧′,𝑎𝑎′) + 𝑖𝑖, (25) 

where either 𝑎𝑎 ≠ 𝑎𝑎′ or 𝑧𝑧 ≠ 𝑧𝑧′, or both. If this exclusion restriction is satisfied, a finite set 
of discount factors is identified. 

The authors show that the set of discount factors can be characterized by a set of 
moment conditions that depend only on choice probabilities and transition probabilities. 
Calculating the identified set of 𝛽𝛽 values requires the full Markov matrix of state 
transitions, which implies that the state must be discrete. The size of the identified set of 𝛽𝛽 
may be reduced by imposing additional exclusion restrictions. In addition, models with 
single-action finite dependence have no more than 𝜌𝜌 values in the identified set of 𝛽𝛽. 

To impose the exclusion restriction in (25), we would need to select two states 𝑧𝑧 and 
𝑧𝑧′, actions 𝑎𝑎 and 𝑎𝑎′, and assume a value for the utility differential 𝑖𝑖. However, given the 
size of the state space and the kinds of information that it may contain in retention 
applications, these assumptions are difficult to justify. The size of the state space also 
makes working with the full Markov transition matrix difficult, and suggests that the set of 
𝛽𝛽 values identified by the moment condition is likely to be large. Therefore, we typically 
do not attempt to estimate 𝛽𝛽 even though it fits within the Arcidiacono and Miller (2011) 
estimation strategy. Instead, we can estimate the model and compare the counterfactual 
predictions under different assumptions on 𝛽𝛽.2 

C. Estimation in Two Stages 
Even when using the CCP estimation strategy, estimating complex DDC models can 

be a computational challenge. One promising approach is to use a two-stage estimation 
procedure that deals with unobserved heterogeneity in the first stage and allows us to vary 
the utility specification in the second stage. This two-stage implementation of the 
Arcidiacono and Miller (2011) estimator recovers the CCPs and the distribution of 
unobserved heterogeneity in the first stage and the structural parameters in the second 
stage.  

                                                 
2  In addition to different values for the exponential discount factor, we can estimate the model and make 

counterfactual predictions under alternative discount structures such as present-biased time preferences. 
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The second stage allows for an easy way to test multiple structural specifications and 
can be used with MLE, simulation, or other estimation methods. This method requires the 
CCPs and the unobserved types to be identified from the data without the assumptions 
imposed by the structural model. Discussions of different conditions that lead to 
identification can be found in Arcidiacono and Jones (2003), Kasahara and Shimotsu 
(2009), and Fox et al. (2012). 

The first stage of the estimation iterates on (14), (15), and (16) until convergence. 
This is essentially a repeated application of the “E” step from the EM algorithm. In practice, 
we follow Arcidiacono et al. (2016) and specify a reduced form equation for �̂�𝑝�𝑎𝑎|𝑥𝑥𝑖𝑖,𝑑𝑑 , 𝑠𝑠𝑖𝑖�, 
say 𝑝𝑝�(𝑎𝑎|𝑥𝑥, 𝑠𝑠). This is not our structural model because it does not impose any of the 
intertemporal or optimality constraints.  

We use this reduced form 𝑝𝑝� to impose the condition that observationally equivalent 
service members, meaning those with the same 𝑥𝑥, should behave in the same way. If they 
do not, then the difference is attributed to the unobserved heterogeneity 𝑠𝑠. In cases where 
the unobserved type affects an additional observed outcome, such as if the transitions 
𝑓𝑓(𝑥𝑥𝑑𝑑+1) depend on 𝑠𝑠, the structural parameters of this outcome equation can be estimated 
in this step as well. 

