

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

 Factors Limiting the Speed of Software
Acquisition

 Kevin Garrison, Project Leader

October 2019

Approved for public
release; distribution is

unlimited.

IDA Non-Standard
NS D-10907

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

David M. Tate
John W. Bailey

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA) under
contract HQ0034-14-D-0001, Task AA-5-4498, “DIB SWAP,” for USD(Acquisition
& Sustainment). The views, opinions, and findings should not be construed as
representing the official position of either the Department of Defense or the
sponsoring organization.

Acknowledgments
Priscilla E. Guthrie

For more information:
Kevin Garrison, Project Leader
kgarrison@ida.org, 703-933-6545
Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice
© 2019 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:mmyers@ida.org

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

IDA Non-Standard NS D-10907

Factors Limiting the Speed of Software
Acquisition

Kevin Garrison, Project Leader

David M. Tate
John W. Bailey

-i-

Executive Summary

Improving the agility of defense acquisition is a high priority goal for both the Office of the Secretary of
Defense and the Military Departments. Improving the speed at which the Department of Defense (DoD)
can develop, deploy, and update software-enabled capabilities would enable more general acquisition
agility, given modern defense systems’ critical dependence on software.

Given the need to speed up software acquisition and sustainment, it is important to understand the
fundamental factors that limit how quickly software can be developed, deployed, and upgraded. These
factors fall into seven principal categories; in rough order of importance:

1. Required functionality – what you need the software to do (and not do).
2. Architecture – the organizing structure of the software and its operating environment.
3. Technology maturity – to what extent the intended design uses novel solutions.
4. Resources – the people, skills, funds, data, and infrastructure needed to do the work.
5. Testing strategy – acquiring the information to fix defects early in development.
6. Contract structure – the alignment of contractor incentives with DoD satisfaction.
7. Change management – the processes for trading-off performance, schedule, cost, and

sustainability.

This short paper considers each category in this taxonomy in turn and examines how each affects the
pace of development. Ultimately, we conclude that it will only be possible to field new software-enabled
capabilities quickly on an ongoing basis if earlier programs have invested the time and effort to create
an environment that supports rapid capability insertion. Ideally, this environment would include
modular (and preferably open) software architecture, adequate data rights, platforms with excess space
and power available, an industrial base that can provide enough people with the right skills, curated
input and training data, developmental test infrastructure (including modeling and simulation resources
where appropriate), and localized change management authority within the developer/stakeholder
team.

Putting these enabling environmental features into place will often require accepting delay, up-front
expense, and reduced capability in the initial increments of those platforms. Unless Service leadership
accept this reality and empower new system developers to preserve these features even when faced
with cost overruns, schedule delays, and demands for greater capability up front, they will not happen.
Absent this kind of empowerment, software capability insertion will continue to be as slow, expensive,
and unreliable as it is today.

-1-

Factors Limiting the Speed of Software Acquisition

Improving the agility of defense acquisition is a high priority goal for both the Office of the Secretary of
Defense (OSD) and the Military Departments. Improving the speed at which the Department of Defense
(DoD) can develop, deploy, and update software-enabled capabilities would enable more general
acquisition agility, given modern defense systems’ critical dependence on software. This point was
emphasized in both a 2018 Defense Science Board report1 and in the 2019 Defense Innovation Board
(DIB) Software Acquisition and Practices (SWAP) study.2

There is now widespread consensus that software development is the pacing activity not only in
traditional information systems acquisition, but in all major defense system acquisition. As early as 20
years ago, the Naval Postgraduate School was already teaching students that “software is now
acknowledged as sitting on the critical path of most major weapon systems and is widely regarded as
the highest-risk element in an acquisition.”3 Other recent research has confirmed this insight.4 If we
want our acquisition enterprise to deliver capabilities more quickly and upgrade them more frequently,
we need to speed up defense software development.

Given this universal interest in speeding up software acquisition and sustainment, it is important to
understand the fundamental factors that limit how quickly software can be developed, deployed, and
upgraded. These factors fall into seven principal categories; in rough order of importance:

1. Required functionality – what you need the software to do (and not do).
2. Architecture – the organizing structure of the software and its operating environment.
3. Technology maturity – to what extent the intended design uses novel solutions.
4. Resources – the people, skills, funds, data, and infrastructure needed to do the work.
5. Testing strategy – acquiring the information to fix defects early in development.
6. Contract structure – the alignment of contractor incentives with DoD satisfaction.
7. Change management – the processes for trading-off performance, schedule, cost, and

sustainability.

