
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Developing in the Commercial Quantum
Cloud

Dale Visser, Project Leader
Arun S. Maiya

June 2022
Approved for public release;

distribution is unlimited.

IDA Document NS D-33113

INSTITUTE FOR DEFENSE ANALYSES
730 East Glebe Road

Alexandria, Virginia 22305

The Institute for Defense Analyses is a nonprofit corporation that operates three
Federally Funded Research and Development Centers. Its mission is to answer
the most challenging U.S. security and science policy questions with objective
analysis, leveraging extraordinary scientific, technical, and analytic expertise.

About This Publication

This work was conducted by the IDA Systems and Analyses Center under contract
HQ0034-19-D-0001, Project C5211, “Quantum Software Development,” for
the IDA. The views, opinions, and findings should not be construed as
representing the official position of either the Department of Defense or the
sponsoring organization.

Acknowledgements

Steven P. Wartik, David T. Chappell

For More Information

Dale Visser, Project Leader
dvisser@ida.org,

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice

© 2022 Institute for Defense Analyses
730 East Glebe Road, Alexandria, Virginia 22305 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (Feb. 2014).

mailto:flast@ida.org
mailto:flast@ida.org

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document NS D-33113

Developing in the Commercial Quantum Cloud

Dale Visser, Project Leader

Arun S. Maiya

i

Executive Summary

Quantum computing via cloud services is a fairly recent development. The major
quantum cloud computing service providers (QCSPs) available in the United States are
IBM Quantum, D-Wave Leap, Azure Quantum, Amazon Braket, and Google Quantum
Computing Service. The quantum circuit model of computation, which currently applies to
all the above services except D-Wave, relies on the presence of qubits, which are
represented by a circuit line that interacts with boxes representing unitary gates. The ability
of a set of qubits to represent all possible combinations of zeros and ones and the
phenomenon of quantum entanglement within a multi-qubit state both contribute to the
power of quantum computing to more efficiently compute many classes of problems. In
many practical cases, there is a need to combine classical computing resources with the
quantum processor in hybrid algorithmic workflows.

In this report, we demonstrate each QCSP in one or two configurations and describe
how to set up a development environment for each. A critical piece of this is learning what
quantum simulators are available for testing your code with smaller problems on classical
hardware. In the case of D-Wave, the analog simulation resource is called a sampling
emulator.

For the circuit model-based services, we present a quantum random number generator
in code for each environment along with sample output. We selected this example to
minimize the amount of quantum mechanical understanding needed by the reader while
still demonstrating a truly quantum result produced by a hybrid algorithm.

The computing model for D-Wave is called quantum annealing, and it is able to set
up larger numbers of coupled qubits, which are typically mapped to some optimization
problem, and let the system “relax” into low energy states representing likely solutions.
Typically, multiple runs are made, and the ground state properties are the results sampled
from each run. In this paper, we use examples from Arun Maiya’s Quixotic framework to
quickly and easily set up entire classes of optimization problems and submit them to D-
Wave for a result.

iii

Contents

1. Introduction ...1
A. Scope ...1
B. Setting Up a Development Environment ...1
C. A Brief History of the Quantum Cloud ...2
D. General Structure of Quantum Code ...3

1. Circuit Model of Computation, and Reversibility ...3
2. Quantum Circuit Model of Computation ..4
3. Classical Programs Are Still Needed ..6

2. Quantum Cloud Providers Overview ..9
A. Overview ...9
B. Azure Quantum ...10
C. IBM Quantum ..13

1. Description ..13
2. Installation ...14

D. Google Quantum Computing Service ...15
E. Amazon Braket ..16
F. D-Wave ...18

1. Leap ...18
2. Quixotic Framework ..19

Appendix A. Azure Code ...21
Appendix B. IBM Qiskit Jupyter Notebook ..23
Appendix C. Braket Code ..25
Appendix D. Google Cirq Code ...27
Appendix E. Quixotic Jupyter Notebook ...29
References ..31

1

1. Introduction

A. Scope
This report is meant to explain and explore what can currently be accomplished

through the use of cloud providers for quantum computing. It provides a researcher with
basic familiarity of the two commercially available quantum computing architectures, an
understanding of the problems that may be solved with each, and instructions on how to
get started with cloud offerings from Azure, IBM, Amazon, and D-Wave. We have
assumed some familiarity with the basic concepts of quantum computing. An Introduction
to Quantum Computing (Kaye, Laflamme, and Mosco 2007) is a good introductory
textbook and is available electronically. Another good resource for software development
practitioners is Quantum Computing: Program Next-Gen Computers for Hard, Real-World
Applications (Mehta 2020), which takes the approach of initially hiding the usual
mathematic formalism behind a simplified abstract graphical “Qubelet Model,” in which
qubits are represented as pictures called qubelets.

