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Executive Summary 

In September 2021, the White House Office of Science and Technology Policy 
(OSTP) asked the IDA Science and Technology Policy Institute (STPI) to evaluate whether 
outstanding scientists can be identified using existing bibliometric indicators and to assess 
the limitations of using bibliometric indicators for this purpose. STPI was also asked to 
develop a new analytical approach that takes advantage of bibliometric indicators to 
determine which individuals are outstanding scientists. Specifically, the two research 
questions addressed in this study are: 

1. Can bibliometric indicators be used to accurately identify outstanding scientists 
within a scientific discipline through time, and what are the limitations of their 
use? 

2. Can new analytical approaches be developed to identify outstanding scientists 
within a scientific discipline through time? 

To address the first research question, STPI reviewed select publication- and citation-
based indicators in addition to other types of bibliometric indicators such as the h-index 
and alternative metrics (i.e., altmetrics). Conventional bibliometric indicators such as total 
count of publications—or some fraction thereof—provide a quick way of assessing the 
productivity of a researcher or research group, with the assumption that more publications 
correlate with more research impact. While arguably the simplest bibliometric indicator to 
calculate, publication-based indicators can potentially overlook or inadvertently highlight 
a number of factors that obfuscate the quality of individual or research group contribution. 
Citation-based indicators have been used to estimate research impact and performance 
since the introduction of the Science Citation Index. These types of analysis typically 
involve counting the number of citations—or some fraction thereof—for a particular 
journal article for a period of years after its publication. Limitations to citation-based 
indicators include bias of self-citations, non-traditional career paths for which citation in 
scientific journals is not likely, and time lags between a publication and its citations.  

Following our assessment, STPI found that there is not an agreed upon set of 
bibliometric indicators that can or should be used to identify outstanding scientists. The 
simplicity and ease-of-use that define bibliometric indicators precludes the inclusion of 
many of the factors such as career stage or having non-traditional academic career paths 
that determine research impact based on publications alone. 
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To address the second research question, STPI conducted a pilot study to determine 
whether publication and citation trajectories could be used to identify patterns of research 
impact and distinguish high impact researchers from those with low and mid-level impact 
for two different scientific disciplines—genetics and artificial intelligence. We found that 
it is possible to cluster researchers into low, medium, or high research impact groups based 
on individuals’ publication and citation trajectories and that this clustering approach 
provides an alternative method to identify outstanding scientists. STPI also calculated into 
which impact group individuals would be clustered for select bibliometric indicators using 
a ranking analysis and found that there was a high degree of discordance in the results 
between the cluster and ranking analysis, and across bibliometric indicators within the 
ranking analysis. Individuals identified as outstanding, high impact, researchers in the 
cluster analysis were not strictly confirmed by the ranking analysis. This finding confirmed 
the challenge of using bibliometric indicators to identify outstanding scientists reported by 
other studies.  

Based on the review of bibliometric indicators and findings from the pilot study, STPI 
identified several limitations as well as data challenges that would hinder any in-depth 
analyses looking at research impact. Specifically, additional data such as demographics, 
patents, funding, awards, and recognition are needed to provide additional information and 
context when considering who is an outstanding scientist. An overview of additional data 
sources that could be combined with bibliometric data is provided.  

STPI identified the inability to verify outstanding scientists as a general challenge 
because there is no consensus on a set of criteria that characterizes an outstanding scientist. 
One method valuing a certain set of factors in its selection criteria will generate a different 
list of outstanding scientists than another method that has prioritized a different set of 
criteria, although some criteria will likely overlap. 

STPI identifies three potential next steps for OSTP to consider that could refine a 
process to identify outstanding scientists. First, additional bibliometric analyses could be 
conducted to better identify undercited scientists who have outsized research impact. In 
addition, STPI could explore options to verify a group of outstanding scientists such as 
using expert opinion or various reputational indicators. The final follow-up direction is to 
examine the possibility of identifying teams of scientists who produce exceptional work 
rather than individual scientists. This strategy could be both more robust and is consistent 
with a generally accepted notion that many advances in science involve contributions from 
teams of scientists. 
 



 

v 

Contents 

1. Introduction .................................................................................................................1 
A. Background .........................................................................................................1 
B. Context for This Study ........................................................................................2 
C. Organization of the Report ..................................................................................3 

2. Review of Bibliometric Indicators ..............................................................................5 
A. Publication Indicators ..........................................................................................5 
B. Citation Indicators ...............................................................................................7 
C. H-index and Variations .......................................................................................8 
D. Alternative Metrics ............................................................................................12 

3. Limitations to the Use of Bibliometric Indicators to Identify Research Impact .......15 
A. Field-Dependent Publication and Citation Patterns ..........................................15 
B. Name Disambiguation .......................................................................................16 
C. Gender Disparities .............................................................................................16 
D. Early and Mid-career Scientists ........................................................................17 
E. Matthew Effect ..................................................................................................17 
F. Additional Considerations .................................................................................17 

4. Alternative Approach to Identify Outstanding Scientists: A Pilot Study ..................19 
A. Introduction .......................................................................................................19 
B. Methods .............................................................................................................20 

1. Data Collection and Cleaning ......................................................................20 
2. Cluster Analysis ..........................................................................................21 
3. Ranking Analysis Using Select Bibliometric Indicators .............................22 

C. Results ...............................................................................................................22 
1. Genetics .......................................................................................................22 
2. Artificial Intelligence ..................................................................................27 

D. Conclusions from the Pilot Study ......................................................................32 
5. Additional Data Sources for Consideration ...............................................................35 

A. Existing Data Challenges and Needs .................................................................35 
1. Accessing Personal Identifiable Information across Federal Agencies ......35 
2. No Centralized System to Access Federal Awards Data for Applicants  

and Awardees ..............................................................................................36 
B. Additional Data Sources ....................................................................................37 

1. Federal Statistical Data ................................................................................37 
2. Private Third-Party Data .............................................................................40 
3. Citation Databases .......................................................................................43 

6. Summary and Next Steps ..........................................................................................45 



 

vi 

A. Summary ...........................................................................................................45 
B. Next Steps ..........................................................................................................45 

1. Additional Bibliometric Analyses ...............................................................45 
2. Verification of Outstanding Scientist Status ...............................................48 
3. Identifying Outstanding Teams of Researchers ..........................................49 

Appendix A. Context for Social, Economic, and National Security Impacts ................. A-1 
Appendix B. H-index Variation Tree ...............................................................................B-1 
Appendix C. H-index and Variation Calculations ...........................................................C-1 
Appendix D. Assumptions and Rationale for Elements of the Task .............................. D-1 
Appendix E. PAM and Agglomerative Hierarchical Clustering ..................................... E-1 
Appendix F. Final Clustering Tables ............................................................................... F-1 
Appendix G. Comparison of Web of Science, Scopus,  and Google Scholar ................ G-1 
References ....................................................................................................................... H-1 
Abbreviations .................................................................................................................... I-1 
 
 



 

1 

1. Introduction 

A. Background 
Classic economic theory states that a country’s competitive advantage is born out of 

its natural endowments like its land, location, resources, labor pool, interest rates, or 
currency value (Krist 2013). However, in 1990, economist and business strategist Michael 
Porter posited that a country can actually create and sustain its own competitive advantage 
through four attributes (Porter 1990): 

1. Factor conditions: factors of production such as skilled labor and infrastructure 
that can and should be created by a country instead of inherited such as natural 
resources. In particular, Porter argues that countries succeed in industries where 
they excel at factor creation. 

2. Demand conditions: meeting the home demands of a given industry so that 
companies can better perceive, interpret, and respond to domestic buyer needs. 
This, in turn, will help companies innovate faster and achieve competitive 
advantages over their foreign counterparts. 

3. Related and supporting industries: the presence of related and supporting 
industries in the nation that are also internationally competitive. Having 
internationally competitive suppliers and end-users in the same nation can 
increase the pace of innovation by having shorter communication times and 
providing faster feedback. 

4. Firm strategy, structure, and rivalry: the organization and management style 
and practices that are favored in a country combined with the sources of 
competitive advantage in the industry. There is not one universally appropriate 
organization and management style or practice—what works for one country 
may not work for another country. Local rivals within a country also act to 
stimulate innovation and competitiveness, thereby enabling a country to have 
competitive advantage within an industry. 

The U.S. Federal Government, along with many other countries, has focused on the 
first attribute of developing and maintaining human capital, particularly in STEM fields 
(National Science and Technology Council 2018, 2021). However, as Porter noted, having 
a workforce that is high school or even college educated may not confer competitive 
advantage to a country. Rather, a factor must be highly specialized to an industry’s needs 
to convey advantage. Such factors are scarce and require long-term investment to sustain. 
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Scientists who have outsized research impact compared to that of their peers, particularly 
in STEM fields, arguably are a factor condition that may yield competitive advantage for 
a country. The ability to identify outstanding scientists within a particular field may be 
important to designing and implementing policies that attract and retain these highly 
specialized individuals. 

To understand better the relationship between outstanding scientists and competitive 
national advantage, the White House Office of Science and Technology Policy (OSTP) 
asked the IDA Science and Technology Policy Institute (STPI) to first assess whether 
outstanding scientists, within a scientific discipline, can be identified using existing 
bibliometric indicators. In addition, STPI was asked to develop new indicators or an 
analytical approach using existing bibliometric indicators to identify which individuals are 
outstanding scientists. Specifically, the two research questions addressed in this study are: 

1. Can bibliometric indicators be used to accurately identify outstanding scientists 
within a scientific discipline through time, and what are the limitations of its 
use? 

2. Can new bibliometric indicators or analytical approaches be developed to 
identify outstanding scientists within a scientific discipline through time? 

B. Context for This Study 
Following our literature review and internal discussions, STPI developed several 

definitions for key constructs in the study. 

Outstanding Scientists. STPI defined an outstanding scientist as an individual who 
has significantly higher than average research impact compared to that of their peers. These 
individuals could be laboratory scientists in industry or academia, scientific entrepreneurs, 
theoreticians, or outside-of-the-box thinkers.  

In this study, STPI selected the academic scientific community as most likely to have 
publications and citations amenable to bibliometric analysis. The term peers refers to 
fellow researchers in an individual’s scientific discipline.  

Research impact. An individual’s research impact is the demonstrable effect of their 
scientific contributions that are assessed through advances in a research field or to general 
scientific knowledge (research impact), and contributions to the general economic and 
social capital of the nation (economic impact, social impact), all of which have implications 
for the security of the nation (national security impact; Moravcsik 1977; Martin and Irvine 
1983; Penfield et al. 2014; Wilsdon et al. 2015; Abramo et al. 2017; Bu et al. 2021). 
Research impact is evaluated through traditional research outputs (journal articles, 
conference publications, book chapters, and datasets) and non-traditional factors 
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(professional networks and public recognition; Wilsdon et al. 2015; Ravenscroft et al. 
2017; Siudem et al. 2020).  

STPI focused on research impact and traditional research outputs for this study and 
set aside other forms of impact (e.g., social, economic, natural security impact). A summary 
of these other forms of impact can be found in Appendix A. 

Bibliometric Indicators. Bibliometric indicators are statistical measures of the 
quantity and quality of publications and other research outputs. There are two types of 
bibliometric indicators considered in this study: quantity indicators, which measure the 
productivity of a particular researcher; and quality indicators, which measure the quality 
(or “performance”) of a researcher's output (Durieux and Gevenois 2010). Specifically, 
publications are used as quantity indicators and citations as the quality indicator.  

C. Organization of the Report 
In addressing the first research question, STPI will show that there is no universal set 

of bibliometric indicators that can be used to identify outstanding scientists. We also 
discuss limitations in the use of bibliometric indicators such as field dependence; inability 
to accurately predict the research impact of early career researchers and non-traditional 
academicians; and perpetuation of gender biases. 

In addressing the second research question, STPI demonstrates a novel cluster 
analysis approach that uses researchers’ publication and citation trajectories as an 
alternative approach to identifying outstanding scientists. Specifically, the cluster analysis 
grouped scientists into high, medium, or low research impact groups with those in the high 
impact group being considered outstanding scientists. The two cases investigated—AI and 
genetics—suggest science discipline-specific patterns for research impact, and further 
testing of the approach could investigate the challenges associated with data availability, 
the appropriate timeline for publications and citations, and internal inconsistencies between 
indicators and indices. 

Chapters 2 and 3 address research question one and Chapter 4 addresses research 
question two. The report is organized as follows: 

• Chapter 2 provides a review of select existing publication- and citation-based 
indicators, as well as other types of bibliometric indicators.  

• Chapter 3 presents an overview of select limitations to the use of bibliometric 
indicators.  

• STPI introduces a new method to identify outstanding scientists in Chapter 4 
using a clustering approach based on researchers’ publication and citation 
trajectories through time, which is tested on two scientific disciplines, genetics 
and artificial intelligence (AI).  
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• Chapter 5 identifies additional data sources that when combined with 
bibliometric data may mitigate existing data challenges, help identify 
outstanding scientists, and answer broader questions about U.S. competitiveness.  

• Lastly, Chapter 6 proposes possible additional studies that would expand on the 
work performed thus far.  
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2. Review of Bibliometric Indicators 

In this section, we review select publication- and citation-based indicators along with 
other types of bibliometric indicators. The following is not a comprehensive review of all 
bibliometric indicators but rather a selection of those deemed most appropriate to identify 
outstanding scientists, and that are easy to moderately easy to calculate and interpret. A 
more comprehensive review of 108 bibliometric indicators can be found in Wildgaard et 
al. (2014). 