This short paper considers each category in this taxonomy in turn and examines how each affects the
pace of development.

1 Defense Science Board, Design and Acquisition of Software for Defense Systems, February 2018.
2 Defense Innovation Board, Software is Never Done: Refactoring the Acquisition Code for Competitive Advantage,
May 9, 2019.
3 Dr. Mark E. Nissen, JSOW Alpha Contracting Case Study, 1997. Retrieved from https://fas.org/man/dod-
101/sys/smart/docs/jsowcase.htm on July 23, 2019.
4 David M. Tate, Acquisition Cycle Time: Defining the Problem. Institute for Defense Analyses document NS D-5762,
October 3, 2016. https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-
defining-the-problem-revised

https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-revised
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-cycle-time-defining-the-problem-revised

-2-

Required Functionality
The time to develop and field a software-enabled capability is primarily determined by what the
software needs to do and in what context – the content of the software. This seems obvious and has
been common knowledge with regard to the cost of systems for decades, but it is still common for
schedules to be imposed on software development efforts independent of their content.

Although content is often thought of in terms of requirements, it is important to note that, historically,
not all mandatory performance attributes have been managed in the same way. In particular, “negative
requirements” that describe outcomes the system should avoid are often handled outside the primary
requirements management process once development begins. They are thus at risk of being neglected
as the design evolves or of being waived or relaxed when programs face time pressure. Negative
requirements include cybersecurity specifications, safety standards, RAM5 thresholds, interoperability
requirements, and other aspects of system suitability.

The minimum time to deploy the first version of a new software-enabled system is driven by the content
of the minimum viable product (MVP), which the DIB defines as “the first point at which the code can
start doing useful work and also at which feedback can be gathered [from users] that supports
refinement of features.”6 What counts as “useful work” is a stakeholder decision that involves tradeoffs
between lead time and capability – we will discuss this further under the heading “Change
Management.” Note that a system that is not secure or cannot work with real data cannot be the MVP –
it is not yet useful for any actual operational mission. Minimum standards for the negative requirements
must be included in the definition of the MVP.

For any software project, there is a staffing profile that is the most efficient compromise between
maximizing work rate and incurring unnecessary rework. This profile allows the team to take maximum
advantage of parallel efforts on separable tasks while avoiding concurrent effort on coupled tasks.
Trying to go faster than this ideal schedule often leads to significant redesign, rework, and delay (if not
cancellation). Going slower than the ideal schedule (e.g., due to resource constraints) results in
unnecessary delay and inefficient use of labor resources.

The length of the ideal schedule depends on how tightly coupled the software subsystems (modules)
are. Software designs that do not explicitly enforce independence of subtasks can lead to systems that
are not modular enough to support full parallelization of development efforts, resulting in longer
development schedules for future increments. To implement a fixed set of content, agile/lean methods
(where feasible) are (at best) modestly faster than traditional waterfall development. The time savings
realized by agile development come mostly from not implementing functions that turn out not to be
critical – the savings are due to work avoided, not higher productivity.

5 Reliability/availability/maintainability.
6 Op. cit., p. 7. Note that useful user input can generally be elicited before completion of the MVP. Some authors
use the term MVP to refer to the point where this becomes possible (and productive).

-3-

Architecture
As noted above, software and hardware architectures for platforms and systems strongly influence how
rapidly and effectively new capabilities can be added. As a consequence, the selection of an architecture
for a new defense system has important consequences throughout the acquisition process. For major
defense systems, achieving an MVP that is structured to support decades of ongoing agile
improvements can require years of initial architecture, design, and development effort.

Every software-enabled system requires some architecture and design prior to the beginning of coding.
The amount of effort needed for an architecture depends on a number of factors:

• How important is it for the system to be upgradeable in the future?
• How fast/cheap/frequent/extensive do those upgrades need to be?
• What is the intended lifespan of the platform or system and its upgrades?
• How portable/reusable does the software need to be?
• What other systems will the new system need to interoperate with?
• What are the cybersecurity needs of the system?
• How much is the cyber threat environment expected to change over time?
• How close to the cutting edge of current technical capabilities is the system intended to operate?