This report does not attempt to discuss quantum hardware or the future trajectory of
quantum computing in any detail. That said, it is often said that we are in the era of Noisy
Intermediate-Scale Quantum (NISQ) computers. Bharti et al. (2022) defines NISQ
computers as being “composed of hundreds of noisy qubits, i.e., qubits that are not error
corrected, and therefore perform imperfect operations within a limited coherence time.”
Bharti et al. is a literature review of what can be done with NISQ machines and of the
future directions of quantum algorithms.

B. Setting Up a Development Environment
Although this report does show how to install and use the various quantum computing

tools and environments, it was necessary to limit efforts to one or two environments per
quantum cloud provider. The URLs given in the footnotes will lead to documentation that
shows a variety of other valid alternative options.

We relied on the following personal preferences: (1) using a code editor like Visual
Studio Code,1 (2) using the popular high-level interpreted language, Python,2 (3) working

1 https://code.visualstudio.com/
2 https://www.python.org/, “popular” according to the TIOBE index (https://www.tiobe.com/tiobe-index/)

in February 2022

https://code.visualstudio.com/
https://www.python.org/
https://www.tiobe.com/tiobe-index/

2

within a Linux environment when possible, and (4) leveraging containerization to define
the environments. Containerization can refer to Open Container Initiative (OCI)
containers, as provided by popular software like Docker or Podman.3,4 We also recommend
leveraging the Python virtual environment (venv) mechanism5 when installing Python
packages.

C. A Brief History of the Quantum Cloud
This paper does not provide an exhaustive list of quantum cloud service providers

(QCSPs) that exist worldwide, but instead focuses on a few of the largest players based
primarily in North America. Many companies are producing quantum computers and
making them available to these QCSPs. This paper does not attempt to list these companies,
but anyone exploring these cloud services will quickly discover their existence in the QCSP
documentation of quantum compute options. For example, IonQ6 and Rigetti7 provide
quantum compute resources to Amazon Web Services (AWS) Braket, Azure Quantum, and
Google Quantum Computing Service.8 Indeed, Google’s initial QCSP offering had IonQ
as its sole compute provider.

The timeline in Table 1 considers only the cloud services aspect of the companies’
quantum computing efforts. D-Wave, for instance, has the most venerable quantum effort
of the QCSPs, having been founded in 1999 to develop quantum hardware. D-Wave was
also the first company to announce commercially available quantum computing hardware
in May 2011 (Johnson et al. 2011). However, IBM began providing quantum cloud services
over two years before D-Wave.

Table 1. A Timeline of Quantum Cloud Service Provider Launches

Provider Name Public Launch Date

IBM Quantum (as IBM Quantum Experience) May 2016

D-Wave Leap (v1) October 4, 2018

Azure Quantum (Private Preview) November 4, 2019

3 https://www.docker.com/
4 https://podman.io/
5 https://docs.python.org/3/library/venv.html
6 https://ionq.com/
7 https://www.rigetti.com/
8 As can be seen at https://aws.amazon.com/braket/, https://docs.microsoft.com/en-

us/azure/quantum/overview-azure-quantum, https://quantumai.google/cirq/devices, and
https://quantumai.google/cirq/rigetti/access

https://www.docker.com/
https://podman.io/
https://docs.python.org/3/library/venv.html
https://aws.amazon.com/braket/
https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum
https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum
https://quantumai.google/cirq/devices

3

D-Wave Leap (v2) February 26, 2020

Azure Quantum (Limited Preview) May 19, 2020

AWS Braket August 13, 2020

Azure Quantum (Public Preview) February 1, 2021

IBM Quantum (redesigned and renamed) March 2021

Google Quantum Computing Service June 17, 2021

D. General Structure of Quantum Code

1. Circuit Model of Computation, and Reversibility
The opening chapter of Kaye, Laflamme, and Mosco (2007) introduces the circuit

model of computation. This model (depicted in Figure 1) describes a form of Turing
machine that takes its inputs on a finite set of n wires, each representing one classical bit
(i.e., a value of 0 or 1). Algorithms are implemented by gates that take some number of
wires, k, and generate outputs on the same number of wires, k. These gates are defined as
reversible, which means that it must be possible to place a value on the output wires, run
the gate in reverse, and reproduce the original input on the input wires.

4

Note. Every gate has an equal number of input and output wires. This is necessary for the gates to be

reversible. The inputs and outputs are classical bits (i.e., 0 or 1). Adapted from Kaye, Laflamme, and
Mosco (2007).