The first stage provides us with an estimate of the CCPs, conditional both on observed 
and unobserved variables, the population distribution of types 𝜋𝜋�(𝑠𝑠), and the individual-
specific probability distribution of types 𝑞𝑞�𝑖𝑖(𝑠𝑠). At this point we treat these parameters as 
known and proceed to the estimation of the structural parameters in the second stage. Any 
CCP estimator that works without unobserved heterogeneity can now be used to estimate 
𝜃𝜃. We form the likelihood just as described in the main part of the paper and estimate 𝜃𝜃� =
argmax𝜃𝜃 ∑ ∑ ∑ 𝑞𝑞𝑖𝑖𝑑𝑑𝑠𝑠𝑖𝑖 (𝑠𝑠)ln𝑙𝑙�𝑎𝑎𝑖𝑖,𝑑𝑑|𝑥𝑥𝑖𝑖,𝑑𝑑, 𝑠𝑠𝑖𝑖,𝑝𝑝�(0);𝜃𝜃�. 

This simplicity of the second stage allows us to explore many potential utility 
functions 𝑈𝑈(𝑥𝑥, 𝑠𝑠,𝑎𝑎). We can consider more variables and functional forms than typically 
possible in a one-stage estimation. If desirable, it should be possible at this point to 
incorporate variable selection, regularization, and other functional approximation 
techniques. 

A further additional benefit of the two-stage approach is the possibility of using 
simulation methods in the second stage. When finite dependence requires more than one 
period, the form of the likelihood function can become unwieldy. Bajari, Benkard, and 
Levin (2007) propose a forward simulation approach based on the differences in 
conditional value functions. 

Recall from (5) that 𝑉𝑉‾ (𝑥𝑥, 𝑠𝑠) = 𝑙𝑙(𝑥𝑥, 𝑠𝑠,𝑎𝑎�) − ln�𝑝𝑝(𝑎𝑎�|𝑥𝑥, 𝑠𝑠)� + 𝛾𝛾. This implies that the 
difference between any two conditional value functions can be written as 𝑙𝑙(𝑥𝑥, 𝑠𝑠,𝑎𝑎�) −
𝑙𝑙�𝑥𝑥, 𝑠𝑠, 𝑏𝑏�� = ln �𝑝𝑝�𝑏𝑏�|𝑥𝑥, 𝑠𝑠�� − ln�𝑝𝑝(𝑎𝑎�|𝑥𝑥, 𝑠𝑠)�. These form the basis of moment conditions 
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for a Generalized Method of Moments (GMM) estimator. If finite dependence does not 
hold, then this estimator is still feasible using simulations until the end of the decision 
process or until the discount rate renders future values insignificant. 

D. Approximation Methods
The CCP method of estimating DDC models significantly reduces this computational

challenge, but is still subject to the usual curse of dimensionality. An alternative approach 
is to use approximations to specify the value functions or to evaluate them at a small grid 
of points. 

There are two broad categories of approximation methods that have been developed 
to deal with models that require a large state space. The first attempts to approximate the 
value function using a lower-dimension representation. Examples of this approach include 
the sieve value function iteration of Arcidiacono et al. (2012) and the neural network 
approximations of Norets (2012). Related to this approach are methods of interpolating the 
value function, such as the well-known method of Keane and Wolpin (1994) and the sparse 
grid method from Brumm and Scheidegger (2017). Taking the approximation idea one step 
further, Bernal and Keane (2010) use a quasi-structural method to approximate the decision 
rules from a structural model using a reduced form method. 

The other method attempts to reduce the number of times the value function needs to 
be evaluated. Keane and Wolpin (2001) propose a simulation method that can be combined 
with CCP methods to reduce the number of outcome histories that need to be considered. 
Bajari, Benkard, and Levin (2007) adapt this method to a setting with dynamic games. This 
approach is particularly attractive in cases where the model exhibits finite dependence. If 
finite dependence is satisfied after 𝑘𝑘 periods, then only 𝑘𝑘 periods of simulations are needed. 

E. Rationality and Time Preferences
A common critique of economic models, particularly by those outside the field, is that 

the models assume individuals act rationally. It is true that some amount of rationality on 
the part of the individuals is required for the models to make sense, but this assumption 
can generally be summed up as “individuals have preferences and act on them.” 
Specifically, economic rationality boils down to two properties of individual preferences: 
completeness (existence of a preference ranking over alternatives), and transitivity 
(preservation of the ranking of those alternatives) (Mas-Colell et al. 1995).  