The answers to these questions help determine the appropriate software architecture for the new
system7, which in turn determines the required cost and schedule to implement the MVP. Systems that
will be easy and cheap to modify over a long life cycle require more architecture effort (and thus more
content in the MVP and a longer initial development increment). In particular, the more you want to use
agile/lean/DevSecOps methods for ongoing parallel system improvement of large systems, or to
compete upgrades among multiple vendors, the more you need a modular architecture.

The architecture is part of the MVP content. An MVP with an architecture that does not support long-
term operational goals is really just a prototype. It is generally not possible to convert a prototype into a
full-up operational system through successive upgrades; the result is unsuitable and unsustainable. In
particular, systems with significant cybersecurity concerns must address those requirements in the
architecture and design before coding begins. Adding security later doesn’t work. For some mission
needs, a quick-and-dirty architecture that supports current (but not future) requirements might be
appropriate, providing some needed capability quickly at the expense of future sustainment and
upgrades. This choice should be a conscious decision at design time, understood by stakeholders.

Similarly, when adding new capabilities to a legacy system whose architecture was not originally
designed to support ongoing upgrades, stakeholders need to decide whether it is more important to
implement specific new capabilities quickly or to make the system more rapidly upgradeable in the
future. In some cases, it may be preferable to accept cost and delay today to re-architect and re-write
the legacy code to enable a longer and more agile future upgrade path.

7 Hardware architecture is also important, particularly for new major platforms that are intended to remain in
service for decades, but hardware architecture issues are beyond the scope of this discussion.

-4-

Technology Maturity
Whenever system designs involve technologies that are less than fully mature, there will be an element
of experimentation and exploration in the software and hardware design processes. This can lead to a
redesign that changes the nature of the software required or one that shifts functions originally
envisioned as being performed by hardware into software. This adds both new development and
regression testing burdens to the software project and lies on the critical path for the program. As a
result, immature hardware technologies (i.e., technologies with a current Technology Readiness Level
(TRL) less than 6) 8 can contribute to software delays.

At the same time, critical software technologies tend to be overlooked in Independent Technology
Readiness Assessments. Past examples where this has led to major program delays include sensor fusion
algorithms, ad hoc network management, and automated traction control for off-road vehicles.9 DoD
has recently stated in multiple venues that machine learning, artificial intelligence, and autonomous
systems will be key enablers of future US military capabilities. These are immature technologies that
impose novel burdens throughout the acquisition life cycle, including learning how to specify
requirements that are testable, how to validate and maintain training data sets for machine learning,
and how to assess the effectiveness and suitability of machine cognition and human-machine teaming
concepts.10

It is important to remember that, for TRLs greater than 4, technology maturity is always measured
relative to a specific set of requirements and intended operational environments. 11 A technology can be
mature (i.e., TRL 6 or higher) for certain operational uses or environments, yet immature for other
operational uses or environments, as demonstrated by the traction control example. This is just as true
of software technologies as it is for lasers, engines, or sensors. Failure to recognize that a given software
technology is critical to success, or that it has not yet been successfully demonstrated in the intended
operational role and environment, can lead to costly delays in development down the road.

8 10 U.S.C. § 2366b(a)(3)(D).
9 Traction control algorithms used in commercial vehicles assume that the vehicle is driving on a hard surface. They
do not perform well in off-road situations where the loss of traction is due to surface failure (e.g., mud or sand)
rather than low friction with the road.
10 David M. Tate and David A. Sparrow, Acquisition Challenges of Autonomous Systems, Institute for Defense
Analyses document NS D-8982, April 2, 2018. https://www.ida.org/research-and-
publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper
11 TRL 4 requires “Component and/or breadboard validation in a laboratory environment,” which is independent of
requirements or intended operational environments. TRL 5 requires “Component and/or breadboard validation in
a relevant environment,” which explicitly compares the environments where the technology has already been
demonstrated against some intended environment. For a complete list of TRL definitions, see DoD Deskbook
5000.2-R, Appendix 6, Technology Readiness Levels and their Definitions.

https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper
https://www.ida.org/research-and-publications/publications/all/a/ac/acquisition-challenges-of-autonomous-systems-conference-paper

-5-

Resources
Software development is about skilled labor, appropriate infrastructure, and (increasingly) adequate
data. As a result, the most important potential resource issues that software projects can face are a
shortage of appropriately skilled personnel, insufficient funding to purchase their labor, or insufficient
access to platforms or data sets needed to implement the desired capabilities. These challenges are
time-phased – you need to simultaneously have enough of each of these things at the right times to
support the ideal schedule of the project. Valid input data is often needed early in development. For
machine learning, obtaining a sufficient quantity of accurately labeled training data can be a bottleneck
in capability development.