A. Publication Indicators 
The total number of publications produced by an individual is often seen as an 

indication of research productivity, with the number of publications directly proportional 
to the magnitude of productivity (King 1987; Gauffriau et al. 2007). Since the advent of 
databases on scientific publications in the 1960s, both the contents and range of data 
covered by databases have increased (e.g., Larsen 2008). A 2014 review identified a 
number of publication-based methods of assessing researcher impact ( 

 
Table 1) including whole counting (i.e., counts of total publications; Wildgaard et al. 

2014); first author publications (Cole and Cole 1973); weighted publications; patent 
applications (Okubu 1997); all public contributions that include tv, radio, and websites 
(Mostert et al. 2010); and fractional counting of contribution (Price 1976); proportional 
(Van Hooydonk 1997); geometric (Egghe et al. 2000); and harmonic (Hodge and 
Greenberg 1981). 

 
Table 1. List of Publication-Based Bibliometric Indicators and How They’re Calculated 

Publication-Based Indicator Description 
Whole Counting Each N author of a paper receives 

equal credit 
First Author Counting Only the first listed author receives 

credit for a publication 
Weighted Publication Counting Applies a weighted score to the type 

of output 
Patent Application Counting Count of patent applications only 
Counting of All Public Contributions, 
Including TV, Radio, and Websites 

Count of all contributions 
disseminated in the public sphere 
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Publication-Based Indicator Description 
Fractional Counting Each of the N authors is credited by a 

value equal to 1/N 
Proportional Counting Author with rank R in by-line with N 

co-authors (e.g., R=1, … N) receives 
score N+1-R 

Geometric Counting Author with rank R with N co-authors 
receives credit of 2*N-R 

Harmonic Counting Ratio of credit allotted to ith and jth 
author is j:i regardless of total number 
of co-authors 

 
According to the literature, there are three publication-based counting methods: whole 

counting, fractional counting, and first author counting (Gauffriau et al. 2007; Table 2). 
For the purposes of this study, we focused on whole counting and fractional counting. In 
whole counting, all authors contributing to a publication receive one credit regardless of 
the number of authors. In fractional counting, all authors contributing to a publication share 
one credit with equal fractions assigned to each listed author. For example, if a publication 
has six authors, each author receives a publication count of 1/6. 

While arguably the simplest bibliometric indicator to calculate, publication-based 
assessments can potentially overlook or inadvertently highlight a number of factors that 
obfuscate the quality of the actual contribution, including: the variety of publication 
practices across fields and between journals (e.g., King 1987), the trend in shorter papers 
that lead to the “least publishable unit” phenomena (e.g., King 1987; Budd and Stewart 
2015), or the difficulty in determining an author’s contribution unless a statement 
describing their level of contribution is included (Bennett and Taylor 2003).  

 
Table 2. Common Publication-Based Bibliometric Indicators and Their Ease of Calculation 

Publication-Based 
Indicator Description 

Easy to 
Calculate  

Data Are 
Readily 

Available 
Whole Counting Each N author of a paper receives 

equal credit 
  

Fractional Counting Each of the N authors is credited by a 
value equal to 1/N 

 ~ 

First Author Counting Only the first listed author receives 
credit for a publication 

  

Tildes (~) denote moderate agreement with the category. 
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B. Citation Indicators 
The total number of citations received by a publication over a period of years after its 

publication is often seen as an indication of research quality, with the number of citations 
directly proportional to the magnitude of impact (King 1987). Citation analysis began in 
earnest with the publication of the Science Citation Index (SCI) in 1961 (MacRoberts and 
MacRoberts 1989) and is widely used to this day. 

Waltman (2016) describes five basic citation indicators: total number of citations, 
average number of citations per publication, number of highly cited publications, 
proportion of highly cited publications, and the h-index (described subsequently). For the 
purposes of this study, STPI selected to focus on total number of citations, average number 
of citations per publication, and fractional counting of citations per publication (Table 3).1 
The average number of citations per publication returns the calculated mean number of 
citations per publication. The total number of citations considers all citations including 
self-citations. The fractional counting of citations per paper assigns each author 
contributing to a publication a share of the citation count with equal fractions of the total 
citations to each listed author.2 

While efforts have been made to normalize citation counting to a particular scientific 
field or set of publications (Wildgaard et al. 2014), limitations to citation-based measures 
persist and include:  

• data completeness and consistency (e.g., not every database provides citation 
counts, different cited reference counts can occur depending on which source is 
used);  

• qualitative issues regarding how to best account for researcher impact—for 
example, considering how different citation-based indices, like i103 or fractional 
citation (Egghe 2008) reflect different aspects of a researcher’s impact;  

• timeliness of a citation is often not accounted for (e.g., MacRoberts and 
MacRoberts 1989);  

• variation of citation rates between document types and research fields (e.g., 
MacRoberts and MacRoberts 1989); 

                                                 
1  This citation impact indicator was chosen by STPI because it mirrors the fractional counting of 

publications as another way to avoid increasing the total weight of a single paper.  
2  In other words, fractional counting of citations per paper considers crediting an author of an N-authored 

paper with c citations a value equal to c/N. 
3  The i10-Index is the number of publications from an author with at least 10 citations. It was created by 

and used exclusively in Google Scholar. A more detailed description can be found from the University 
of California San Diego Library at https://ucsd.libguides.com/c.php?g=704382&p=5000890#. 

https://ucsd.libguides.com/c.php?g=704382&p=5000890
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• the most significant paper may not necessarily be the paper with the most 
citations (e.g., Wildgaard et al. 2014);  

• self-citations (e.g., Szomszor et al. 2020); and 

• it may be inappropriate to treat citations equally due to the many factors that 
govern citing, such as an author’s intellectual or social motivations, and 
ultimately promotes articles—incorrect, controversial, or retracted—regardless 
of its actual relevancy (e.g., see Zhang et al. 2013; Hernández-Alvarez and 
Gomez 2015; Tahamtan and Bornmann 2019).  

 
Table 3. Common Citation-Based Bibliometric Indicators and Their Ease of Calculation 

Citation-Based 
Indicators Description Easy to Calculate  

Data are Readily 
Available 

Total Number of 
Citations 

Considers all citations 
including self-citations 

  

Average Number of 
Citations per 
Publication 

Considers the mean number 
of citations per paper 

  

Fractional Counting 
of Citations per 
Publication 

Considers crediting an 
author of an N-authored 
paper with c citations a value 
equal to c/N 

 ~ 

Tildes (~) denote moderate agreement with the category. 

C. H-index and Variations 
The h-index is an author-level metric that incorporates both an author’s productivity 

and impact as measured by the citation rate (Hirsch 2005). The h-index is defined as: 

“A scientist has index h if h of his or her Np papers have at least h citations each and 
the other (Np – h) papers have ≤h citations each.” 

The set of papers that have ≤h citations are also referred to as an author’s h-core (i.e., 
those publications that determine the h-index). For example, as seen in Table 4, this 
example author has papers a–g that are ranked by their citation counts. Based on this 
ranking, this author has an h-index of 5, which is the largest rank magnitude that is less 
than or equal to the paper’s number of citations (5 < 7 citations). 

 
Table 4. Example to Calculate the H-Index 

Title Rank Citation Count 
Paper c 1 200 

Paper f 2 65 
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Title Rank Citation Count 
Paper d 3 24 

Paper g 4 12 

Paper b 5 7 

Paper a 6 3 

Paper e 7 2 

 
While the h-index is easily understood and calculated, multiple studies have 

highlighted its shortcomings (for example, Bihari et al. 2021). These include: 

• the lack of adjustment for different citation practices across disciplines 

• the inclusion of self-citations in the computation of the h-index  

• the inability of the h-index to adjust for decreases in productivity 

• the lack of credit for future publications unless they become a part of the h-core 

• the lack of extra credit to highly cited articles 

• the disregard for all citations in the h-tail (i.e., all citations outside of the h-core) 

• the equal weight given to all authors of each publication regardless of actual 
contribution level  

Because of these shortcomings, an entire field of study has been developed that 
adjusts the h-index or create more tailored indices. These variations on h-index attempt to 
account for the shortcomings of the h-index by incorporating various mathematical 
adjustments. For example, a 2006 study attempted to allocate more credit to highly cited 
articles by defining the g-index as “the highest number, g, of papers that together received 
g2 or more citations” (Egghe 2006).  

By squaring all citation values, the g-scores of highly cited publications will be higher 
than their h-scores (i.e., their total number of citations) and therefore incorporate more of 
the highly cited articles. For example, a rank 1 paper with citations = 100 has a g2 = 10,000. 
As this is repeated for all papers, the rank magnitude that determines the g-index score will 
be naturally larger than the h-index score. However, in doing so, the g-index has been noted 
to provide too much credit to highly cited articles, where a single very highly cited article 
may skew the g-index and dilute all other publications. Accordingly, a 2010 study 
introduced the hg-index, which attempts to balance the credit given to highly cited articles 
(or lack thereof) by the h- and g-indices (Alonso et al. 2010). These continual adjustments 
by various researchers have spawned a plethora of variations to the h-index that all attempt 
to produce a single output to rank author impact, productivity, and quality of work. Some 
of these variations include adjusting for the average number of co-authors that an author 
has (hi-index; Batista et al. 2006), penalizing authors for self-citations (discounted h-index; 
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Ferrara and Romero 2013), accounting for research career age (v-index and m-quotient; 
Vaidya 2005; Burrell 2007), and level of contribution to articles (normalized hi-, fractional 
h-, and fractional g-indices; Egghe 2008; Wohlin 2009). For a more in-depth analysis of 
selected variations, please see Appendix B. 

During this h-index review, STPI noted that despite the emergence of many 
alternatives to the traditional h-index, most of these measures have not been broadly 
adopted. Citation platforms that incorporate modifications to h-index are, therefore, 
limited. For example, Publish or Perish (PoP), a citation management program, integrates 
the h-index, g-index, contemporary h-index, Zhang’s e-index, AR-index, and several other 
publication-level indices into its platform (Harzing 2016). Google Scholar incorporates the 
h5-index and h5-median, which only consider publications from the last 5 years. Web of 
Science (WoS), a citation database, only displays an author’s h-index in addition to their 
total number of publications and citations.  
There is also limited research into the predictive power of h-index variations as these are generally used to 

rank researchers based on existing work. The literature that attempts to calculate the predictive power of 
h-index variations is generally limited to one database (e.g., WoS or Google Scholar), which may vary 
greatly in quality and depth—or to one science discipline, which may have different publishing and citing 
patterns from other disciplines. These differences in citation rates across disciplines can be observed in  
Reprinted from Green (2019) 

Figure 1.  

 

 
Reprinted from Green (2019) 

Figure 1. Citations Rates across Science Disciplines 
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To select variations for further analysis from the wide range of options, STPI devised 
a prioritization strategy to focus on the most widely cited indices for initial analysis. Using 
the list of h-index variations reviewed in Bihari et al. (2021), the 85 options were ranked 
by the number of citations that their original publications received according to Google 
Scholar (Figure 2). The publications of 14 h-index variations with more than 200 citations 
(red circle in Figure 2) were then reviewed in-depth. 

 

 
Note: Each datapoint represents an individual h-index variation that was reviewed. Each variation is graphed 

based on the log number of citations that its original publication garnered. The variations that were 
analyzed in depth are circled in red. 

Figure 2. H-index and Variations by Publications’ Citation Count  
 

Following review of publications of the 14 highest cited h-index variations, 5 indices 
were selected for the following properties: they were either easy to calculate or had already 
been calculated (e.g., PoP or Google Scholar); demonstrated predictive power; adjusted for 
career age; or used in prior studies to identify outstanding scientists. The selected indices 
are the AR-index, m-index, contemporary h-index, hg-index, and A-index (Table 5). A full 
explanation on how to calculate the h-index and these five variations can be found in 
Error! Reference source not found.. 
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Table 5. Characteristics of Five Selected Variations 

Index 
Existing 

calculator 
Easy to 

calculate 

Predictive 
power 

demonstrated 

Adjusts for 
productivity 

over time 

Used in the context 
of identifying 
outstanding 

scientists 
AR-index ✓ ~ 

 
✓ 

 

m-index ✓ ✓ ✓ ~ ✓ 

Contemporary h-
index 

✓ ~ ✓ ✓ ✓ 

hg-index 
 

✓ ✓ ~ 
 

A-index 
 

✓ 
 

~ 
 

Tildes (~) denote moderate agreement with the category. 

D. Alternative Metrics 
While the h-index and other citation-based indicators are based on published 

literature, alternative metrics (altmetrics) consider citations and references by non-
academic publications such as public policy documents; discussions on research blogs; 
coverage on mainstream media; and mentions on social media such as Twitter and 
Facebook (Altmetric 2022). Altmetrics consider how widely disseminated an article is 
beyond the publishing journal and immediate scientific community and how much 
attention an article receives from the public sphere (Altmetric 2022). Traditional citation-
based indicators are unable to measure the immediate impact of an article because of the 
lag time between when an article is submitted and accepted to when it receives its first 
journal citation. Therefore, altmetrics complement the h-index and other traditional 
measures. 

Altmetrics have their own limitations, however, such as the possibility of being 
gamed through the use of bots or humorous titles; the lack of standardization or quality 
control in collection methods; and the lack of coverage for a vast majority of publications 
(Michael Thelwall 2020). Further, altmetrics have not been studied within the context of 
systematically identifying outstanding scientists; instead, most studies have been 
conducted on publication-level rather than at the author-level (Akella et al. 2021; 
Bornmann and Haunschild 2018; Costas, Zahedi, and Wouters 2015; Ringelhan, 
Wollersheim, and Welpe 2015; Mike Thelwall et al. 2013; Mike Thelwall and Nevill 
2018).  