Service members in our models may, for example, believe that they will make more 
money in the civilian sector or that a promotion will improve their quality of life, whether 
this is true or not. Strictly speaking, we are estimating the utility that service members 
expect to receive from different characteristics of their careers. We do not expect or impose 
complete rationality from them. 
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One particular testable assumption of rationality is that individuals are forward-
looking. Service members in the model understand and take into account the likely impact 
of their actions today on their future careers. A higher discount rate, hyperbolic 
discounting, or a model of myopic behavior can describe a situation where service 
members do not care as much (or at all) about the future.  

Arcidiacono, Sieg, and Sloan (2007) test models of drinking and smoking with 
different degrees of rationality and find that decisions are better explained by models where 
individuals are rational. We can perform similar comparisons to evaluate whether the 
degree of rationality and forward-looking in our models is consistent with the behavior of 
service members we observe in the data. 

Fang and Wang (2015) discuss estimation of quasi-hyperbolic time preferences. 
Quasi-hyperbolic discounting is one way to represent present-biased preferences; it adds a 
present-bias discount factor 𝛿𝛿 to the standard exponential discounting framework.3 The 
present value of lifetime utility is then given by: 

𝑢𝑢(𝑧𝑧𝑡𝑡) + 𝛿𝛿 � 𝛽𝛽𝑘𝑘−𝑡𝑡
𝑇𝑇

𝑘𝑘=𝑡𝑡+1

𝑢𝑢(𝑧𝑧𝑘𝑘) 

Individuals are said to be sophisticated if they know that 𝛿𝛿 < 1 and make decisions 
accordingly. Sophisticated individuals understand that their present bias will affect their 
future decisions, and adjust their continuation value accordingly. Those who believe that 
their future decisions will be made under time-consistent preferences are said to be naïve. 
Naïve individuals believe that their present-bias discount factor is 𝛿𝛿 = 1. Individuals may 
also be partially naïve; they may understand that they are present-biased but believe that 
they will be less present-biased in the future (𝛿𝛿 < 𝛿𝛿 < 1). 

The exclusion restriction that gives identification of quasi-hyperbolic preferences 
requires that utility is time-separable and that there exists a variable in the state space that 
affects transition probabilities but does not affect current utility. Suppose states 𝑧𝑧𝑡𝑡 = 𝑧𝑧 and 
𝑧𝑧𝑡𝑡 = 𝑧𝑧′ differ only in the exclusion restriction variable. Then the current period utilities are 
equal; 𝑢𝑢(𝑧𝑧,𝑎𝑎) = 𝑢𝑢(𝑧𝑧′,𝑎𝑎). If 𝑝𝑝(𝑎𝑎|𝑧𝑧) ≠ 𝑝𝑝(𝑎𝑎|𝑧𝑧′), then the difference in choice probabilities 
can be attributed to differences in expected future utility. The extent to which differences 
in expected future states affect current decisions can be used to identify the time preference. 
Translating this exclusion restriction into our model, we would require a state variable such 
that 

                                                 
3  Because we use 𝛽𝛽 as the exponential discount factor, this notation is the opposite of the standard (𝛽𝛽, 𝛿𝛿) 

notation used in most papers with quasi-hyperbolic discounting. 
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𝑈𝑈(𝑧𝑧,𝑎𝑎) = � 𝛽𝛽𝜏𝜏−𝑡𝑡
𝑡𝑡+𝑎𝑎−1

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧, 𝑎𝑎] = � 𝛽𝛽𝜏𝜏−𝑡𝑡
𝑡𝑡+𝑎𝑎−1

𝜏𝜏=𝑡𝑡

𝔼𝔼[𝑢𝑢(𝑧𝑧𝜏𝜏)|𝑧𝑧′,𝑎𝑎] = 𝑈𝑈(𝑧𝑧′,𝑎𝑎) 

for all 𝑎𝑎 ∈ 𝐴𝐴, and 

𝑓𝑓(𝑧𝑧𝑡𝑡+𝑘𝑘|𝑧𝑧,𝑎𝑎) ≠ 𝑓𝑓(𝑧𝑧𝑡𝑡+𝑘𝑘|𝑧𝑧′,𝑎𝑎) 

for some 𝑎𝑎 ∈ 𝐴𝐴 and 𝑘𝑘 ≥ 𝑎𝑎. 