An adequate supply of appropriately skilled developers is not a given. The supply of cleared software
professionals is not keeping up with the demand for national security software.12 As a result, programs
often have trouble hiring and keeping the quality and quantity of software talent they had planned for.
Staffing shortfalls cause delays, and project staff turnover and loss of institutional knowledge causes
additional delays. Mergers and acquisitions, common in defense industries, sometimes exacerbate this
problem. Not having enough people and not having the best people as part of an experienced team can
both cause program delays.

Similarly, funding instability or mismatches between planned spending profiles and actual workloads can
lead to inefficient use of labor resources and subsequent schedule delays. This is particularly true for
projects with significant experimentation and discovery during the development of the MVP, as the
duration and cost of the experimentation cannot be predicted with accuracy. Such projects should
ideally be identified in advance and provided with significant levels of contingency funding, but this is
politically difficult in many cases.

For many software-enabled defense systems, the direct costs of software development are a relatively
small fraction of total program costs. However, as noted above, software delays tend to be on the
critical path, resulting in delays that add cost at a roughly constant burn rate. For major programs, this
represents not merely a delay in achieving the desired capabilities, but also a large opportunity cost,
wasting funds that could have been used elsewhere.

It is important to note that the majority of software development effort (and cost) – often as much as
80% of total effort – occurs after the system has initially been fielded. Software deployment generates
an ongoing future workload that lasts as long as the system is in use. The resources needed to perform
future upgrades and integration are generally the same resources needed for initial development. This
means that future enhancements compete with new systems for people, as well as for dollars.

In addition to people, many advanced software capabilities also require specialized infrastructure and
data. These can include supercomputing resources, labeled training data sets, modeling and simulation
support, and test ranges with specialized instrumentation. Shortfalls in any of these areas can also lead
to significant fielding delays.

12 David M. Tate, Software Productivity Trends and Issues, IDA document NS D-8367, March 1, 2017.
https://www.ida.org/research-and-publications/publications/all/s/so/software-productivity-trends-and-issues-
conference-paper , retrieved July 23, 2019.

https://www.ida.org/research-and-publications/publications/all/s/so/software-productivity-trends-and-issues-conference-paper
https://www.ida.org/research-and-publications/publications/all/s/so/software-productivity-trends-and-issues-conference-paper

-6-

Testing Strategy
Although it is theoretically possible to do “too much testing” in a software-intensive development
program, this is nearly unknown in practice. Finding and fixing defects is the most expensive identifiable
software cost driver, and high defect levels are the primary reason for software schedule and cost
overruns.13 Software development success is strongly correlated with a commitment to continuous,
rigorous testing from day one, identifying defects early when they are relatively easy to isolate and
correct.

While it is hard to do too much testing, it is easy to do testing wrong. In order to realize the benefits of
continuous testing and early defect elimination, the test strategy for the program must ensure that the
right information is collected at the right times and fed back into the development process efficiently.
Unaddressed defects have cascading effects – they interfere with development of additional capabilities,
they mask other defects, and they complicate the required fixes. Past research has found that the
average cost to remedy a defect grows by an order of magnitude between the design phase and the
implementation phase and grows by another order of magnitude between implementation and post-
deployment maintenance.14 Bear in mind here that “defects” can include flaws in requirements,
documentation, adherence to architectural specifications and standards, or other issues that are not
necessarily “bugs” in the code.

The most common (and costly) testing error by far is to not do it early enough. For example, the
Warfighter Information Network – Tactical (WIN-T) underwent an initial operational test and evaluation
(IOT&E) in May 2012, with planned full-rate production (FRP) scheduled for September 2012. IOT&E
revealed numerous problems that should have been caught much earlier in testing, including poor
network stability, poor performance, and poor reliability. FRP was deferred until after a follow-on
operational test and evaluation (FOT&E) could be conducted. That FOT&E revealed continuing problems,
leading to another schedule slip. The system finally entered FRP in June 2015.

When testing is done right, test activities make the project cheaper and faster than it otherwise would
have been. Delays “due to testing” are almost always actually delays due to not testing – that is, extra
time required to fix defects that were discovered late in development (when testing is expensive) or
after fielding (when testing is very expensive) because of insufficient early testing. Finding ways to
incentivize contractors (and program offices) to perform adequate testing is challenging.