Figure 1. Example of a Classical Circuit Model

The final output state of interest is represented by the bits measured from some set of
output wires. The authors show it is always possible to map general non-reversible circuits
to a reversible version that uses only reversible gates. To accomplish this, results of interest,
whether intermediate or final, are copied to “spare” output wires that have no effect when
running the circuit in reverse to see the inputs.

2. Quantum Circuit Model of Computation

Note. The triangles on the right represent measurement-basis measurement of the qubits in �𝜓𝜓𝑓𝑓�. Note that

this circuit is only reversible back to |𝜓𝜓𝑖𝑖⟩ = |0000⟩9 if one omits these final measurements (Kaye,
Laflamme, and Mosco 2007).

Figure 2. A Quantum Circuit Corresponding to the Classical Circuit in Figure 1

This same reversible circuit model is often popular for defining quantum algorithms,
where it is known as the quantum circuit model of computation, an example of which is
shown in Figure 2. Each input bit of the prior circuit model is replaced by a qubit. A qubit
can be represented in Dirac notation as |𝜑𝜑⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩, showing its most general form
as a superposition of the measurement-basis eigenstates. The coefficients, α and β, are

9 The shorthand notation for four qubits, |𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⟩, is equivalent to writing |𝑎𝑎⟩|𝑏𝑏⟩|𝑐𝑐⟩|𝑑𝑑⟩.

5

called amplitudes. These amplitudes are complex numbers. Complex amplitudes are
necessary in quantum mechanics to model wave mechanical interference effects.
Reversible gates are replaced by unitary gates, which are the quantum equivalent. The gates
alter the states of the qubits (possibly entangling qubit states together) such that a
measurement of one qubit affects the subsequent measurement result of another.10 Results
are not simply the values of the output wires, as in the classical version previously
described. Instead, one must make a measurement that will result in 0 or 1, with the
probability of each depending on the qubit state. The asterisk operator in the following
equation indicates the application of the complex conjugate:

(𝑥𝑥 + 𝑖𝑖𝑖𝑖)∗ ≡ 𝑥𝑥 − 𝑖𝑖𝑖𝑖.

For|𝜑𝜑⟩ as defined earlier,

𝛼𝛼∗𝛼𝛼 + 𝛽𝛽∗𝛽𝛽 = |𝛼𝛼|2 + |𝛽𝛽|2 = 1,

𝑃𝑃(0) = 𝛼𝛼∗𝛼𝛼, and

𝑃𝑃(1) = 𝛽𝛽∗𝛽𝛽 .

P(x) means the probability of measuring the given measurement-basis state. Part of
the power of quantum computing often lies in the ability to place sets of qubits in states
that are admixtures of |0⟩ and |1⟩ and effectively compute against all possible states at
once.

Applying gates to multiple qubits simultaneously often results in entanglement of the
qubits (i.e., multi-qubit states that cannot be summarized simply as a set of separate one-
qubit states). This second aspect of quantum mechanics is another oft-described feature
that makes quantum computing powerful. The act of measurement can often project the
portion of the solution space that solves a problem much quicker in, for example, 𝑂𝑂(log𝑛𝑛)
(“logarithmic time”) rather than 𝑂𝑂(𝑛𝑛𝑘𝑘) (“polynomial time”) or, worse yet, 𝑂𝑂(𝑒𝑒𝑛𝑛)
(“exponential time”).

While the circuit model defined above is the model most commonly implemented in
quantum computing hardware and is the most studied in the theoretical/algorithmic
literature, it is not the only model for quantum computing. D-Wave, described in more
detail below, was early to market with adiabatic or quantum annealing (QA) computers.
These rely much more on collective entanglement properties of many qubits at once, and
they compute by preparing a state and then letting the system naturally seek the lowest, or

10 Indeed, while outside the scope of this report, entanglement is often usefully leveraged in quantum

algorithms.

6

ground, energy state. Repeating this process multiple times while measuring the ground
state provides the desired result and is less sensitive to noisy qubits. The model is, however,
more limited in the types of problems it can solve.

3. Classical Programs Are Still Needed
Classical here is defined in contrast with quantum — it really refers to standard

electronic computers.11 Despite being composed of semiconductor technology that
leverages quantum material properties, standard computers perform their logic on standard
classical electronic bits. The software frameworks described here typically have provision
for both quantum and classical portions of computation, because it is quite typical for
quantum software to have both a classical and quantum portion.