F. Peer Effects 
It is reasonable to wonder if the decisions and attitudes of peers play a role in service 

members’ retention decisions. If everyone else in your cohort plans to leave, then you may 
be more likely to leave as well. If these peer effects are present, then policy may be able to 
induce a shift from a bad equilibrium in which everyone wants to leave because everyone 
else is leaving to a good equilibrium where everyone wants to stay because everyone else 
is staying. Unfortunately, the identification of peer effects is notoriously tricky due to the 
“reflection problem” articulated by Manski (1993): when group formation is endogenous, 
the effects of peers are difficult or impossible to separate from selection into the group. 

In a military setting we may observe that service members in a specific field are highly 
likely to retain. Is this due to the peer effect or are service members who like the military 
more likely to select into this field? We may be able to test peer effects in settings where 
groups are formed exogenously, such as service member assignment to specific units.  

Additionally, Bramoullé, Djebbari, and Fortin (2009) show that peer effects may be 
identified through social networks, and we could use data on which service members 
served with other service members to create such a social network for a military cohort. 
Dennis et al. (2021) and Eliezer et al. (2021) provide more information on constructing 
professional networks of service members. Finally, Davezies, d’Haultfoeuille, and Fougère 
(2009) indicate how to identify these effects using the variation in group size and the 
variance of outcomes.  

Most of the applied research examining peer effects has focused on educational 
settings. We are unaware of any study of military retention that incorporates peer effects, 
but we strongly recommend that future studies examine the effects of peers on retention 
and other personnel issues among service members. 
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Appendix A. Recent Military Applications of 
DDC 

The military’s detailed historical personnel data provides a unique opportunity for 
estimating dynamic discrete choice (DDC) models of individual decisions. However, 
whether due to data access restrictions or some other constraint, the academic community 
outside of Federally Funded Research Development Centers (FFRDCs) has largely stayed 
away from studies of the military. In recent years, the only significant applications of 
dynamic discrete choice models to study military career decisions have been at FFRDCs.  

Since the 1980s, RAND has applied their Dynamic Retention Model (DRM) to 
analyze retention incentives across the DOD. In general, the DRM assumes that military 
retention decisions are influenced only by compensation and an individual’s “taste” for 
military service. DRM studies often assess potential compensation policies by simulating 
the survival curve that is expected to occur under the policy in steady state.  

Recently, CNA built the Dynamic Decision Model (DDM) to estimate the retention 
effects of both monetary and non-monetary personnel policies. The DDM includes many 
demographic and career variables as state variables, and is typically used to predict 
retention effects of potential policies among specific subgroups of service members.  

In 2015, IDA developed the Military Career Analysis Model (MCAM), which 
includes a modified version of the DRM called the Observed-Performance Dynamic 
Retention Model (OPDRM). The goal of this model was to combine a promotion model, a 
dynamic discrete choice retention model, a life-cycle cost model, and an accession model 
into a single wholistic model for studying military careers. 

A. RAND DRM 
The model and estimation strategy developed by Mattock and Arkes (2007) 

introduces the framework for RAND’s modern applications of the DRM. The authors note 
that at the time, “the DRM is not widely used to analyze manpower policy questions, in 
part because of the computational complexity of the model.” However, with the advances 
in computing power that have taken place over the last two decades, at least 15 RAND 
studies have estimated or applied the DRM since 2013.  