Although there is limited research for the use of altmetrics within the context of 
identifying outstanding scientists, the current body of literature may help to inform 
potential prediction strategies should a standardized, author-level metric arise. A brief 
overview of alternative metrics is provided below in Table 6. Altmetrics should not be 
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viewed as an alternative to traditional, citation-based indicators but rather, as a 
complementary measure of impact on the general public.  

 
Table 6. Alternative Metrics 

 
Note: Data in these tables are derived from Thelwall (2020) and Ortega (2020) 

Metric Pros Cons 

Altmetric compilation 
sites (Altmetric.com, 

PlumX, Crossref Event 
Data, ImpactStory) 

• Comprehensive and curated 
aggregation of public policy 
documents, mainstream media, 
blogs, online reference managers, 
patents, Wikis, Facebook, Twitter, 
and other sources  

• Limited coverage (only 
15% of WoD DOIs 
covered between 2011 
and 2014 (Costas et al. 
2021)) 

• Exact calculations may 
not be made publicly 
available 

• Coverage of each 
source differs by 
platform 

• Scores are only 
provided at the 
publication-level rather 
than author-level 

Mendeley readers • Reflects scholarly and partly 
educational impact  

• Could be used to measure impact 
before citations begin via readership 

• Prior studies by Thelwall (2018), 
Nuzzolese (2019), and Akella (2021) 
have found some predictive power 
for future publication-level citations 

• May undercount all 
readers 

• Does not necessarily 
reflect societal impact 

Health website citations  • High quality websites provide direct 
evidence of societal impact 

• Low production number 
per article 

Google Books citations • Supplemental citation count that is 
missed by academic journal article 
counts 

 

Online syllabus 
mentions 

• Direct educational impact measure • Most syllabi are likely 
private (although search 
engines may be able to 
find a select few) 

Wikipedia citations • Small but significant correlation 
between Wikipedia and Scopus 
citation counts 

• Measure of “information impact” 

• Low production number 
(5% of academic 
articles) 

Blogs • Weak positive correlation with 
citation counts 

• Low production number 
(6% of recent articles) 

Patents • Direct commercial impact measure 
• Easy to collect 
• Positive correlation with citation 

counts 

• Low production value 
(<1% of journal articles) 

Grey literature citations • Collection method exists for some 
government websites 

• Collection may be 
difficult to collect 

Tweets • One of the most common platforms 
for publication sharing 

• Lack of explanation for 
use 

• Low positive or negative 
correlations with citation 
counts 

• Impact may not 
necessarily be tied to 
academia 
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3. Limitations to the Use of Bibliometric 
Indicators to Identify Research Impact 

STPI’s review of bibliometric indicators identified several limitations to their use in 
assessing research impact, which include differences across disciplines, lack of baseline 
comparison, bias, and misuse. 

A. Field-Dependent Publication and Citation Patterns 
Research questions, processes, standards for authorship inclusion, and rate of progress 

vary by scientific discipline, which influence publication and citation patterns. A 2021 
study that analyzed more than 4.1 million documents in Scopus and found substantial 
differences in the types of publications used across seven disciplines (Mendoza 2021). 
Specifically, conference papers made up 61% of computer science publications but only 
38% in engineering and 19% in physics. The authors also found temporal differences in 
highly cited publications: the top papers in medicine, physics, biochemistry, and chemistry 
were published in the 1990s and 2000s whereas the top papers in mathematics and 
psychology had longer timespans from the 1970s to the 2000s. Similarly, a 2017 review 
found that the citation time window that could serve as a predictor of future citation rates 
varied by field: mathematics had the longest citation half-life; citations in biology, 
biomedical research, chemistry, clinical medicine, and physics peaked quickly after 
publication; whereas Earth and space science along with engineering followed a more 
regular and slower-growing trend (Abramo et al. 2017). A 2015 study compared metrics 
across astronomy, environmental science, public health, and philosophy and found 
significant differences between the number of publications and citations between 
disciplines and between publication databases (Wildgaard 2015). Consequently, if impact 
is being considered for scientists in multiple fields, any potential indicator would have to 
be adjusted.  

A specific example of how various bibliometric indicators are typically used includes 
the different analyses conducted on published h-index variations. Of the five h-index 
variations that STPI reviewed (the m-, contemporary h-, hg- A-, and AR-indices), only 
three variations tested the predictive power of the indices (m-, contemporary h-, and hg-
indices). These three publications used highly varied methodologies to test the predictive 
powers. The m-index was used to test the likelihood of a scientist to be awarded a 
Boehringer Ingelheim postdoctoral biomedical fellowship (Bornmann et al. 2008); the hc-
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index analyzed the ranking of computer scientists (Sidiropoulos et al. 2007); and the hg-
index analyzed the ranking of astrophysicists (Alonso et al. 2010).  

B. Name Disambiguation  
Accurately associating names with publications is a major challenge in bibliometric 

analysis. For example, authors with the same or similar names often had combined WoS 
profiles (Milhaljevic et al. 2019). This was particularly evident for researchers of Chinese 
descent. A census conducted by the Chinese Public Security Bureau found that 21.4% of 
the Chinese population had the surname Li, Wang, or Zhang, which makes disambiguation 
very difficult findings (Fish 2013). Current name disambiguation methodologies may also 
negatively affect those who change their names. STPI is not aware of any datasets that 
automatically account for name changes without direct involvement by the author 
themselves. There are efforts currently underway at WoS and with the University of 
Michigan’s UMETRICS initiative to improve name disambiguation, but the level of 
accuracy across population groups is unknown. Another approach to resolve name 
disambiguation is through the use of unique, personal identifiers that can be used to link 
an individual researcher to his/her research outputs, funding, or any other professional 
distinctions such as those provided through the Open Researcher and Contributor ID 
(ORCID), which are increasingly in use. 

C. Gender Disparities 
Gender differences in publication patterns are well documented (Cech and Blair-Loy 

2019; Duma 2020; Huang et al. 2020; Viglione 2020) and could influence the results of 
bibliometric analyses. A study conducted in 2013 that analyzed over 5 million papers with 
more than 27.3 million authorships found that when a woman is either the sole author, first-
author, or last-author, the paper garnered fewer citations than in cases when a man was in 
one of these positions (Lariviere et al. 2013). Women and men were also more likely to be 
overrepresented in certain disciplines. Women dominated authorship in nursing; 
midwifery; speech, language, and hearing; education; social work; and librarianship. Men 
dominated fields that included military sciences, engineering, robotics, aeronautics and 
astronautics, high-energy physics, mathematics, computer science, philosophy, and 
economics. Finally, at least one study documented differences in publication patterns by 
career stage: female mathematicians were less likely to publish than men at the beginning 
of their careers and more likely to leave academia (Mihaljević-Brandt et al. 2016). Given 
these differences, the use of bibliometric indicators to assess research impact—especially 
for purposes of hiring, funding, or tenure decisions—could provide inaccurate information 
that perpetuates these gender disparities. 
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D. Early and Mid-career Scientists 
The use of traditional data on early- or mid-career scientists to predict later research 

impact may discount those with non-traditional career paths.4 For example, those who enter 
research careers later in life or take a leave from academia would likely have lower early 
career publication and citation rates. Accordingly, any predictive indicator that is 
dependent on early career citation patterns could underestimate any future contributions of 
these individuals.  

E. Matthew Effect 
It is generally assumed that academia is a meritocratic system in which everyone is 

equitably awarded for their contributions. Some studies challenge this view, however. For 
example, a 2018 study showed that a small percentage of researchers receive the majority 
of research funding and that researchers who received the funding did not necessarily 
submit better proposals (Bol et al. 2018). The idea that success begets success in science 
was first introduced in 1968 and is referred to as the Matthew effect (Merton 1968) and 
applies to various indicators of recognition, including receiving grants and receiving 
prestigious academic appointments and awards. The Matthew effect may be exacerbated 
in fields that have a large number of papers published per year because the most-cited 
papers receive a disproportionate share of future citations at the expense of new, innovative 
ideas (Chu and Evans 2021). The Matthew effect is important to consider when trying to 
identify outstanding scientists as it can disadvantage individuals with lower public profiles.  

F. Additional Considerations 
Multiple studies identified other biases in evaluating research impact through 

bibliometric indicators (Belter 2015; Simko 2015; Wang et al. 2017). For example, a 2015 
study noted that various strategies can be used to artificially inflate citation counts, such as 
citing papers that are focused on methodologies, crediting experts, or discussing flawed 
results (Belter 2015).  

                                                 
4  A traditional career path is typically considered to involve acquisition of a terminal degree, placement 

within a research career, and continued growth of publications and citations. 





 

19 

4. Alternative Approach to Identify Outstanding 
Scientists: A Pilot Study 

A. Introduction 
The review of the literature performed for this study has not yielded a reliable existing 

strategy to identify outstanding scientists. To address OSTP’s interest in developing new 
indicators or analytical tools to achieve this goal, STPI explored a novel bibliometric 
approach that took advantage of cluster analysis. Cluster analysis is a statistical method 
that organizes items into groups, or clusters, on the basis of how closely they are associated. 
Unlike many other statistical methods, it is typically used when there is no assumption 
made about the likely relationships within the data. Cluster analysis provides information 
about where associations and patterns in data exist, but not what they are or might mean 
(Tan et al. 2013; Aggarwal 2018).  

To test this approach, STPI developed a pilot study for academic researchers in two 
disciplines: genetics (biological sciences) and artificial intelligence (physical sciences). 
STPI developed two problem statements, and used publication and citation data as the basis 
for clustering. A random selection of researchers within the clusters were then ranked by 
bibliometric indicators to assess the robustness of the cluster analysis. Additional 
discussion of the assumptions and the rationale for performing this study can be found in 
Appendix D. 

The hypotheses tested were as follows:  

• Publications and citations will provide a recognizable pattern of research impact. 

• The trajectory of publications and citations will, over time, distinguish high 
impact researchers from those with low- and mid-level research impact. 

The remainder of this chapter provides the methods used for the analysis, the results, 
and their implications for the goal of the assessment. 
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B. Methods 

1. Data Collection and Cleaning 
Author citation and publication data were drawn from the Google Scholar database.5 

STPI notes that while publication data are partially curated by Google, the author profiles 
are the responsibility of the author and the level of information available varies. Authors 
can report a maximum of five interest areas in their profiles. 

For the purposes of this pilot study, STPI conducted two independent analyses by 
selecting all authors who listed genetics and all authors who listed artificial intelligence as 
one of their academic disciplines. For each author, STPI obtained all listed publications, 
along with annual citation counts, co-authorship, and publication date.  

STPI identified several data quality challenges during the data cleaning process, the 
majority of which were resolved, as shown in Table 7. One limitation that could not be 
resolved, however, is when individuals have the same name. Publications in Google 
Scholar may be listed jointly under either one or both profiles, unless manually curated by 
the authors. An assessment of the upper quartile of the well-cited and published authors 
did not find any definitive namesake authors, so these types of authors were allowed to 
remain in the sample as their influence was not likely to have an outsized impact on the 
subsequent analyses. 

 
Table 7. Data Quality Issues with Google Scholar Database and Steps Taken  

to Mitigate Them 

Challenge Resolution 
Listed publication years are often incorrect 
(e.g., contemporary scholars having 
publications that are purportedly hundreds of 
years old) 

Remove all publications published prior to 
1776 

Some publications and citations are missing 
the year 

Remove any publications or citations that are 
missing the year 

Authors have citations listed prior to having 
any published works as well as publications 
much before they were ever cited 

Remove any instances where citations are 
listed before any publication was recorded 
and any publications that were 5 or more 
years earlier than the first listed citation 

Authors have different periods of time in the 
field 

Truncate each author’s publication and 
citation trajectory to 10 years 

                                                 
5  The Google Scholar database includes a listing of published works such as academic journal articles, 

reports, and software, as well as a feature that allows authors to build their profile by including 
supplementary information such as top co-authors and listed academic discipline. 
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Challenge Resolution 
Author statistics are heavily skewed toward 
individuals with fewer citations and 
publications 

Only include authors that have 100 or more 
citations and at least 1 publication 

2. Cluster Analysis 
The data from Google Scholar were used to identify several classes of authors that 

differ based on the properties of their academic careers as indicated by their publication 
and citation information. Namely, STPI hypothesized that researchers may differ based not 
only on the number of publications and citations (i.e., magnitude of the research output), 
but also on the trajectory of the number of publications and citations across time. Two 
rounds of cluster analysis were used to estimate (1) the model-implied categorization of 
the authors’ publication and citation trajectories over time, and (2) the overall grouping 
based on the categories obtained in step 1 and the magnitude of the research output.  

The first round of clustering was used to identify a concise categorization of the 
publication and citation trajectories of the sampled authors. The difference in trajectories 
was hypothesized to indicate the degree of career success and to assist in identifying 
outstanding scientists. To accomplish this, STPI used the kmlShape package (Genolini 
2016) via the R software environment (R Core Team 2021). The kmlShape package 
facilitates clustering longitudinal data with respect to the shape of the trajectory over time, 
placing individuals with similar trends into the same group. Yet, as the underlying 
algorithm of kmlShape is computationally demanding, a data reduction step is taken prior 
to the clustering. Because of the large number of individuals in the sample and the relative 
comparability of many of the trajectories, STPI algorithmically selected 100 representative 
trajectories, referred to as senators in the kmlShape package, to stand in for the remaining 
trajectories in the sample during the clustering. The more senators chosen, the more 
representative the clustering results will be, as they will include more potential variations 
of trajectories. However, the more senators included exponentially increases the time it 
takes to run the clustering functions. The number 100 was chosen to optimize the variations 
included in the analysis and the time needed for the function to run. Based on the resulting 
categories computed on the 100 representative trajectories, each author was assigned to 
two categories, one for their citation trajectory and another for their publication trajectory. 