For example, consider the oft-mentioned Shor’s algorithm (Shor 1994) for finding
prime factors of large numbers in polynomial time, which will break the public key
cryptography when quantum computers with enough sufficiently low-noise qubits become
available. It consists of a classical algorithmic loop, where each iteration determines input
for the quantum logic (which is based on the quantum Fourier transform). The output of
the quantum computation is post-processed classically to determine if the factorization has
succeeded or failed or if it needs additional iterations. In the last case, the results inform
the next iteration of the loop.

Successfully executing algorithms like the one described earlier depends on the
coordinated operation of a quantum computer and a classical computer. The latter drives
the former, often using intermediate results to inform the next quantum execution (see
Figure 3 for another example of this). Later in this document, the terms quantum algorithm
and quantum computation refer to the strictly quantum portions of algorithms. Classical
algorithm and classical computation will refer to the strictly classical portion. The terms
hybrid algorithm and hybrid computation will be used to refer to computations such as
Shor’s algorithm described above. Algorithm or computation will be used without
adjectives when the meaning is clear in context.

11 This choice of words is an imperfect analogy with the contrast between classical Lagrangian/Newtonian

mechanics and quantum mechanics.

7

Note. 𝑈𝑈�𝜃⃗𝜃�12 is a parameterized circuit that takes a set of angles and generates the initial state �𝜃𝜃0����⃗ � or

subsequent �𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛���������⃗ � states from the default all-|0⟩ state. The angles are fed at each iteration into 𝑈𝑈�𝜃⃗𝜃�.
After the basis-change circuit, which rotates to the energy-measuring Hamiltonion basis, the
measurements indicate the evaluated ground state energy by classically evaluating the objective function.
Well-known classical optimization techniques are used to arrive at a new estimate for �𝜃⃗𝜃� or to determine
that sufficiently precise convergence on the optimum has succeeded (Bharti et al. 2022).

Figure 3. Schematic Representation of a Hybrid Algorithm for Computing the Ground State
of a Hamiltonian (H)

12 The 𝜃⃗𝜃 notation is used to make explicit that θ in the figure represents a set of angles.

9

2. Quantum Cloud Providers Overview

A. Overview
Among the circuit-based QCSPs, Azure and IBM Quantum compete not only through

their respective frameworks and libraries, but also by offering competing programming
language visions. IBM’s OpenQASM is an academic and industry-standard language that
has evolved over several years. Azure’s Q#, on the other hand, provides a familiar
paradigm for .NET developers and has the benefit of having been designed from the ground
up to be explicit about quantum operations versus classical algorithms. Every provider
offers software frameworks and associated libraries with at least a Python binding, but they
often offer bindings for other languages as well. Serious developers of quantum algorithms
need the capability to simulate their quantum logic on classical hardware, and each QCSP
makes provision for this as well, offering multiple simulators of varying capability, scale,
and purpose. The analogs to simulators in annealing-based systems are sampling
emulators.

All providers provide free trial usage options for learning purposes, with the exception
of Google which is still in an early private preview stage. However, it is still possible to
download Google’s framework and run it using one of the provided local simulators. For
comparison, Table 2 provides some details on the QCSP offerings.

Table 2. Summary of QCSPs Discussed in this Report

Provider Circuit or
Annealing-
based

Available
Simulators

Own
Language?

Framework
and Libraries

Web-Based
Development13

Azure
Quantum

Circuit Full state, Sparse,
Simple resource
estimator, Trace-
based resource
estimator, Toffoli,
Noise14

Q# Microsoft QDK No

13 Not counting the ability to develop using Jupyter notebooks, which are supported by all providers in the

table.
14 https://docs.microsoft.com/en-us/azure/quantum/machines/

10

Provider Circuit or
Annealing-
based

Available
Simulators

Own
Language?

Framework
and Libraries

Web-Based
Development13

IBM
Quantum

Circuit State vector,
Stabilizer,
Extended
stabilizer, MPS,
QASM15

OpenQASM Qiskit Composer GUI

Google
Quantum
Compute
Service

Circuit State vector or
Density matrix16

No Cirq,
OpenFermion,
TensorFlow
Quantum17

No

AWS
Braket

Both Local (State
Vector only), 3
Hosted options:
State vector,
Density matrix,
Tensor network

No AWS Braket
software
development kit
(SDK)

No

D-Wave
Leap

Annealing
(with plans
for circuit)

Optimizing and
sampling emulator
solvers18

No Ocean SDK19 GitPod- and
JupyterHub-
based20

B. Azure Quantum
From a user perspective, the Azure Quantum offering is centered around the

Microsoft Quantum Development Kit (QDK),21 which can be used on Linux, Windows, or
MacOS (see Figure 4). To have access to quantum hardware via the Azure Quantum