The model incorporates a nested stay decision that allows the service member to 
choose an obligation length and receive a retention bonus that depends on the obligation 
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chosen. The authors have data on military participation but not actual decisions; that is, the 
data indicate whether an individual is in the Active Component or the Reserve component, 
but do not contain information on retention bonus contracts or remaining obligation. 
Therefore, the estimation strategy is to maximize a likelihood that represents the 
probability of observing a service member staying for a given number of years. 

The most significant step toward the current DRM occurs in Asch, Mattock, and 
Hosek (2013). This study introduces a nested leave option that models the decision whether 
to participate in the Reserves after leaving active duty. The model also includes distinct 
taste parameters for Active and Reserve service. These taste parameters are assumed to be 
distributed according to a bivariate normal distribution across the population of service 
members; the distribution of taste for service is assumed constant across entry cohorts and 
its parameters are estimated jointly with the other structural parameters.  

Because the DRM does not include any demographic or career characteristics, the 
taste for service is assumed to capture all non-monetary utility variation across individuals. 
Finally, the model incorporates a switching cost to capture the fact that service members 
cannot easily choose to leave active duty before the end of their initial service commitment. 

This version of the DRM was used over the next several years to estimate the effects 
of retention bonuses in various officer communities. Mattock et al. (2016) estimate the 
model using data on Air Force pilots; Mattock et al. (2019) use the estimated model to 
assess cost-effectiveness of retention versus accession. These studies are specifically 
concerned with pilot retention in an economy where civilian demand for pilots is growing, 
and they carefully model the demand for and wages of pilots employed by major airlines.  

In addition to switching costs incurred if the service member leaves before completing 
their initial active duty service commitment or total service obligation, the model includes 
switching costs for moving to the reserves from either the active component or the civilian 
sector. Hosek et al. (2017) apply the same model to study the retention effects of special 
pays for officers in mental health care professions across the services, and Asch et al. 
(2019) use it to study retention bonuses in the Army and Navy Special Operations Forces. 

More recent versions of the DRM often assume that service members make annual 
decisions, and do not include nested stay decisions for obligations beyond one year. Asch, 
Mattock, and Hosek (2019) are interested in reserve participation under the new Blended 
Retirement System, and extend the model to differentiate between participation in the 
Army Reserve and the National guard. They estimate the model using data on enlisted 
service members and officers that entered the Army in 1990-1991.  

Asch, Mattock, and Tong (2020) estimate the DRM in order to simulate the retention 
effects of a time-in-grade (rather than a time-in-service) pay table and evaluate the impact 
on the ability distribution of the force. The model is extended to include pay grade as a 
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stochastic state variable; expected military pay now depends on YOS and pay grade.4 
Promotion opportunities are assumed to occur at known intervals throughout a service 
member’s career; an individual who fails to promote never receives another chance.  

All other state variables are deterministic, and there are only two possible values for 
next year’s pay grade at any decision point. Therefore, the continuation value is simply the 
weighted average of the continuation values associated with these two states. To assess the 
performance incentives associated with Selective Reenlistment Bonuses (SRBs) for 
enlisted Soldiers, Asch et al. (2021) again estimate the DRM with pay grade as a state 
variable. This study makes several assumptions about how innate ability and effort affect 
the timing and probability of promotion, and simulate the effects of increasing SRBs on 
the ability distribution and effort choices of the force. 

B. CNA DDM 
The DDM was first developed by Huff et al. (2018) to evaluate whether the Blended 

Retirement System (BRS) Continuation Pay can offset the anticipated decline in Navy 
enlisted retention due to the other aspects of BRS. The model assumes that sailors make 
retention decisions at the end of each contract, and is estimated on observed choices at 
these identified decision points. At each decision point, a sailor has seven alternatives 
available: leave the Navy, or sign a new contract for one to six additional years of 
obligation.  