The second round of clustering identified sub-groups within the sample of authors 
based on the number of publications produced and citations received, as well as the citation 
and publication trajectory categories identified in the previous step. From the second round 
of clustering, individuals are classified into one of three impact groups: high, medium, and 
low impact. Two candidate clustering methods were used to determine the best-fitting 
model for grouping authors: Partitioning Around Medoids (PAM; Kaufman and 
Rousseeuw 1990) and agglomerative hierarchical clustering (see Kaufman and Rousseeuw 
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2009) as implemented by the R package cluster (Maechler et al. 2021). STPI used the 
agglomerative coefficient (AC), which is an aggregate measure of how well all authors fit 
with the groups they were assigned, to identify the appropriate link function. A more in-
depth explanation of each clustering method can be found in Appendix A. 

3. Ranking Analysis Using Select Bibliometric Indicators 
Following the cluster analysis, three authors from each of the three impact groups 

were randomly selected to assess whether they would be categorized into the same high, 
medium, or low impact clusters based on five commonly used publication and citation-
based indicators: total publication count, fractional publication count, total citation count, 
fractional citation count, and mean citations per paper. STPI also assessed how each of the 
nine authors would be grouped based on their h-index and five h-index variations (i.e., m-
index, A-index, AR-index, hc-index, and hg-index). The publication and citation histories 
of these nine authors were downloaded from WoS because Google Scholar does not 
provide annual citation rates at the publication-level.6 The indicators, h-index, and 
variations were then calculated for each author using total publication and citation count at 
the 10-year mark (i.e., 10 years after their first recorded publication). To preserve 
anonymity, these nine authors were assigned letters A–I in this report. These authors were 
then regrouped by each metric using a standard competition ranking method7 to show 
which impact group they would be grouped into. 

C. Results 
STPI performed the pilot study on two disciplines—genetics and AI—to observe how 

discipline dependent publication and citation patterns influence which individuals are 
characterized as high impact. The results of the clustering and ranking analyses are 
described below for genetics and AI, respectively.  

1. Genetics 

a. Cluster Analysis 
STPI downloaded 15,045 author profiles from Google Scholar on November 9, 2021 

that had listed genetics as a research interest area. After data cleaning, a total of 7,877 
author profiles were used in the study. Our analysis focused on the first 10 years following 
an individual’s first publication, and individuals were clustered into 3 groups representing 

                                                 
6  Please see Appendix G for further explanations about these data. 
7  In standard competition ranking, individuals who have equal values receive the same ranking number. 

For example, in a competition, if there are two silver medalists with the same score, both are awarded a 
silver medal, but there is no bronze medalist.  



 

23 

3 tiers of research impact (i.e., low, medium, and high). The results of the initial clustering 
of publication and citation trajectories for the 100 senators, and the final clustering of all 
Google Scholar identified geneticists are detailed below.  

1) Publication trajectories 
From the initial clustering based on publication trajectories, 87 of the 7,877 author 

profiles were classified in the high impact cluster (blue); 1,051 in the medium impact 
cluster (green); and 6,739 in the low impact cluster (red; Figure 3).8 The percentages in 
Figure 3 refer to the fraction of senators in each cluster group, with the bolded lines 
depicting the averages in that cluster group.  

2) Citations trajectories 
Based on clustering of citation trajectories, 20 researchers were classified in the high 

impact cluster (blue); 205 in the medium impact cluster (green); and 7,652 in the low impact 
cluster (red; Figure 4). As can be seen from Figure 4, those classified as high impact (blue) 
begin to separate from the rest of the sample early on in the first 10 years of their careers, 
and sustained this trajectory over the entire study period. Furthermore, both the publication 
and citation high impact trajectories are higher than those of the medium and low impact 
trajectories. STPI identified this group as high impact.  

 

 
Figure 3. Clustering of Genetics Researchers’ Publication Counts over 10 Years 

                                                 
8  For all cluster graphs, the top bolded line represents the high impact cluster, the middle bolded line the 

medium impact cluster, and the bottom bolded line the low impact cluster. 

Year 

Y
ea

rly
 P

ub
lic

at
io

n 
C

ou
nt

 

    ––  73%              ––  23%               ––  4% 

Low Impact     Medium Impact     High Impact 



 

24 

 
Figure 4. Clustering of Genetics Researchers’ Citation Counts over 10 Years  

3) Publication and citation trajectories 
After the second round of clustering in which individual’s publication and citation 

trajectories along with the total number of publications and citations were taken into 
consideration, 157 of the 7,877 author profiles (2%) were classified as high impact; 6,571 
(83%) were classified as medium impact; and 1,149 (15%) were classified as low impact 
(Figure 5). The number of individuals in each cluster group can be found in Appendix F. 

 

 
Figure 5. Clustering of Genetics Researchers by Citations and Publications 
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b. Ranking Analysis Using Select Bibliometric Indicators 
Three scientists were randomly selected from each of the three clusters in the cluster 

analysis (Figure 6) to represent high, medium, and low impact groups. The results on total 
publication and fractional publication count, total and fractional citation count, and mean 
citations per paper are shown in Table 8 and represented pictorially in Figure 6. 
Researchers were categorized into different impact groups from the clustering analysis 
based on the bibliometric indicator used.  

 
Table 8. Publication and Citation Indicator Values for Genetics Researchers 

Author 
letter 

Cluster 
group 

(impact) 
Total 

publications 

Fractional 
counting of 
publications 

Total 
citations 

Fractional 
counting of 

citations 

Mean 
citations per 

paper 
A 1 (high) 47 10.6 795 174.5 16.9 
B 1 (high) 41 6.8 165 58.4 4.0 
C 1 (high) 8 1.1 45 6.5 5.6 
D 2 (medium) 5 1.2 109 18.5 21.8 
E 2 (medium) 3 0.9 19 6.2 6.3 
F 2 (medium) 7 1.0 133 19.6 19.0 
G 3 (low) 23 2.4 1,215 119.9 52.8 
H 3 (low) 126 20.9 809 142.8 6.4 
I 3 (low) 42 5.5 598 64.8 14.2 
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Figure 6. Ranking of Genetics Researchers Based on Select Publication  

and Citation Indicators 
 

The ranking analysis was repeated using the h-index and five variations: m-index, A-
index, AR-index, hc-index, and hg-index. Data are provided in Table 9 and represented 
pictorially in Figure 7. STPI determined that the three researchers in each influence group 
(column 2) received different, method-dependent rankings, as indicated by their 
redistribution by h-index variation (columns 3–7). Interestingly, the researchers in the low 
impact group were all placed in the high or medium impact groups, whereas the original 
high influence group was distributed across all three impact groups. 

 
Table 9. H-index and Five Variation Values for Genetics Researchers 

Author 
letter 

Cluster 
group(impact) h-index m-index A-index AR-index hc-index hg-index 

A 1 (high) 15 33 45 11 23 18.6 
B 1 (high) 5 10 29 7 9 7.1 
C 1 (high) 3 12 14 3 5 3.9 
D 2 (medium) 4 24.5 27 4 5 4.0 
E 2 (medium) 2 8.5 8 2 2 2.5 
F 2 (medium) 5 15 27 5 6 5.9 
G 3 (low) 16 56.5 74 15 19 19.2 
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Author 
letter 

Cluster 
group(impact) h-index m-index A-index AR-index hc-index hg-index 

H 3 (low) 15 27 39 10 16 19.8 
I 3 (low) 14 22.5 33 11 16 17.9 

 

 
Figure 7. Ranking of Genetics Researchers Based on the H-index and Five Variations 

2. Artificial Intelligence 

a. Cluster Analysis 

1) Publication trajectories 
The cluster analysis was repeated for author profiles that listed artificial intelligence 

as a research interest area. A total of 11,650 author profiles were downloaded from Google 
Scholar on December 6, 2021. After data cleaning, a total of 9,505 author profiles were 
used as part of the pilot study on AI. From the first round of clustering based on publication 
trajectories, 51 of the 9,505 author profiles were grouped into the high impact cluster 
(blue); 919 were grouped into the medium impact cluster (green); and 8,535 were grouped 
into the low impact cluster (red; Figure 8). 
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Figure 8. Clustering of Artificial Intelligence Researchers’ Publication Counts  

over 10 Years  

2) Citations trajectories 
Based on clustering of citation trajectories, 14 of the 9,505 author profiles were 

grouped into the high impact cluster (blue); 54 in the medium impact cluster (green); and 
9,437 in the low impact cluster (red; Figure 9). The clustering of AI researchers’ citation 
counts over the 10 years yielded similar results to the citation count clustering of genetics 
researchers. Specifically, those in the high impact clusters for both AI and genetics 
separated from those in the other clusters early on and sustained a higher annual citation 
count over the entire 10 years.  
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Figure 9. Clustering of Artificial Intelligence Researchers’ Citation Counts over 10 Years 

3) Publication and citation trajectories 
After the final phase of clustering in which individual’s publication and citation 

trajectories along with the total number of publications and citations were taken into 
consideration, 15 (0.16%) were grouped into the high impact cluster; 973 (10.24%) were 
grouped into the medium impact cluster; and 8,517 (89.61%) to the low impact cluster 
(Figure 10). Fewer researchers were selected for the high impact group in the AI analysis 
compared with geneticists, further highlighting how characteristics that make a researcher 
outstanding are discipline dependent and why comparisons should not be made across 
disciplines. 

 

 
Figure 10. Clustering of Artificial Intelligence Researchers by Citations and Publications 
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b. Ranking Analysis 
Three scientists were randomly selected from each of the three clusters in the cluster 

analysis to represent high, medium, and low impact groups. Data were assessed for selected 
publication and citation metrics and variations on the h-index. 

Data for the analysis of total publication count, fractional publication count, total 
citation count, fractional citation count, and mean citations per paper are provided in Table 
10 and represented pictorially in Figure 11. STPI determined that the three researchers in 
each impact group (column 2) receive different, method-dependent rankings, as indicated 
by their redistribution by bibliometric measure (columns 3–7). 

 
Table 10. Publication and Citation Indicator Values for Artificial Intelligence Researchers 

Author 
letter 

Cluster 
group 

(impact) 
Total 

publications 

Fractional 
counting of 
publications 

Total 
citations 

Fractional 
counting of 

citations 

Mean 
citations 
per paper 

A 1 (high) 22 5.9 178 48.8 8.1 
B 1 (high) 247 0.6 18,128 8.1 73.4 
C 1 (high) 867 0.7 45,181 20.4 52.1 
D 2 (medium) 54 16.8 229 52.7 4.2 
E 2 (medium) 10 6 47 33.7 4.7 
F 2 (medium) 107 23.5 338 74.2 3.2 
G 3 (low) 11 3 48 13.2 4.4 
H 3 (low) 3 1 34 15.9 11.3 
I 3 (low) 11 3 74 22 6.7 
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Figure 11. Ranking of Artificial Intelligence Researchers by Publication 

and Citation Indicators 
 

The ranking analysis was repeated using the h-index and five variations: m-index, A-
index, AR-index, hc-index, and hg-index. Data are provided in Table 11 and represented 
pictorially in Figure 12. STPI determined that the three researchers in each influence group 
(column 2) received different, method-dependent rankings, as indicated by their 
redistribution by h-index variation (columns 3–7). Interestingly, the researchers in the low 
impact group were all placed in the high or medium impact groups, whereas the original 
high influence group was distributed across all three impact groups.  

 
Table 11. H-index and Five Variation Values for Artificial Intelligence Researchers 

Author 
letter 

Cluster 
group 

(impact) h-index m-index A-index AR-index hc-index hg-index 
A 1 (high) 6 20.5 26 6 8 8.49 
B 1 (high) 57 105 235 49 54 85.75 
C 1 (high) 97 155 275 60 75 131.77 
D 2 (medium) 9 13 17 5 11 9.95 
E 2 (medium) 4 9.5 10 2 6 4.9 
F 2 (medium) 11 18 18 5 14 11.96 
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Author 
letter 

Cluster 
group 

(impact) h-index m-index A-index AR-index hc-index hg-index 
G 3 (low) 4 12 10 2 6 4.47 
H 3 (low) 2 16 16 4 3 2.45 
I 3 (low) 6 9.5 11 4 7 6 

 

 
Figure 12. Ranking of Artificial Intelligence Researchers Based on the H-index 

and Five Variations 

D. Conclusions from the Pilot Study 
STPI conducted the pilot study to determine if publications, as an indicator of research 

productivity, and citations, as an indicator of research quality, could be used to identify 
patterns of research impact and whether the trajectory of publications and citations could, 
over time, distinguish high impact researchers from those with low and mid-level impact. 
The cluster analyses performed provided an alternative method to identify outstanding 
scientists using individuals’ publication and citation trajectories. 

STPI concluded that publication and citation patterns can be used to identify groups 
of scientists with high, medium, and low research impact. The analysis of AI as a 
representative physical science, and genetics, as a representative biological science, further 
suggest discipline-specific publications patterns. AI scientists grouped into the high impact 
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cluster had annual publication counts that peaked in the first 5 years of their careers and 
then decreased, whereas this measure continued to increase beyond the first 5 years for 
scientists in the genetics high impact cluster. An investigation into the early peak for AI 
scientist publications revealed it could be explained, in part, by publications that have very 
large number of authors, which may be more common in this field. These results suggest 
that identification of outstanding scientists may be most accurate within a scientific 
discipline. 