15 https://quantum-computing.ibm.com/admin/docs/admin/manage/simulator/
16 https://quantumai.google/cirq/simulation
17 https://quantumai.google/cirq, https://quantumai.google/openfermion and

https://www.tensorflow.org/quantum
18 https://docs.dwavesys.com/docs/latest/c_solver_intro.html#emulators
19 https://docs.ocean.dwavesys.com/en/stable/
20 https://www.gitpod.io/ and https://jupyter.org/hub
21 https://www.microsoft.com/en-us/quantum/development-kit/

https://quantumai.google/openfermion
https://www.gitpod.io/
https://www.microsoft.com/en-us/quantum/development-kit/

11

service, you will need login access to the Azure service. Use a Microsoft Account22 to sign
in at https://portal.azure.com/.

Q# is the QDK’s language for expressing hybrid algorithms. It is also possible to code
just the inherently quantum portions of algorithms in Q# and use a classical computing
language like Python 3 or C# to drive the execution. For the example in Appendix A, the
environment was installed using the “.NET CLI and pip” instructions at
https://docs.microsoft.com/en-us/azure/quantum/install-python-qdk while installing the
Python 3 qsharp package into a Python venv. When using an activated venv, the python
command always invokes the venv’s version of Python, which is why the python3
command is not seen in this section.

Note. Image source: https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum

Figure 4. Stages of Quantum Code Development with the Microsoft QDK

Appendix A contains an example adapted from the QDK tutorials that leverages a
qubit to generate random integers as sequences of random bits. It contains two source files.
The first file, qrng.qs, contains Q# source code defining both quantum code and all the
necessary classical code to drive it. As will be shown, it can be launched directly using
.NET command-line tools. The second file, qrng_host.py, shows that the classical parts of
the code can also be implemented in Python, and the quantum code in qrng.qs can be driven
from a Python process.

In qrng.qs, a quantum function,23 SampleQuantumRandomNumberGenerator, is
defined. This function generates a qubit measurement result, with coin flip odds of
returning the special measurement result values Zero or One. This function is purely
quantum, and it defines the circuit depicted in Figure 5:

22 A Microsoft login account can be created at https://signup.live.com/.
23 Functions are called operations in Q#.

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/quantum/install-python-qdk
https://signup.live.com/

12

Note. Adapted from Mehta (2020). This figure is very close to the diagrams generated by IBM’s Qiskit

(described later) and to the appearance of the same circuit in the Qiskit graphical coding environment.
The top line represents the single qubit. The boxed H represents the Hadamard gate, which places the
qubit into a 50-50 admixture of |0⟩ and |1⟩ (specifically (|0⟩ + |1⟩) √2⁄). The analog gauge symbol
represents a measurement in the |0⟩ and |1⟩ measurement bases, with the 0 or 1 result being placed in
the classical register, c.

Figure 5. Quantum Circuit for Generating a Random Classical Bit

Next, qrng.qs defines a classical function, SampleRandomNumberInRange, that
invokes the first function enough times to generate a bit string that can range from zero to
a given maximum value. If the bit string represents an integer greater than the maximum,
it preserves a uniform probability distribution by starting over and trying again until a valid
result is obtained.

The final function in qrng.qs, RunIt, is classical and is tagged as the entry point,
accepting an argument from the command line. It invokes the second function and prints
human-readable output. The code is run from source folder by invoking, for example:

dotnet run --max-result=100

If the --max-result argument isn’t provided, a useful help message will be output explaining
how to provide the missing input.

The Python 3 script qrnh_host.py leverages a Python package provided in the QDK
called qsharp.24 This package is never explicitly invoked in the script, but the import
qsharp statement makes it possible to then import the quantum operation from our Q# file
and call it. From the command line, it is invoked similarly, for example:

python qrng_host.py 100

To run this on actual Azure-accessible quantum hardware, the Python script needs the
following lines included after the import section:

qsharp.azure.connect(

 resourceId="/subscriptions/.../Microsoft.Quantum/Workspaces/WORKSPACE_NAME",

 location="West US")

24 https://docs.microsoft.com/en-us/python/qsharp-core/qsharp

https://docs.microsoft.com/en-us/python/qsharp-core/qsharp

13

qsharp.azure.target("ionq.simulator")

where the resourceId and location strings, and the target argument string are replaced by
appropriate values for your credentials and preferred processor. The line invoking the local
quantum simulator is replaced with this:
yield qsharp.azure.execute(SampleQuantumRandomNumberGenerator, shots=1,
 jobName="Generate random bit")

If you attempt to run this code, you will likely discover that each execution of the
operation on the cloud’s quantum hardware is subject to high demand and time-consuming
queuing.25 With an execution request for each randomly generated bit, it could take quite
a while to get a result. One could certainly go back to the drawing board and improve the
algorithm to simultaneously prepare and measure multiple independent qubits at once up
to the number of qubits provided by that quantum machine. However, the goal is not to
instruct on how to create the best or fastest quantum random number generator. Quantum
computers are unlikely to make current hardware random number generators obsolete in
the coming decades. Rather, the goal is to illustrate the cooperation of classical and
quantum computing hardware with an easily understood quantum operation.