For new systems or for modification of legacy systems that are intended to transition to agile
development for future increments, it is important to develop the associated agile test strategies and
automated testing infrastructure during MVP development. This should involve all stakeholders and be
done in parallel with (and be informed by) MVP design and implementation.

13 Capers Jones and Oliver Bonsignour, The Economics of Software Quality, Addison-Wesley 2012, p. 280.
14 Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley 2003, p. 178.

-7-

Contract Structure
Typically, a small percentage of the overall profit on a major defense system comes from software
development. At the same time, the future upgrade and maintenance contracts for a software-intensive
system can provide an open-ended source of future revenue. This is analogous to losing money on each
laser printer sold, but making big profits on the toner cartridges. This gives contractors a strong
incentive to erect barriers to sustainment competition that all too often also function as barriers to
efficient upgrades and modernization.

DoD would prefer that all software be modular, reusable, and open to enhancement by third-party
vendors. It is very difficult to write a contract that incentivizes (or requires) the prime contractor to
make that happen. Modular design makes it easy for competitors to break the prime’s monopoly on
sustainment; reusable code makes it possible for competitors to benefit from the prime’s work and
potentially to gain access to their proprietary technologies. For these reasons, contractors prefer to
restrict government data rights as much as they can. As Van Atta (2017) notes, “There is a vast legacy of
defense systems, amounting to billions of dollars in sustainment costs, for which the necessary IP data
and rights for organic depot or competitive sustainment were not acquired.”15

The Services are sometimes complicit here – for example, by waiving statutory requirements for
modular open systems architecture (MOSA) on the grounds that requiring MOSA would delay initial
fielding and cost too much. Even if this were true, it is a false economy – the delays and costs of fielding
subsequent upgraded capabilities often outweigh the original savings. As an example, the AWACS Block
40/45 upgrade program, intended to migrate the hardware and software architectures and applications
on the E-3 AWACS aircraft from legacy proprietary systems to new open architecture hardware and
software, has now been struggling for nearly 20 years to match the existing operational capabilities of
the legacy Block 30/35 aircraft.

Admittedly, it is hard to write requirements for modularity, openness, and data rights that are verifiable
at the time of system delivery and that actually make it likely that future upgrades will be easier and
cheaper. This is similar to the problem of writing software quality requirements that are enforceable.
Although quality requirements can sometimes be enforced through user participation in agile
development teams, during development it is hard for users and other stakeholders to tell whether the
choices being made will actually facilitate future upgrades as desired. Furthermore, current law
prohibits making access to intellectual property rights a condition of contract award (although access to
data rights can be an evaluation factor).

DoD often struggles with aligning contractor incentives with Service interests, so that the contractor
profits more only when the Service gets more of what it really needs (including agility). There is no free
lunch – firms will require more compensation up front for initial system development if they cannot
count on monopoly profits during sustainment. If the Services are serious about wanting to speed up
deployment of future capabilities, they must accept this and plan for it by developing contracting
strategies that will allow them to realize the benefits of open system architectures.

15 Richard Van Atta, Royce Kneece, Michael Lippitz, and Christina Patterson, Department of Defense Access to
Intellectual Property for Weapon Systems Sustainment, Institute for Defense Analyses paper P-8266, May 2017.

-8-

Change Management
There is a widening disconnect in the defense acquisition world between the people who control system
requirements and the people who actually develop and field systems. This is true of all requirements,
and in particular of software requirements (and requirements that end up being implemented in
software). In theory, the process looks something like this:

• Characterize the future fight and define mission needs.
• Identify capability gaps and identify alternative ways to mitigate them.
• Analyze the alternatives and select a preferred alternative.
• Set threshold requirements.
• Develop and field a system that meets those requirements.

In practice, there are problems with how this is realized. Translating future warfighting concepts into
specific mission needs is hard, and translating mission needs into threshold performance requirements
for individual systems is even harder. Thresholds are often set at aspirational levels, rather than at
genuine threshold levels below which there would be no military utility. Changes during development
concerning what to implement in hardware versus what to implement in software can lead to changes in
system architecture that break other parts of the development or hinder future maintainability.
Seemingly minor changes in the intended use of machine learning subsystems can require retraining
from scratch or even development of entirely new training data sets.