STPI shows that this cluster analysis approach provides an alternative method to 
identify outstanding scientists. There was a high degree of discordance in the results 
between the cluster and ranking analysis, and within the ranking analysis when comparing 
bibliometric indicators. Individuals identified as outstanding, high impact, researchers in 
the cluster analysis were not strictly confirmed by the ranking analysis. The discordance 
between methods can be explained, in part, by use of different data sources: WoS for 
ranking analysis and Google Scholar for cluster analysis. To understand the differences 
and their implications for the pilot study, STPI compared the number of publications for 
the nine randomly selected AI researchers and found that the difference in publications 
ranged from 96% fewer to 147% more publications between their WoS profiles compared 
to their Google Scholar profiles. These differences in datasets preclude comparison of 
results between the two methods. 

The pilot study also found discrepancies within the cluster and ranking results, that 
is, the identification of individuals as high impact scientists is dependent on the cluster or 
ranking method used in the evaluation. There is no baseline or widely accepted standard 
against which to evaluate and resolve the methodological differences. This challenge is 
well recognized and precludes identification of a single approach to evaluate high research 
impact with any degree of certainty. As a result, each bibliometric analysis should be 
considered only in the context for which it was performed.  

There are two final considerations for the pilot study. The first addresses the STPI-
chosen timeline of 10 years from first publication. Because of the high variability in the 
timing of a scientist’s first publication, the 10-year span used for one individual is not the 
same 10 years for another individual. This is important because the scientific environment 
is constantly changing and may affect both the productivity and research impact an 
individual has in their first ten years. For instance, scientific collaborations have increased 
over time resulting in researchers having higher numbers of publications and citations than 
their counterparts from two or three decades ago when collaboration were not as common 
(Maher and Van Noorden 2021). Second, the dataset includes senior authors with long 
publication records. The cluster and ranking methods do not adjust for changes in scientific 
environment over time, such as electronic publications and increases in peer-reviewed 
publications that compete for citations, all factors with ramifications for the results (Kyvik 
2003; Butler 2013).  
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Although we performed a pilot study on a limited population, other studies concur 
with our findings. As an example, a 2018 study compared 501 civil engineering awardees 
to their rankings based on the h-index and 10 variations for a total of 11 different ranking 
approaches (Raheel et al. 2018). The authors found that, for all 11 rankings, less than 50% 
of the top 10% of ranked scientists were also award winners. When rankings were divided 
into deciles, award winners were distributed across all 10 deciles. This report, and others, 
reinforces the challenge in identifying high impact scientists; however, the pilot study 
achieved its goals to identify patterns of research impact and whether the trajectory of 
publications and citations could, over time, distinguish high research impact researchers 
from those with low- and mid-level research impact. 
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5. Additional Data Sources for Consideration 

As Chapters 3 and 4 have shown, the sole use of bibliometric indicators is not 
effective in identifying outstanding scientists. If one of the goals is to identify and retain 
outstanding foreign scientists who have studied or are currently working in the United 
States, then additional data are needed, often those involving personal identifiable 
information (PII), to delineate individuals based on citizenship status and country of origin. 
Data regarding patents, funding levels, awards and recognitions, etc., when combined with 
bibliometric data, can provide additional information and context when considering who is 
an outstanding scientist. A difficulty when combining different data sources is name 
disambiguation and making sure that an individual from one data source can be accurately 
matched to the same individual in another data source. In these instances, PII such as 
gender, race, ethnicity, and date of birth can help link individuals across different data 
sources.  

In the section below, STPI identifies both existing data challenges and needs as well 
as additional data sources that, if combined with bibliometric indicators, may help identify 
outstanding scientists. The following is not a comprehensive list of additional data sources 
that may be linked to an individual researcher or their associated bibliometric data. Instead, 
it is a list of data sources that STPI identified during the course of this study that may be 
of interest when considering U.S. competitiveness in STEM talent broadly. The following 
list also showcases the variety of data that could be linked together to better assess the 
scientific, social, or economic impact of individual researchers, including those who are 
not U.S. citizens. 

A. Existing Data Challenges and Needs 

1. Accessing Personal Identifiable Information across Federal Agencies 
Federal agencies such as the National Institutes of Health (NIH) and the National 

Science Foundation (NSF) collect PII such as gender, race, ethnicity, disability status, 
degrees and years in which they were awarded, and other information that can provide 
important context for bibliometric analyses or help perform investigations correlating 
researcher characteristics to scientific productivity and impact. However, public sources of 
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grant data, such as RePORTER9 maintained by NIH, provide data only on funded 
applicants and contain no personal information other than their name and affiliation.  

Access to individual PII for researchers external to the funding agency can be granted 
by undergoing a clearance process and requires a Federal sponsor to initiate the request. At 
the conclusion of the clearance process, an outside researcher can access internal grant 
databases, such as IMPACII at NIH or restricted portions of FASTLANE at NSF. 
However, sensitive PII, such as race and ethnicity, may further be protected by only being 
available to Federal employees or federally funded research and development centers 
(FFRDCs) such as STPI through a formal Data Use Agreement. Aggregated data on the 
composition of the research workforce by race, ethnicity, disability status, and degrees are 
available to the public (for example, from the NIH Data Book),10 but these data cannot be 
linked to publications at the individual level.  

One suggestion to overcome requesting PII access from each Federal agency is to 
establish a centralized and aggregated, interoperable Federal funding database containing 
a tiered system in which vetted researchers can access sensitive government data, not 
limited to PII, for statistical and research purposes.  

2. No Centralized System to Access Federal Awards Data for Applicants and 
Awardees 
Beyond academic publications, another important measure of a researcher’s impact 

is the amount of research funding secured. STPI is not aware of the existence of a central 
repository of research funding information for academic or private sector awards, though 
several major Federal departments and agencies, such as NIH and NSF, maintain databases 
for public sector awards. However, these databases are not interoperable. There is no 
centralized system that can identify an individual across Federal awards databases, making 
the task of reliably tracing a researcher’s Federal funding record difficult.  

Alongside the individual department and agency award databases, the Department of 
Treasury hosts USAspending.gov, a publicly accessible website that tracks the majority of 
non-confidential Federal Government spending. While USAspending.gov contains a vast 
amount of information, including Federal research spending, data quality issues hamper 
the value of the insights drawn from these data. For instance, there are often missing or 
unreliable values, inconsistent naming, and different methods of data acquisition. In 
addition, the available data are often focused on institutions, rather than individuals, 
making the task of tracing funding to a given researcher difficult. Despite this, the data 
quality and consistency in USAspending.gov has improved since the website was first 

                                                 
9  The NIH RePORTER site can be accessed at https://reporter.nih.gov/ 
10  The NIH Data Book can be accessed at https://report.nih.gov/nihdatabook/ 
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launched (Sage et al. 2021), and will likely continue to do so in the future. However, at the 
moment, USAspending.gov is not a dependable resource of Federal research funding for 
individual researchers.  

In light of the challenges presented above, STPI recommends several additions to the 
practices of Federal awards databases. To mitigate the difficulty in identifying a researcher 
across databases, a unique Federal funding ID may be assigned to a researcher upon first 
submission of a funding proposal to a Federal agency.11 This ID would follow the 
researcher across all Federal funding opportunities and would be entered in each agency or 
departmental database, making it possible to reliably trace an individual’s research across 
databases. Federal agencies could also employ the use of ORCID IDs, discussed in more 
detail below. Furthermore, to facilitate data access, agencies and departments may consider 
a tiered system of access for certain types of information. For instance, certain types of 
less-sensitive information that is not currently publicly accessible may be made available 
to government contractors or individuals with special relationships to government 
organizations without the requirement of being credentialed. 

B. Additional Data Sources 

1. Federal Statistical Data 
Federal statistical data is a robust, trustworthy source of information about individuals 

and businesses in the United States. The National Center for Science and Engineering 
Statistics (NCSES) is a Federal statistical agency located within the National Science 
Foundation that oversees the collection and dissemination of information on the U.S. 
STEM workforce and STEM degree recipients. We discuss two NCSES datasets of interest 
below.  

Despite the promise that Federal statistical data hold, there are several laws to protect 
the privacy and confidentiality of individuals in the dataset that limit their usefulness. For 
example, the Confidential Information Protection and Statistical Efficiency Act (CIPSEA) 
states that “information acquired by an agency under a pledge of confidentiality for 
exclusively statistical purposes shall not be disclosed by an agency in identifiable form, for 
any use other than an exclusively statistical purpose, except with the informed consent of 
the respondent” (CIPSEA 2002). Essentially this statement means that Federal statistical 
data can only be used for activities involving describing, estimating or analyzing 
characteristics of groups, without identifying individuals, and “use of data in identifiable 
form for any purpose that is not a statistical purpose, including any administrative, 

                                                 
11  National Security Presidential Memorandum 33 outlines the use and implementation for Federal 

agencies to use digital persistent identifiers to identify individual researchers (National Science and 
Technology Council 2022). 
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regulatory, law enforcement, adjudicatory, or other purpose that affects the rights, 
privileges, or benefits of a particular identifiable respondent” is prohibited without consent 
of the individual who provided the data (CIPSEA 2002).  

a. Survey of Earned Doctorates 
The Survey of Earned Doctorates (SED) is an annual census conducted since 1957 of 

all individuals receiving a research doctorate from an accredited U.S. institution in a given 
academic year (National Science Foundation 2021a). SED data are available in two 
formats—one for public use that is available through an interactive data tool from the 
NCSES,12 and one that contains PII and requires restricted use data licensing approval by 
the NCSES. A list of key variables from the SED is provided below. Variables that are 
italicized are those that can only be accessed with restricted use data licensing approval 
from NCSES. 

• Academic institution of 
doctorate 

• Baccalaureate-origin institution 
(U.S. and foreign) 

• Birth year 

• Citizenship status at graduation 

• Country of birth and citizenship 

• Disability status 

• Educational attainment of 
parents 

• Educational history in college 

• Field of each degree earned 

• Graduate and undergraduate 
educational debt 

• Marital status 

• Postgraduation plans  

• Primary and secondary work 
activities 

• Source and type of financial 
support for postdoctoral study 
or research 

• Type and location of employer 

• Basic annual salary 

• Race and ethnicity 

• Sex 

• Sources of financial support 
during graduate school 

• Type of academic institution 
(e.g., historically Black colleges 
and universities, Carnegie 
codes, public or private) 
awarding the doctorate 

Usefulness in future analyses: The SED contains information on citizenship status and 
country of origin for nearly every PhD recipient from U.S. institutions of higher education 
over the past 50+ years. If the SED data could be linked with publication records, we could 
assess bibliometric indicators for individuals with different citizenships or countries of 
                                                 
12  The NCSES interactive data tool is available at https://ncsesdata.nsf.gov/home 
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origin. Additionally, we would know PhD graduation year, which would provide an 
alternate pathway to categorize early career researchers, and to assess their research output 
and research impact.  

b. Survey of Doctoral Recipients 
The Survey of Doctoral Recipients (SDR) is a biennial survey that has been conducted 

since 1973 and samples individuals13 who have received a U.S. research doctoral degree 
in a science, engineering, or health (SEH) field (National Science Foundation 2021b). By 
using a fixed panel survey design in which the same individuals are asked to participate in 
the survey over time but also adding a sample of new doctoral graduates in each biennial 
survey cycle, the SDR provides information about the educational and occupational 
achievements as well as career movements of U.S.-trained doctoral scientists and engineers 
in both the United States and abroad. Similar to that of the SED, SDR data come in both 
public and restricted use formats. Public use SDR data from 1993 to present are available 
online, and access to restricted use data requires approval by NCSES (NCSES 2022). A 
list of key variables from the SDR is provided below. Variables that are italicized are those 
that can only be accessed with restricted use data licensing approval from NCSES. 

• Age 

• Race 

• Sex 

• Ethnicity 

• Citizenship 

• Place of birth 

• Educational history 

• Employment status 

• Field of degree 

• Occupation 

• Job satisfaction 

• Reason for changing employer 
or job 

• Factors important in deciding to 
come to the United States 

Usefulness in future analyses: Because the SDR tracks employment information of U.S. 
PhD recipients over time after graduation, we could identify and study particular cohorts 
of individuals that work in a particular sector (different types of academic institutions, 
private sector, and government). By tracking the bibliometric or other outputs (e.g., patents, 
awards, jobs) of these individuals by their post-PhD employment sector, we could better 
develop metrics of outstanding scientists outside of those in academia.  

c. Similar International Statistical Datasets 
A number of countries have their own efforts to track post-PhD careers, but we were 

unable to identify anything as well established and continuous as the NCSES surveys 
                                                 
13  Individuals must be less than 76 years of age at time of survey to participate.  
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described above. Many countries do have centralized statistical systems and use their 
population surveys to capture some of these measurements, but many of these systems do 
not have the flexibility to answer the specific questions that SED and SDR allow. Here we 
highlight the broadest similar international data collection effort that we could identify. 