C. IBM Quantum

1. Description
IBM has been offering cloud access to quantum computers since 2016 and claims to

be the first company to do so. The company has steadily been expanding the capabilities
of its quantum hardware, regularly graduating research hardware to production use in its
cloud. As of this writing, there are 23 different systems available on IBM’s cloud,
computing with quantities of qubits ranging from 1 to 65. IBM’s current research system
has 127 qubits, and there is a public roadmap26 with plans for systems with more than 1,000
qubits by 2024.

IBM’s own language for quantum development is called OpenQASM.27 The author
of this report has, in the past, used IBM’s online resources to learn about quantum
programming with OpenQASM 1.0 and OpenQASM 2.0, which had limited capabilities
for the classical portion of hybrid algorithm. The most recent revision, OpenQASM 3.0,
has added more support for the classical side, enabling full hybrid algorithms running on
cloud systems that support it.

25 Typically lasting a few minutes.
26 https://research.ibm.com/blog/quantum-development-roadmap
27 QASM is a generally used abbreviation standing for Quantum Assembly/Assembler

https://research.ibm.com/blog/quantum-development-roadmap

14

IBM has a very approachable interface for newcomers to quantum circuits, called the
IBM Quantum Composer, which is a graphical interface for directly manipulating a
quantum circuit diagram to build up circuits. Graphical manipulations are translated into
the OpenQASM language; the OpenQASM representation may be directly edited and the
changes are reflected in the graphical representation. Circuits may be run on a simulator
or, if an IBM Quantum account is obtained, run on one of the available quantum computers
in IBM’s cloud offering.

2. Installation
We found that leveraging IBM Quantum’s Python 3 package, Qiskit,28 and Jupyter

was a very quick way to approach using IBM Quantum. The following instructions detail
how to do this in any typical Linux environment:

1. Create a working folder and activate a venv within.

a. mkdir -p qiskit/venv && cd qiskit

b. python3 -m venv

c. source venv/bin/activate

2. Upgrade installation tools to the latest versions:29 pip install --upgrade pip setuptools

3. Install Qiskit and, optionally, Jupyter and associated packages.

a. pip install qiskit

b. pip install jupyter jupyterlab matplotlib

4. If you wish to work with the Qiskit textbook at https://qiskit.org/textbook,

a. pip install --upgrade wheel

b. pip install seaborn

As with other quantum SDKs, developers usually start with a quantum simulator that
runs locally before running their algorithms on actual quantum hardware. IBM Quantum
is the default quantum backend; IonQ and Azure Quantum, among others, are supported.30
Qiskit Runtime31 is a cloud offering that can run full hybrid algorithms written using the
qiskit-ibm-runtime Python package.

28 https://qiskit.org/
29 Because of the venv, the correct Python 3 pip executable is aliased.
30 https://qiskit.org/documentation/partners/
31 https://github.com/qiskit/qiskit-ibm-runtime

https://qiskit.org/textbook
https://qiskit.org/
https://qiskit.org/documentation/partners/
https://github.com/qiskit/qiskit-ibm-runtime

15

See Appendix B for a Jupyter notebook that implements a version of the quantum
random number generation example introduced in the Azure Quantum section. The
notebook uses the Aer simulator,32 a local simulator capable of simulating noisy qubits. If
you wish to run code on an actual quantum computer, obtain an API token from your user
profile page on IBM Quantum and run the following short Python program on your system:
from qiskit import IBMQ

IBMQ.save_account('«API Token»')

This will save your credential to a local file. To use your credential in your programs,
execute the following commands first:
from qiskit import IMBQ

provider = IBMQ.load_account()

If you want to connect to any real quantum device, you can modify the first section
of the notebook where the qiskit.providers package is imported from:

from qiskit.providers.ibmq import least_busy

real_devices = provider.backends(simulator=False, operational=True)

backend = least_busy(real_devices)

In general, there will be a queue of jobs in front of yours. Even if there is no wait,
there is latency associated with submission into the job queue, compilation into control
commands for the quantum hardware, and execution. Now, when qiskit.execute() is invoked,
it will be necessary to wait for the job result to be ready before accessing it. It is possible
to view your submitted jobs on the IBM Quantum web interface. A simple way to wait on
the result in your code is to insert the following command:

job.wait_for_final_state()

In a real application, it would be wise to add a timeout parameter to the call and check
for possible exceptions.