As a result, some programs are unexecutable. Faced with unexecutable programs, program managers
must make trades. The realities of annual funding make it easy to accept future costs and operational
shortfalls (e.g., due to poor reliability or architecture violations) in order to save money and minimize
delays in initial deployment. Similarly, deferring important testing is a common way to save time and
money in the short run.

Worse yet, program managers generally do not have the authority to relax key requirements. They must
appeal to a variety of senior stakeholders and achieve a consensus that relaxing the requirement is the
best way forward for the program. This need for consensus also adds friction and delay to the process.
Furthermore, once a program has funding authority, the Services seldom step back and reconsider
whether the system being developed is still the preferred alternative, given what they now know about
costs and capabilities.

Agile software development methods depend on empowering a coalition of developers and users to
decide what functionality is most useful on an iterative and ongoing basis. As noted above, the Services
have historically been unwilling to devolve that level of decision authority to development teams or to
ensure embedded stakeholder support (including actual users) in program offices. This is especially true
for systems that are not “pure” software systems – it is much easier to devolve authority for user
interface design and database transactions than it is to devolve authority to change the operational
specifications of weapon systems. Nevertheless, to realize the benefits of agile development, programs
will need to have significantly more authority to prioritize and trade requirements, to enforce
architectures, and to deny external change requests than is typically delegated to them.

-9-

Summary
Software development takes time. As with any other kind of project, how much time it takes depends on
the content of the project, how it is managed, and the preexisting conditions:

• How much software is needed?
• How complicated or novel is the software to be developed?
• What is the software expected to do (today and tomorrow)?
• What resources are available for the work?
• What are the contractor’s incentives?
• What change management authorities does the development team have?
• Is this an initial development, or an upgrade to an existing system?
• If it’s an initial development,

o How easily upgraded does it need to be?
o What is the minimum viable product?
o Have testable requirements been clearly specified?
o Does the test strategy support early discovery and correction of defects?

• If it’s an upgrade,
o How well does the legacy architecture support insertion of new capability?
o What data rights does the government own?
o What institutional knowledge from the original development still exists?
o Are agile development processes and tools in place?

For programs to field new software-enabled capabilities quickly, someone must have spent the time and
money in the past to create an environment that supports rapid capability insertion. Ideally, this
environment would include modular (and preferably open) software architecture, adequate data rights,
platforms with excess space and power available, an industrial base that can provide enough people
with the right skills, curated input and training data, developmental test infrastructure (including
modeling and simulation resources where appropriate), and localized change management authority
within the developer/stakeholder team.

Putting these enabling environmental features into place will often require accepting delay, up-front
expense, and reduced capability in the initial increments of those platforms. Unless Service leadership
accepts this reality and empowers new system developers to preserve these features even when faced
with cost overruns, schedule delays, and demands for greater capability up front, they will not be
implemented. Absent this kind of empowerment, software capability insertion will continue to be as
slow, expensive, and unreliable as it is today.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-10-19 Non-Standard
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Factors Limiting the Speed of Software Acquisition HQ0034-14-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David M. Tate
John W. Bailey

AA-5-4498
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

NS D-10907 Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

USD(A&S) Jeffrey L. Boleng, Special Assistant for SW Acquisition
USD(Acquisition & Sustainment)
3010 Defense Pentagon, Washington, DC 20301-3010

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: Kevin Garrison
14. ABSTRACT

The Department of Defense has concluded that developing, deploying, and updating software-enabled capabilities more
quickly will be necessary to implement the National Defense Strategy and maintain US military superiority. This paper
identifies and explores the fundamental factors that limit the speed at which software-enabled capabilities can be
implemented, and offers suggestions for how to address the bottlenecks in the process.
15. SUBJECT TERMS

Software, agile development, architecture, functional content, data rights, change management, minimal viable product

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

10

19a. NAME OF RESPONSIBLE PERSON
Jeffrey L. Boleng, Special Assistant
for SW Acquisition

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 703-614-5149 Unclassified Unclassified Unclassified

	Executive Summary
	Factors Limiting the Speed of Software Acquisition
	Required Functionality
	Architecture
	Technology Maturity
	Resources
	Testing Strategy
	Contract Structure
	Change Management
	Summary

	Blank Page
	Blank Page
	NS D-10907 - SF 298.pdf
	Form Approved OMB No. 0704-0188

	Blank Page
	Blank Page