In 2004, the Organisation for Economic Co-operation and Development (OECD), 
together with UNESCO and Eurostat, established the Careers of Doctorate Holders (CDH) 
initiative, which “set out to develop internationally comparable indicators on the careers 
and mobility of doctorate holders” (OECD 2019). The CDH would provide similar insights 
to the NCSES SDR. This effort was challenging in that it required an ability and 
understanding of how to combine and compare data from each data holder/country. Some 
countries fielded a dedicated CDH survey, while others derived the relevant information 
from their national labor force survey or from administrative data sources. The first CDH 
data collection was coordinated in 2006 with 25 countries participating, and these efforts 
continued until 2017, when they were paused for review by OECD to review resource 
prioritization. While the aggregate statistics provided in public release data files are useful 
to inform policymaking, as with the SED and SDR, to answer questions about research 
impact of individual researchers would require access to the individual level, likely PII, 
data. We were unable to determine if there are CDH restricted use data that are accessible 
to external researchers in a similar way that SED and SDR data are. 

2. Private Third-Party Data 
Many non-governmental organizations hold and curate databases of potential value 

to supplement our bibliometric analyses. Some of these organizations are for-profit entities, 
and others are non-profit organizations. Each entity listed here aggregates data from other 
sources, whether by web-scraping, partnering, or other means. In most cases, the curated 
datasets produced or accompanying analytical tools are available to researchers for 
particular analysis or insights for a fee. 

a. IRIS 
The Institute for Research on Innovation & Science (IRIS) at the University of 

Michigan has created a linked data infrastructure that enables research into the research 
impacts and outputs of U.S. research activities. The core dataset in the IRIS research dataset 
is administrative data (Federal and non-Federal sponsored projects, employment 
information on post-docs, graduate students, and undergraduate students, vendor spending, 
and subcontracts) from research universities that join IRIS as members. Though 
membership in IRIS continues to grow, in 2021, the IRIS dataset encompassed over 80 
member campuses and represented over 40 percent of total U.S. R&D spending at 
universities. The administrative data can then be combined with other data sources, 
including NIH or NSF award data, Census data, dissertation data, data from Steppingblocks 
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(see below), and a new pilot is exploring possible connections to NCSES data, such as the 
SED.  

Usefulness in future analyses: Based on IRIS’s integrated data infrastructure, it could be 
possible to paint a much more complete picture of the factors statistically linked to a 
researcher becoming an outstanding scientist, early or late in their career. For example, 
there is the potential to show correlations between Federal funding levels, or demographic 
characteristics and research impact. This information could be useful, perhaps less in the 
identification of outstanding scientists, but in identifying areas where the U.S. Government 
could potentially improve the racial or gender diversity of outstanding scientists in a 
particular field, and thereby possibly create a wider base of domestic-grown outstanding 
scientists.  

b. Steppingblocks 
Steppingblocks collects, curates, and combines demographic, education, and 

workforce data to provide insights about education and workforce outcomes 
(Steppingblocks 2021). Data sources include online profiles, resumes, university websites, 
public databases, job postings, public filings, public salary databases, and government 
sources. The company uses machine learning and AI among other methods for data 
validation and data analyses. Steppingblocks has data on over 130 million individuals in 
the United States and has several research partnerships funded by Federal agencies. For 
instance, Steppingblocks, in conjunction with Clarivate, recently received an NSF grant to 
study the impact of foreign-born scientists and engineers. Select variables from 
Steppingblocks data include: 

• Gender 

• Age 

• Job information (e.g., title, 
category) 

• Contact information 

• Employer information (e.g., 
employer name, industry) 

• Salary 

• Skills and certifications 

• Education background (e.g., 
degree level, field, graduation 
year) 

• Location 

Usefulness in future analyses: Because Steppingblocks tracks individuals over their career 
progression, if this information was combined with publication records, we could develop 
greater insights into the factors associated with someone’s rise as an outstanding scientist. 
For example, we could identify if individuals transitioned between roles in academia, or 
moved from academia into industry or government service. It is also possible that by 
tracking individuals who took these different career paths, we could better identify 
characteristics of outstanding scientists aside from bibliometric indicators.  
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c. Moody Analytics: Orbis Database 
Orbis is a database containing corporate ownership, intellectual property, and 

financial information on more than 400 million companies worldwide (Orbis 2022). In 
addition, the database contains information approximately 350 million people globally 
including 162 million shareholders and 156 million owners. The database also links 
approximately 115 million patents to about 300 million companies and has information on 
about 13 million patent transactions. The Orbis database contains information on: 

 
Companies Patents 

• Corporate structure • Patent transactions 
• Mergers and acquisitions • Valuations 
• Standardized financials • Ownership timeline 
• Industry codes • Legal status updates 
• Technology classifications  

 
Usefulness in future analyses: It is possible that we could use the Orbis database to identify 
outstanding scientists based on their economic impact, rather than their research impact. 
We could search Orbis for a group of scientists in a particular field and identify those with 
patent or company ownership, and trace the economic impacts (e.g., revenues) associated 
with that ownership.  

d. ProQuest Dissertation and Thesis Database  
The ProQuest Dissertation and Thesis Database (PQDT) is the largest global 

repository of dissertations, and was designated as the official dissertation repository by the 
U.S. Library of Congress (ProQuest n.d.). At present, it contains over 5 million dissertation 
citations and over 2.7 million full-text theses or dissertations, with records going back 
hundreds of years. While the largest number of entries in the database comes from U.S. 
institutions, there are over 100 countries and 3,100 institutions represented across the 
database. When searching PQDT, one can query fields including title, abstract, author, 
advisor, institution, keywords, and subject/department, among other entries.  

Usefulness in future analyses: Because PQDT contains information on dissertation 
submission year, which generally coincides with PhD completion, if this information on 
graduation year could be linked with bibliometric information, we could conduct an 
analysis of early career outstanding scientists using graduation date (rather than first 
publication date) as a starting point for “early career.” Using PQDT could also allow us to 
identify individuals whose PhD dissertation was in a particular research area (e.g., quantum 
information science or AI), which is not possible to assess from datasets such as the SED 
or SDR. Our current bibliometric study involves using the author’s current research area 
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to group them with others in a similar field, but the author’s current research area may 
differ from their PhD research area and there may be value in sorting by PhD research area, 
specifically if we are interested in better understanding early career researchers.  

e. ORCID 
ORCID is a not-for-profit organization aimed at increasing the connections between 

researchers; their contributions, funding, and other awards; and their affiliations through 
unique, persistent identifiers (ORCID 2021). Scientists around the world are able to create 
a free, unique, persistent identifier that can be used to clearly attribute themselves and 
contributors to scholarly research and outputs. ORCID enables funders to use their ORCID 
IDs in their funding workflows to connect grantees to the grants they have been awarded, 
publishers, and research organizations. ORCID’s database can be used for name 
disambiguation and provides a clear, transparent history of a scientist’s research and career 
trajectory. Key variables available through ORCID include: 

• Unique, persistent identifiers 
for each individual 

• Education background 

• Institution affiliations through 
time 

• Publications 

• Peer review activity 

• Society membership 

• Funding 

• Awards and distinctions 

Usefulness in future analyses: If Federal agencies required the use of ORCID IDs as part 
of the application process, then applicants and awardees could be identified across different 
Federal awards databases. The continued use of ORCID IDs by both funders, publishers, 
and researchers would allow for the evaluation of researchers’ careers through time. A 
researcher’s ORCID profile can provide a longitudinal record of their educational, work, 
and funding history; professional accomplishments; and research outputs.  

3. Citation Databases 

a. Web of Science 
WoS is a literature database by Clarivate that covers roughly 34,000 journals, books, 

and conference proceedings (Birkle et al. 2020). These documents are an accumulation of 
multiple databases including WoS’s Core Collection; international databases from China, 
Russia, Latin America and Iberia, and Korea; and other specialized indexes such as 
Medline, Zoological Record, and patents. However, the Core Collection makes up roughly 
half of the WoS database. There are roughly 182 million records (journals, books, and 
proceedings) and over 99 million patents (Clarivate 2021a).  
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Access to WoS resources is divided into three tiers: the WoS platform tailored 
towards general use,14 application programming interfaces (APIs), and raw data provided 
by Clarivate. In the WoS platform, which was used in the above pilot study, the search 
engine allows users to look up data using keyword fields or authors by first and last name. 
One of these fields includes “Web of Science Categories,” which contains the 254 topic 
areas that publications can be sorted under. Publications can be categorized under multiple 
topic areas. Publication exports include various metadata, such as language, document 
type, and ORCIDs where applicable.  

b. Scopus 
Scopus is an abstract and citation database by Elsevier with over 77.8 million records 

as of January 2020, which include journals, books, conference proceedings, and trade 
publications. These records are derived from more than 25,000 active serial titles and 
210,000 books (Scopus 2022). Similar to WoS, Scopus has a search engine that allows 
users to search by various keyword fields, author first and last name, and, additionally, 
affiliations. These metadata can also be downloaded in large batches into Excel documents. 
Furthermore, Scopus also automatically generates author profiles based on automatic name 
disambiguation and currently has 16 million author profiles. 

c. Google Scholar 
Google Scholar is another literature database that has open access to a wide range of 

literature. Unlike WoS, which only contains published materials, Google Scholar scrapes 
online resources to collect both published materials such as articles and books and non-
published materials including conference proceedings, patents, software presentations, and 
white papers in both academic and non-academic areas. Because Google Scholar includes 
a wider range of potential documents with minimal manual review, the database often 
includes a greater number of publications and citations than WoS and Scopus. Because 
Google does not disclose how many documents Google Scholar contains, multiple studies 
have attempted to estimate the breadth of coverage. Two studies conducted in 2017 and 
reviewed by Delgado López-Cózar et al. estimated a range of 194 to 331 million articles, 
citations, and patents in Google Scholar (Delgado López-Cózar et al. 2018).  

A comparison of the Web of Science, Scopus, and Google Scholar can be found in 
Appendix G. 

                                                 
14  The general use WoS platform is available at https://www.webofscience.com/wos/woscc/basic-search 
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6. Summary and Next Steps 

A. Summary 
STPI addressed the following two research questions in this study: 

1. Can bibliometric indicators be used to accurately identify outstanding scientists 
within a scientific discipline through time, and what are the limitations of its 
use? 

2. Can new bibliometric indicators or analytical approaches be developed to 
identify outstanding scientists within a scientific discipline through time? 

STPI’s review of the literature showed that there is no universal set of bibliometric 
indicators to identify outstanding scientists. In addition, there are many limitations in the 
use of bibliometric indicators such as field dependence; inability to accurately predict the 
research impact of early career researchers and non-traditional academicians; and 
perpetuation of gender biases. 

STPI’s pilot study demonstrated that cluster analysis may provide an alternative 
approach to identify outstanding scientists. Cluster analysis identified three groups of 
scientists that, based on their publication and citation trajectories, could be categorized as 
having high, medium, and low research impact. The discipline areas investigated—AI and 
genetics—suggested interesting science discipline-specific patterns for research impact. 
further testing using additional data sources and larger sample sizes is needed to improve 
the approach.  

B. Next Steps 
STPI anticipates that a combination of strategies where bibliometrics is one 

component represents the most promising direction for identifying outstanding scientists 
with any degree of certainty.  

1. Additional Bibliometric Analyses 

a. Undercited “Sleeping Beauty” Research 
When using citation and publication information as indicators of academic success, it 

is worth considering that these metrics do not always properly reflect the value of the work. 
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In particular, certain academic publications fall under the category of “sleeping beauty”15 
publication, a term that refers to undercited published works that accrued fewer citations 
and notable mentions in the early part of their existence than hindsight grounded in their 
later success would suggest they should have. Du and Wu (2018) describe two general 
categories of such works: (1) publications that are part of a cumulative process or a 
combination of several discoveries that are difficult to appreciate on their own, and (2) 
publications that disrupted established paradigms and took time for the field to catch up. 
One example of a transformative sleeping beauty publication is Gregor Mendel’s 
Experiments on Plant Hybridization, which was met with skepticism or outright rejection 
by the scientific community at the time but is now considered a seminal work that 
transformed the field of genetics.  

The concept of the sleeping beauty has been recorded in the literature under various 
names since the 1960s (e.g., Barber 1961 and Wyatt 1962), and has been described 
qualitatively by several authors (see Garfield 1980 and Costas et al. 2011 for notable 
examples). Van Raan (2004) was one of the first to provide an empirical definition of a 
sleeping beauty as a published work that had a long period of sleep after publication (e.g., 
10 years) marked by a small number of annual citations, followed by a sudden period of 
resurgence. This resurgence is indicated by a stark increase in the number of citations, 
called the “awakening,” which is often facilitated by a “prince”—a personification of an 
important citing article or other published work, such as a patent (van Raan 2015).  

Several authors have suggested potential reasons for the occurrence of the sleeping 
beauty phenomenon—Wyatt (1962) reasoned that some discoveries have a delay in 
recognition due to technical limitations in the field that do not allow the discovery to be 
implemented. Cole (1970) suggested that certain published works may fall victim to the 
Matthew’s Effect—for instance, the author’s status in the social hierarchy of their field does 
not allow the work to proliferate in the same way as it would if it were published by an 
author of higher status. Alternatively, Cole suggested that the recognition may be initially 
lacking due to the published findings not agreeing with the commonly accepted notions of 
the field. Stent (1972) provided a closely related reasoning: although a particular finding 
may be well received, its full recognition is delayed due to the inability to initially find a 
connection between it and the canonical understanding in the field. Finally, Price (1976) 
argued that a sleeping beauty can occur when the finding is poorly communicated, such as 
when the explanation is overly technical or lacking in clarity. 