D. Google Quantum Computing Service
Google’s Quantum Computing Service33 is, at present, only open to those on an early-

access list. There is a questionnaire34 that research projects can use to request access. As
with the other cloud services, Google offers a Python package that allows for coding the
quantum circuit model, called Cirq.35 For completeness, Appendix D includes a version of

32 https://github.com/Qiskit/qiskit-aer
33 https://quantumai.google/quantum-computing-service
34 https://docs.google.com/forms/d/1DfUWu4zUAJ87GKy-ZoTHrFri5IwIteKtMxKfsy3lmHE
35 https://pypi.org/project/cirq/

https://github.com/Qiskit/qiskit-aer
https://quantumai.google/quantum-computing-service
https://docs.google.com/forms/d/1DfUWu4zUAJ87GKy-ZoTHrFri5IwIteKtMxKfsy3lmHE
https://pypi.org/project/cirq/

16

the quantum random number generator example that can be run locally using Cirq’s built-
in circuit simulator. A list of available quantum processors and simulators is also
available.36

E. Amazon Braket
Introductory reading material on AWS focuses on keeping the entire quantum

development workflow inside the AWS infrastructure. When doing this, the simulation of
quantum circuits is performed on the same AWS Elastic Compute Cloud (EC2) VM
instance as your Jupyter notebook or by a managed quantum simulator hosted by AWS.
Like the other cloud providers, an SDK is provided as a Python package, amazon-braket-
sdk.37 We will also describe how to set up a local environment that uses the SDK, which
can use a local simulator, or to invoke actual quantum hardware via AWS. Complex
simulations or actual quantum processing are accomplished via properly authenticated calls
into AWS infrastructure.

To work within an AWS-provisioned Jupyter notebook requires spinning up a
specialized Sagemaker EC2 instance that is at least an ml.t3.medium instance (250 free
hours for the first two months after creating your first instance, $0.05/hour thereafter).38
To save money in initial experimentation, it is possible to run simulations locally on your
notebook instance. To accomplish this, launch jobs in your notebooks using the create()
method of the class braket.jobs.local.local_job.LocalJob. This will spin up a Docker
container for running the type of simulator you specified. Even more simply, you can use
the LocalSimulator class.39 Charges for managed simulator (typically $/minute of
processing) or quantum processing unit (QPU) usage (typically billed in USD/task plus
USD/shot) are easily browsed once you have enabled Braket on your AWS account.

36 https://quantumai.google/cirq/ecosystem#supported_quantum_cloud_services
37 https://github.com/aws/amazon-braket-sdk-python and https://amazon-braket-sdk-

python.readthedocs.io/en/latest/
38 https://aws.amazon.com/sagemaker/pricing
39 https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-run-circuit.html

https://quantumai.google/cirq/ecosystem%23supported_quantum_cloud_services
https://github.com/aws/amazon-braket-sdk-python
https://amazon-braket-sdk-python.readthedocs.io/en/latest/
https://amazon-braket-sdk-python.readthedocs.io/en/latest/
https://aws.amazon.com/sagemaker/pricing
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-run-circuit.html

17

Note. The developer (1) authors circuits and other code on a Jupyter notebook in AWS, (2) runs simulations

on an AWS-hosted quantum simulator, and when ready, and (3) executes on actual quantum hardware,
termed Quantum Processing Units (QPUs). (4) Results are made available in S3 buckets, and (5)
integration with other AWS services like Identity, IAM, CloudWatch, CloudTrail and EventWatch is
available. (Source: https://docs.aws.amazon.com/braket/latest/developerguide/braket-how-it-works.html.)

Figure 6. Amazon Braket Workflow

Braket also offers support for the hybrid quantum programs — that is, standard
compute resources relatively local to the QPU can work in a feedback loop iterating
quantum jobs based on prior quantum results. The GitHub repo cited at the beginning of
this section includes a README with instructions for using the AwsQuantumJob class to
execute examples/job.py.

Amazon offers three different managed quantum simulators: a state vector simulator
(SV1), a tensor network simulator (TN1), and a density matrix simulator (DM1).40 Thus
far, Amazon does not natively produce its own QPU hardware. Rather, it relies on third-
party providers IonQ and Rigetti. It even allows you to run on QA hardware at D-Wave,
which is discussed in the next section. As of March 7, 2022, Braket supports IBM’s
OpenQASM 3.0 for applicable gate-based QPUs. When enabling Braket on an AWS
account, it is made clear that your code, data, and results transit to/from outside of AWS
when executing on these third-party resources (also see Figure 6).