The value of each alternative depends on the utility the individual expects to receive 
and a continuation value representing the opportunity to re-optimize in the future. In 
addition to expected future military pay, the model includes several non-monetary state 
variables (e.g., race, gender, marital status) directly in the utility function. These state 
variables, along with those that determine pay, are simulated so that the model accounts 
for uncertainty in outcomes such as future promotion probability and timing. The model is 
estimated using the CCP estimation strategy described in Arcidiacono and Miller (2011), 
though it does not yet include permanent unobserved heterogeneity across individuals. 

An extended version of the DDM is presented in Levy et al. (2020), where it is used 
to assess the effectiveness of retention incentives among officers in Navy medical 
specialties. The model is extended to include heterogeneity in taste for service across 
individuals as a mixture of discrete types, following Heckman and Singer (1984).  

Since this study is concerned with officers, who do not require enlistment contracts 
to remain in the service, retention decisions are assumed to occur once per tour or at the 

                                                 
4  Previous versions of the DRM use average pay by YOS. 
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end of a service obligation.5 The updated model also incorporates a careful treatment of 
the officer’s expected civilian wage, which accounts for the high wages of medical 
professionals as well as the wide variation across occupations. 

C. IDA OPDRM 
Doyle (2015) developed a multi-part model called the Military Career Analysis Model 

(MCAM); the objective was to combine several related aspects of personnel modeling into 
one unified framework. The MCAM included a dynamic discrete choice retention model 
based on the DRM, called the Observed-Performance Dynamic Retention Model 
(OPDRM). The OPDRM removes the taste parameter found in the DRM and replaces it 
(conceptually) with a time-varying measure of individual match quality based on the 
observed time to promote to the current paygrade.  

Having removed the persistent unobserved heterogeneity, the model is estimated 
using the CCP method of Hotz and Miller (1993), which significantly reduces the 
computational burden of estimation relative to the DRM. MCAM was used to simulate 
future force profiles for a subsequent IDA study on the feasibility of a proposed training 
policy. 

D. Model Comparisons 
Evaluating the impact of compensation and personnel policies on retention decisions 

across the military career requires a model that can predict how future service members 
will respond to a prospective policy. Until recently, models of retention decisions focused 
either on long-run equilibrium effects or on very near-term projections. The DRM is an 
example of the former, typically requiring a complete panel of data to estimate long-run 
impacts of changes in compensation. The DDM is an example of a near-term approach, 
using fewer years of data to predict retention outcomes in the immediate future. 

This paper develops two methodological advances to combine the advantages of both 
approaches. The extended model provides a means to incorporate information from 
unobserved early-career retention decisions, alleviating the need for a complete panel. The 
same principle can be applied to estimate a model of non-retention career decisions, such 
as BRS enrollment, jointly with retention decisions.  

This model also adjusts for extremely low probabilities of certain decisions – like 
choosing to leave immediately before becoming eligible for military retirement benefits – 
to reduce bias in estimates of the structural parameters of interest. These advances enable 

                                                 
5  Service obligations include the initial obligation, obligation incurred as a result of additional medical 

education or training, and obligation associated with a retention bonus contract. 
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the model to make credible near-term and long-run equilibrium predictions about retention 
outcomes under alternative compensation and personnel policy scenarios. 
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Appendix C. Abbreviations 

Term Definition 

ACS American Community Survey 

ADSO Active Duty Service Obligation 

BRS Blended Retirement System 

CCP Conditional Choice Probability 

CPS Current Population Survey 

CPS-ASEC Annual Social and Economic Supplement of the CPS 

DDC Dynamic Discrete Choice 

DDM Dynamic Decision Model 

DOD Department of Defense 

DP Dynamic Programming 

DRM Dynamic Retention Model 

EM Expectation Maximization 

FFRDC Federally Funded Research Development Center 

GEV Generalized Extreme Value 

IDA Institute for Defense Analyses 

MCAM Military Career Analysis Model 

MLE Maximum Likelihood Estimator 

MOS Military Occupational Specialty 

OPDRM Observed-Performance DRM 

SRB Selective Reenlistment Bonus 

YOS Years of Service 
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