Contemporary methods for identifying sleeping beauty published works mainly build 
on the work of van Raan (2004). Typically, these approaches weigh various factors—such 

                                                 
15  This phenomenon has been discussed under several different names, such as: existed discovery (Barber 

1961), premature discovery (Stent 1972), delayed recognition (Cole 1970, and Garfield 1970, 1980, 
1989), Mendel syndrome (Costas et al. 2011). 
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as number of citations during the dormant period and the rise in the number of citations 
during and after the awakening period—and attempt to either categorize the paper as a 
sleeping beauty (van Raan 2004) or quantify the strength of the sleeping beauty signal for 
a particular published work (Ke et al. 2015). Although the approaches can detect sleeping 
beauties according to their respective definitions, they are only capable of doing so 
retrospectively. To STPI’s knowledge, no article has outlined the conditions for the early 
detection of a sleeping beauty. At the same time, van Raan (2015, 2017, 2018) noted that 
patent citations can be an early indicator of a sleeping beauty and although the detection a 
patent citation may take fewer years than the traditional dormant-to-wakeful trajectory of 
a sleeping beauty, this approach still requires the potential sleeping beauty to rest for 
several years before it can be recognized. In addition, Hou and Zhang (2020) have 
successfully detected sleeping beauty articles via altmetrics, even going so far as to 
outperform traditional citation-based detection methods in some cases. Yet, the altmetrics 
approach is not broadly applicable as it is necessarily limited to publications that are hosted 
only on platforms that report altmetric scores as well as fields where altmetrics can gain 
traction as a method of scientific dissemination.  

Despite the relative difficulty in detecting sleeping beauties, these types of published 
works require attention when considering the value of an academic career through the lens 
of publication and citation statistics. In fact, some of the most transformative scientific 
research has followed the trajectory of a sleeping beauty in the past and is likely to do so 
again in the future. The ability to detect and properly account for the value of a sleeping 
beauty is a crucial next step in evaluating researchers’ contributions to science. More 
research is necessary to understand the common characteristics of sleeping beauties in the 
early part of their lifecycle, alternative methods of detection beyond citation trajectories, 
and any differences in sleeping beauty characteristics between fields.  

b. RCR 
The Relative Citation Ratio (RCR) was proposed in 2016 by staff at NIH (Hutchins 

et al. 2016). The goal of RCR was to correct the known limitations of existing measures of 
scientific productivity and impact, which do not account for differences in publishing 
norms across fields, undervalue collaborate work, and emphasize publication quantity over 
quality.  

The innovation of RCR is that it is field- and time-normalized and is benchmarked to 
a typical NIH paper in the same publication year. RCR of an article is defined as the citation 
rate of the article (number of citations divided by years since publication) divided by the 
average impact factor (IF) of journals in which co-cited papers appeared. Co-cited articles 
are those cited by papers that also cite the article whose RCR is being calculated. If n 
articles from a given journal are co-cited, that journal’s impact factor is included n times 
in computing the average IF. An RCR value of “1” means that the paper is cited as often 



 

48 

as expected based on the NIH norm, and the higher and lower values indicate that the paper 
was cited more or less than its “peers,” respectively. 

Some subsequent studies of RCR concluded that it was effective as a measure of 
research yield (e.g., Patel 2021), and in general the metric is considered a step forward in 
quantifying influence across fields (e.g., Ioannidis 2016). Further work extended RCR 
beyond the biomedical field to other subject areas (Purkayastha 2019). However, like other 
bibliometric indicators, RCR also has limitations. The original article proposing RCR 
acknowledged that it cannot adequately measure the influence of very recent papers. A 
2017 study questioned the validity of the metric by pointing out the weaknesses of the 
normalization strategy (Janssens et al. 2017). Finally, a 2016 study found that RCR was 
not well correlated with expert assessment (Bornmann 2016). 

Despite some skepticism of RCR, it is a measure worth exploring for identifying 
outstanding scientists. For example, additional studies correlating clusters with RCR values 
could help refine the clustering method. 

2. Verification of Outstanding Scientist Status 
Numerous methods have been used to identify outstanding scientists in their fields. 

Companies like Clarivate produce an annual list of the most highly cited researchers16 
based on a variety of factors including their citation count and the number of papers an 
individual has that is considered highly cited (Clarivate 2021b). The challenge, however, 
lies in deciding which method is producing the most accurate list of true outstanding 
scientists within a scientific field. Verification is a challenging task as there is no true list 
of individuals that are considered outstanding in their fields. In addition, because there is 
no universally agreed upon concept of what constitutes an outstanding scientist, one 
method valuing a certain set of factors in its selection criteria will generate a different, 
though likely overlapping, list of outstanding scientists than another method that has 
prioritized a different set of criteria. This does not mean that verification should not be 
attempted. Rather, it means that until a rigorous verification method is developed, there is 
no way of knowing or determining which method is better at identifying outstanding 
scientists. To address this, STPI suggests two strategies that could be pilot-tested to 
evaluate the accuracy of the method described in this report. As each has its own strengths 
and weaknesses (Table 12), it is desirable to use multiple methods in parallel to refine the 
algorithm. 

Expert validation. Expert panels are commonly used to evaluate research quality and 
investigator’s scientific potential; furthermore, RCR was validated using data from expert 
panels. The key weakness of expert panels is their subjectivity, conservatism, and potential 
                                                 
16  The most recent list of highly cited researchers released by Clarivate was for 2021 and can be accessed 

at the following website: https://recognition.webofscience.com/awards/highly-cited/2021/. 
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for implicit and explicit bias. Reviewers can also be in conflict with researchers they are 
evaluating. However, expert opinion remains a cornerstone of evaluating scientists, and 
various safeguards are being introduced to reduce or eliminate biases and improve review 
fairness and robustness (Guthrie 2019). Therefore, a well-executed expert panel remains a 
powerful tool for assessment of scientific products and for validating bibliometric measures 
derived from these products. Typically, panels are asked to rate individual papers or 
portfolios of work using a numerical scheme established for this purpose. Crowd-sourcing 
the scientific community to identify the top researchers in their fields could be used as an 
alternative to rating candidates in a pre-determined sample. While free of some limitations 
inherent in the first option, this strategy may fail by not yielding a consensus group of 
individuals. 

Using reputation indicators. Another option for validating bibliometric data is to use 
proxy measures of standing in the community, such as prizes, service on editorial and 
advisory boards, funding records, and invitations to give congressional testimony. STPI 
acknowledges that these indicators have limitations: they favor established over early 
career scientists, are not independent of each other (e.g., one prize is likely to lead to 
another), are field-specific (e.g., there is no Nobel Prize in mathematics), and few 
indicators are universally accepted as marking an exceptional researcher (e.g., Nobel Prize 
or Fields Medal). Nevertheless, this strategy has potential for validating a group of 
researchers identified through bibliometric analysis and an aggregate score based on a 
combination of several reputational indicators could improve its accuracy. STPI notes that 
these data could be labor intensive to collect for a large sample. 

 
Table 12. The Pros and Cons of Two Validation Methods 

Validation Method Strengths Weaknesses 
Expert validation Allows integration of various 

viewpoints to reach consensus, 
universally accepted, powerful if 
well implemented, easy to 
implement 

Subjective, difficult to implement 
on a large scale, potential for 
conflicts of interest, may not 
reach consensus, dependent on 
the composition of the panel 

Using reputational 
indicators 

Relies on multiple measures, 
easy to implement, objective 

Measures not independent of 
each other, limitations of 
individual indicators, labor 
intensive on a large scale, favors 
established scientists, field 
dependent 

3. Identifying Outstanding Teams of Researchers 
Identifying individual outstanding scientists underestimates the importance of 

collaboration and team contribution for scientific discovery. The full value of a researcher 
may not be fully realized without the element of collaboration (Dong et al. 2018). 
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Therefore, identifying outstanding teams of researchers (those who have produced high-
quality scientific output collaboratively) represents another promising avenue of 
investigation.  

Prior research on research collectives has often employed network analysis as a tool 
for understanding the relationships between researchers and quantifying their impact 
(Bales et al. 2008; Abbasi and Altmann 2011; Digiampietri and da Silva 2011; Hicks et al. 
2019). Network analysis casts the data as a web of interconnected nodes held together by 
edges; in a hypothetical network graph of publications for a particular research topic, the 
publications form the nodes, and citations constitute the edges. The topography of the 
network can be used to compute a number of indicators that quantify the influence of a 
node within the network, demonstrating, for instance, how well connected a particular node 
is with respect to the remaining nodes.  

In terms of the data used to identify impactful research groups, studies have often 
centered on publication-level information. For instance, a 2017 study used a network 
analysis of different publications (e.g., journal articles, clinical trial reports, patents, FDA 
medical reviews) as well as research award, grant, and authorship data as a proof-of-
concept for a multi-measure evaluation for a research topic or trend (Keserci et al. 2017). 
The study demonstrated several measures for highlighting particularly important 
publications and impactful authors whose work indirectly led to the development of the 
therapeutics. This approach can be extended to identify impactful research groups by 
capturing the sub-networks around a particularly impactful author or all authors in the 
vicinity of an important publication. The impact of the authors captured in this manner can 
be further validated by cross-referencing the supplementary research award and grant data, 
along with any other related measures of success that are traceable at the author level. 

However, when considering the complexity of a network of research products, it may 
be difficult to clearly delineate a research group based strictly on proximity to an impactful 
author or publication. An alternative approach is exemplified by the Map of Science tool 
developed by Center for Security and Emerging Technology (CSET), which was developed 
from a network of published products that were clustered based on citation linkages 
(Rahkovsky 2021). CSET has also provided an example case of identifying outstanding 
research products through the use of adjusted publication and citation metrics within the 
Map of Science (Acharya & Dunn 2022). Taken together, outstanding research groups may 
be distinguished by drawing on the Map of Science framework by first locating outstanding 
research products via adjusted metrics, determining the cluster of origin of the outstanding 
research product of interest, and identifying the researchers responsible for the published 
works within that cluster. 

The network models listed above draw on large-scale datasets, involving a multitude 
of research areas; an analysis of talent from such a dataset may potentially result in a long 
list of outstanding researchers from various disciplines. A 2019 study suggested one 
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method to reduce the number of disciplines is to gauge the degree of emergence for each 
research topic in the sample (Porter et al. 2019). The study assigned “emergence scores” 
to research topics, measured by the novelty, momentum, growth, and community size for 
a given research topic algorithmically discovered in a series of research publication and 
patent abstracts. The emergence scores agreed with external validation metrics, and were 
shown to be representative of the state of the science for the chosen research topics. While 
it is a fairly new method, the emergence scoring algorithm shows promise as a tool for 
identifying research topics slated for growth, and as a supplementary tool for identifying 
outstanding research groups studying those topics. 
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Appendix A. 
Context for Social, Economic, and National 

Security Impacts  

Research impact is the demonstrable effect of an individual’s scientific contributions 
as assessed through advances in a research field or to general scientific knowledge 
(research impact), and contributions to the general economic and social capital of the nation 
(economic impact, social impact), all of which have implications for the security of the 
nation (national security impact). Research impact was considered in the text of the report, 
and for completeness, here we review social, economic, and national security impact. 

Social impact is the effect of research outputs on advancing policy decisions, public 
debate, and the general social capital of the nation. Social impact measures include number 
of references to the individual in public debate and public policy decisions, altmetrics, 
Academic Rigour and Relevance Index (AR2I; Phillips et al. 2017), social media presence, 
mass media mentions, non-science awards and honors, holding a government advisory 
position, soft influence (e.g., Sarah Gilbert, an Oxford University professor who helped 
lead the development of the Oxford/AstraZeneca coronavirus vaccine, having a Barbie doll 
modeled after her; Nuñez 2021), and participating in legislative planning meetings 
(Bornmann 2012). Researchers who hold a more recognizable public presence are more 
likely to have impacts beyond the academic sphere, and influence the general public 
understanding of science.  

Economic impact is the effect of research outputs on advancing economic trends and 
the general economic capital of the nation. Economic impact measures include number of 
patents, number of industry projects, external funding relating to research cooperation with 
non-academic institutions, and start-up companies (Wilsdon et al. 2015). 

National security impact is the effect of research outputs directly on science and 
technology that protect, or influence the protection of, the nation (Sarkesian et al. 2008) or 
indirectly through research that impacts the economy and social structure and capital of the 
nation. Dual use research—research that has potentially beneficial and detrimental uses—
is a primary national security concern. The complexity of the direct and indirect impacts 
of research on national security makes identification of scientists with outstanding research 
impacts especially challenging.  
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Appendix B. 
H-index Variation Tree 

The following evolution tree is derived from a selection of the 85 variations 
highlighted by Bihari et al. (2021), which illustrates the multitude of variations that have 
been developed by scientometricians. Each evolution of variation is denoted in the green 
boxes while the mathematical motivation is denoted in the blue boxes. 
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Appendix C.  
H-index and Variation Calculations 

To calculate the h-index of a hypothetical Author A, the rank value of each of Author 
A’s publications by their citation counts is assigned from biggest to smallest. A chart of 
hypothetical Author A’s corpus of work is seen in Table C-1.  

 
Table C-1. Author A’s Start Data 

Title Publication Year Rank Citation Count 
Paper f 2012 1 200 

Paper q 2009 2 65 

Paper b 2016 3 24 

Paper g 2004 4 12 

Paper u 2005 5 7 
Paper o 2007 6 3 

Paper t 2007 7 2 

Paper w 2019 8 1 

Paper k 2020 9 1 

Paper l 2021 10 1 

Paper e 2021 11 0 

Paper v 2005 12 0 

 
As a reminder, the h-index is defined as:  

“A scientist has index h if h of his or her Np papers have at least h citations each and 
the other (Np – h) papers have ≤h citations each.” 

In other words, the h-index is the highest rank magnitude that is less than or equal to 
its number of citations. Another term to note is the h-core. The h-core is all papers that are 
“considered” in the h-index. In this case, the h-core are the publications ranked 1–5 since 
these are within the h-index calculation.  

STPI selected the following five potential indices to predict outstanding scientists: A-
index, m-index, AR-index, contemporary h-index, and hg-index.  

  

h-core 
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A-index: 

The A-index is the average of the h-core citations. Author A therefore has an A-index of 
61.6. 

m-index 

The m-index is the median of the h-core citations, so Author A has m-index of 24. 

AR-index: 

The AR-index is an adjustment of the A-index that incorporates the age of a paper, where 
more recent papers are given more weight than older papers. The AR-index is defined as: 

��
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 1
 

where the citation:age ratio is calculated for each h-core paper. The age is calculated as the 
current year minus the year of publication + 1.  

For example, Paper f has a ratio of:  

200
(2021 + 1 − 2012)

= 20 

This ratio calculation is repeated for all h-core papers (in this case papers f, q, b, g, 
and u), the ratios are summed, and then the square root is taken of the total sum. The AR-
index of Author A is, therefore, 5.48.  

The +1 to the current year avoids a divide-by-zero error. Table C-2 contains an age 
column and an AR-value column (pre-summing and pre-square root). 

 
Table C-2. Author A’s Data with AR-index Numbers 

Title 
Publication 

Year Age Rank Citation Count AR-value 
Paper f 2012 10 1 200 20 
Paper q 2009 13 2 65 5 
Paper b 2016 6 3 24 4 
Paper g 2004 18 4 12 0.666667 
Paper u 2005 17 5 7 0.411765 
Paper o 2007 15 6 3 0.2 
Paper t 2007 15 7 2 0.133333 
Paper w 2019 3 8 1 0.333333 
Paper k 2020 2 9 1 0.5 
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Title 
Publication 

Year Age Rank Citation Count AR-value 
Paper l 2021 1 10 1 1 
Paper e 2021 1 11 0 0 
Paper v 2005 17 12 0 0 

 
Contemporary h-index 

The contemporary h-index (hc) has a similar calculation to that of the AR-value but 
is calculated like the h-index.  

First, each publication is assigned an Sc value, which is calculated exactly like the 
AR-value [citation/(age+1)] but multiplied by a scaling coefficient. In the original 
publication, the authors used a coefficient of 4 so that papers published during the current 
year are multiplied by 4, papers published 4 years ago have a weight multiplied by one, 
and papers published 6 years ago have a weight multiplied by 4/6. The selection of 4 as the 
coefficient appears arbitrary, so another value may be used instead (e.g., 5 or 10 since 
platforms like Google Scholar focus on publications in the last 5 or 10 years when 
calculating metrics).  

The papers are then re-ranked based on their Sc value. Table C-3 contains the updated 
Sc column. The hc is then calculated the same way as h-index where hc is the largest rank 
magnitude that is less than or equal to Sc. In this case, [rank = Sc]. Therefore, Author A has 
hc value of 4. 

 
Table C-3. Author A’s Data with Contemporary H-index Numbers 

Title 
Publication 

Year Age Rank 
Citation 
Count AR-value 

Sc value 
(coef. 4) 

Paper f 2012 10 1 200 20 80 
Paper q 2009 13 2 65 5 20 
Paper b 2016 6 3 24 4 16 
Paper l 2021 1 4 1 1 4 
Paper g 2004 18 5 12 0.666667 2.666667 
Paper k 2020 2 6 1 0.5 2 
Paper u 2005 17 7 7 0.411765 1.647059 
Paper w 2019 3 8 1 0.333333 1.333333 
Paper o 2007 15 9 3 0.2 0.8 
Paper t 2007 15 10 2 0.133333 0.533333 
Paper e 2021 1 11 0 0 0 
Paper v 2005 17 12 0 0 0 
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hg-index 

The hg-index is a combination of the h-index and the g-index. To calculate the g-
index, first, the ranks of the publications are squared. Then the citations are summed. For 
example, paper b, which has rank = 3 and rank2 = 9, has the sum of the citations from 
papers ranked 1, 2, and 3 (now ranked 1, 4, and 9, respectively).  

 
Table C-4. Author A’s Data with hg-index Numbers 

Title 
Publication 

Year Age Rank Rank2 
Citation 
Count 

Summed 
Citation Count AR-value 

Sc value 
(coef. 4) 

Paper f 2012 10 1 1 200 200 20 80 
Paper q 2009 13 2 4 65 265 5 20 
Paper b 2016 6 3 9 24 289 4 16 
Paper g 2004 18 4 16 12 301 0.7 2.7 
Paper u 2005 17 5 25 7 308 0.4 1.6 
Paper o 2007 15 6 36 3 311 0.2 0.8 
Paper t 2007 15 7 49 2 313 0.1 0.5 
Paper w 2019 3 8 64 1 314 0.3 1.3 
Paper k 2020 2 9 81 1 315 0.5 2 
Paper l 2021 1 10 100 1 316 1 4 
Paper e 2021 1 11 121 0 316 0 0 
Paper v 2005 17 12 144 0 316 0 0 

 
The g-index is therefore the rank value found using the same method as the h-index. 

Because there is no inflection point (since [rank2 > summed citation] is never achieved), 
Author A’s g-index is 12. Note that the g-index is the rank and not the rank2 value. 

The hg-index is then the geometric mean of h and g, so the hg-index of Author A is: 

√5 ∗ 12 = 7.7 

The purpose of the hg-index is to balance the h-index’s lack of credit to highly cited articles 
with the g-index’s overinflated credit to highly cited articles.  
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Appendix D. 
Assumptions and Rationale for 

Elements of the Task 

This outline of assumptions and the rationale for this task follow the definitions used 
in the development of logic models. Assumptions are things that are accepted as true or as 
certain to happen, without proof. A rationale is a set of reasons or a logical basis for a 
course of action or a particular belief. 

The purpose for conducting this exercise was to identify as many of assumptions and 
rationales for the concepts and methods integral to this task. 

Assumptions for Research impact 

• Outstanding scientists have outstanding research impact  

• Outstanding scientists can be identified through their research impact  

• Research impact can be measured in part, through the quality and quantity of 
scientific outputs and outcomes 

Publications are a partial measure of the quantity of scientific outputs 

• Citations are a partial measure of the quality of scientific outcomes 

• Co-author networks are a partial measure of research impact and influence  

Assumptions for the Use of Bibliometric Indicators to Identify Outstanding Scientists 

• Outstanding scientists can be identified through measures of their research 
impact 

• Research impact can be measured using bibliographic indicators of scientific 
outputs and outcomes  

• Bibliometrics can identify outstanding academic scientists 

• Bibliometrics can be used to assign values to scientists that correlate to research 
impact by measuring scientific output  

• There are data available to calculate bibliometrics 

Rationale for Identifying Outstanding Scientists 

• Outstanding STEM scientists are critical to innovation and bolster U.S. 
competitiveness, national security, and the economy 
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• OSTP/the Federal Government wants to retain or attract outstanding STEM 
scientists to the United States 

• Global competition for outstanding STEM scientists is increasing 

• A significant share of the graduating body of PhDs from U.S. institutions are not 
U.S. citizens 

– 2017: 35% of S&E doctoral degrees were awarded to temporary visa 
holders (NSB 2019) 

– 2015: 75% of the temporary visa holders receiving doctoral degrees at a 
U.S. institution intended to stay in the United States and 20% to return to 
their home country (NCSES 2017) 

• Federal grant funding process is cumbersome and time consuming; there are 
insufficient budgets to fund outstanding scientists 

Rationale for the Use of Bibliometric Indicators to Identify Outstanding Scientists 

• Bibliometrics have been historically used to measure published scientific output  

• There is currently no robust and scalable method to identify outstanding 
scientists 

• There is currently no robust and scalable method to predict who may become an 
outstanding scientist 
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Appendix E.  
PAM and Agglomerative Hierarchical Clustering  

Agglomerative hierarchical clustering is a bottom-up method, beginning with each 
author in their own group and subsequently combining pairs of groups based on their 
similarity (as determined by citation and publication information) until all groups, 
including groups with multiple authors, have been paired (see Figure E-1Figure 3 for an 
example). The pairwise combination of groups depends on a link function that determines 
how similarity is computed; as there are multiple link functions, it is first necessary to test 
which link function results in the best-fitting grouping structure. STPI used the 
agglomerative coefficient (AC), which is an aggregate measure of how well all authors fit 
with the groups they were assigned, to identify the appropriate link function.  

 

 
Figure E-1. Hierarchical Clustering Example of Authors a-e Based on  

Citations and Publications 
 

PAM is an iterative algorithm that partitions the sample into several groups by first 
identifying medoids, in this case, authors in the sample that have a minimal dissimilarity 
with their other authors in their partition. Unlike the agglomerative hierarchical cluster, 
PAM requires users to identify the number of clusters prior to estimation, which is reflected 



 

E-2 

by the number of medoids used in the computation of groups—each author in the sample 
is assigned to the group represented by its most adjacent medoid.  

Although neither method inherently recommends an optimal number of groups, 
average silhouette width can be used to compare the fit of several different clustering 
models with different numbers of groups. Average silhouette width provides a measure of 
cohesion of the clusters as compared with the distance between the clusters—a larger value 
for silhouette width suggests that the clusters are compact and distinct. Once the optimal 
number of groups has been identified for both PAM and agglomerative hierarchical 
clustering, the two methods can be compared for goodness of fit using internal measures 
of model fit such as the Dunn index and the within-cluster sum of squares. Both measures 
of fit favor better-fitting models and can be used to compare between PAM and 
agglomerative hierarchical clustering models. 
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Appendix F.  
Final Clustering Tables 

Table F-1. Distribution of Final Genetics Clustering 

 High Impact Medium Impact Low Impact 
Number of Profiles (%) 157 (1.99%) 6571 (83.42%) 1149 (14.59%) 

 
 

Table F-2. Distribution of Final Artificial Intelligence Clustering 

 High Impact Medium Impact Low Impact 
Number of Profiles (%) 15 (0.16%) 973 (10.24%) 8517 (89.61%) 
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Appendix G.  
Comparison of Web of Science, Scopus,  

and Google Scholar  

A. Content 
Both WoS and Scopus are marketed as highly curated publication databases that 

employ expert panels to determine titles to be included in their databases. There is 
particular focus on peer-reviewed or published documents including books and conference 
proceedings. Compared to Scopus, the WoS collection was found to have an overlap of 
17.7 million documents—with Scopus containing 27 million documents and WoS 
containing 22.9 million (Visser et al. 2021). When broken down by discipline, documents 
in the life sciences had the greatest overlap of WoS documents with Scopus documents. 
Roughly less than half of Scopus documents in social sciences & humanities were covered 
by WoS. However, both Scopus and WoS had less than 20% of arts and humanities 
documents from Ulrich’s Periodicals Directory, which contains a comprehensive database 
of periodicals (Mongeon and Paul-Hus 2016). This is indicative of chronic undercoverage 
of social sciences and humanities documents in databases. With regards to language, 90% 
of Scopus documents and 96% of WoS documents are in English, indicating significant 
undercoverage of non-English articles in both databases (Visser et al. 2021).  

Google Scholar, on the other hand, had no active curation method. Instead, Google 
Scholar uses undisclosed web-scraping methods to pull non-peer reviewed and non-
published materials in addition to the traditional journals, books, and conference 
proceedings. This makes Google Scholar’s dataset significantly larger but less curated 
compared to WoS and Scopus. 

B. Author Data 
Both WoS and Scopus automatically create author profiles that are generated from 

publication metadata. Both platforms contain author profile search engines that allow users 
to search for authors by first and last name. Author profiles include a list of the authors’ 
affiliations, their publications, and basic metrics such as the h-index, citation counts, and 
publication numbers. Both databases also allow users to export author-level citation 
histories, although Scopus exports are limited to 15-year time windows. However, STPI 
noted multiple instances of authors’ profiles being combined when they shared identical or 
similar names within the free WoS Platform. There were also instances of individuals’ 
profiles being split into different profiles because of differing metadata such as changes in 
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affiliation. Both WoS and Scopus offer purchasable APIs and raw data that include 
authenticated author profiles, which could contain more accurate name disambiguation.  

Unlike WoS and Scopus, Google Scholar requires authors to create their profiles 
before they are made publicly available. Therefore, analyses that are dependent upon 
Google Scholar profile data have inherent selection bias; those with Google Scholar 
profiles may be more proactive in disseminating their research than the overall population 
of researchers. Moreover, the authors self-select up to five discipline fields that are free-
form rather than limited to a pre-selected list. Because of this, authors can fail to select 
multiple fields if their research is interdisciplinary, can have varying levels of specificity 
when describing their discipline, or could be forced to exclude a discipline due to the limit 
of five areas.  

C. Accessibility 
It is much easier to export publication and author metadata from WoS and Scopus 

compared to Google Scholar. WoS and Scopus allow for robust exportation of search 
results or authors’ publication histories. On the other hand, Google Scholar does not 
contain a built-in function to export either publication-level or author-level metadata. Data 
from Google Scholar has been cited as notoriously difficult to extract (Visser et al. 2021; 
Else 2018). As in the pilot study above, STPI had to apply a custom R web crawler to 
extract data for the study. Some documentation on Google Scholar content and curation 
processes is available but is relatively sparse compared to WoS and Scopus.17 STPI 
recommends using WoS, Scopus, or other curated citation databases in any future analyses 
over Google Scholar because of their ease of use, accessibility, transparency, and validated 
data. 
 

                                                 
17  Google’s inclusion guidelines: https://scholar.google.com/intl/en/scholar/inclusion.html 
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