Braket’s documentation is not explicit about the fact that that you can install its SDK
locally and play with it using a local quantum simulator.41 To run on one of the managed
simulators or an actual QPU from your own installation, set up credentialed connections as

40 https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
41 See https://github.com/aws/amazon-braket-sdk-python#available-simulators and examine the source

code at examples/local_bell.py in the repository.

https://docs.aws.amazon.com/braket/latest/developerguide/braket-how-it-works.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://github.com/aws/amazon-braket-sdk-python#available-simulators

18

described at https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-
aws-credentials Then, as shown in the example at examples/bell.py, replace your
LocalSimulator device with a device instance leveraging an AWS resource:
from braket.aws import AwsDevice
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1")

Braket has mature support for prioritized hybrid algorithm execution.42 As detailed at
the resource in the footnote, it is expected that the hybrid code obtains the device Amazon
Resource Name (ARN)43 from its environment. There are multiple ways to set the
environment variables; the most straightforward is to use
braket.aws.AwsQuantumJob.create(…) when submitting the job from code. It takes several
arguments. The first positional argument is the ARN of the QPU (or simulator) you want
to use. Additional arguments specify source file, code entry point, continuation form a prior
incomplete job, and S344 bucket to store results in.

F. D-Wave

1. Leap
D-Wave may be the oldest quantum computing company, having been founded in

1999. To date, the company has focused on QA, in which qubits and the couplings between
them naturally seek their lowest energy state(s). This contrasts with the quantum circuit
computation model described earlier and used by all the other services. Annealing has
provided an advantage of being much less susceptible to qubit noisiness, making it easier
to build systems that can make use large numbers of qubits. As described below, a large
class of optimization problems of business and logistics interest lend themselves to being
computed this way.

QA lacks the general applicability of the quantum circuit model of computation (often
called gate-model computation in D-Wave’s literature). However, for the subset of
optimization problems it is suited for, it works well, and has been finding practical
application for years already. These are typically tasks that can be expressed using a binary
quadratic model. D-Wave’s libraries allow these to be defined as quadratic unconstrained
binary optimization (QUBO) problems or through the use of an Ising model, which is more
familiar to physicists and material scientists. QA is best used to solve such issues as
logistics with complex constraints, modeling molecular interactions, and financial portfolio
optimization (e.g., optimizing between yield and risk).

42 https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs.html
43 https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
44 Simple storage service, see https://docs.aws.amazon.com/s3/

https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-aws-credentials
https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-aws-credentials
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/s3/

19

D-Wave Leap provides two easy ways to start learning and using its system within
your web browser. Both require you to first set up a developer account at
https://cloud.dwavesys.com/leap/signup.

For a Visual Studio Code-like experience, working with Python source code files, D-
Wave offers a GitPod-based45 cloud IDE called D-Wave Leap.46 With it, one can directly
browse and open the various code examples offered at https://github.com/dwave-
examples/. As with the gitpod.io service, it is also possible to enter any GitHub project
URL and access it directly with a prepared D-Wave environment.

There are also Jupyter notebook projects in the dwave-examples GitHub organization
page. There is a prepared JupyterHub environment47 for these that allows one to easily
open and work with any of the examples.

It is relatively simple to set up a local environment for any of the example projects as
well. The following steps should work in most Linux environments:

• git clone https://github.com/dwavesys-examples/«name-of-project»

• cd «name-of-project»

• python3 -m venv .venv

• source .venv/bin/activate

• pip install --upgrade pip setuptools wheel

• pip install -r requirements.txt

• (First project only) Install your D-Wave Leap credentials using the steps described at
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html.

After these steps, peruse the example project README, which will instruct you on
running the code or starting the notebook server, as appropriate.

2. Quixotic Framework
Arun Maiya has produced a Python framework, called Quixotic,48 that further

simplifies the generation and running of these types of problems. Quixotic puts various
popular graph algorithms within easier reach for defining and submitting to D-Wave’s
quantum processors or to AWS (which, as of this writing, partners with mostly gate-based
quantum processing providers; D-Wave is its sole annealing-based processing provider).
In addition to the written guidance on the Quixotic website, we have provided a Jupyter

45 https://www.gitpod.io/#get-started
46 Accessible at https://cloud.dwavesys.com/leap/
47 Accessible at https://cloud.dwavesys.com/learning/hub/home
48 https://amaiya.github.io/quixotic/

https://cloud.dwavesys.com/leap/signup
https://github.com/dwave-examples/
https://github.com/dwave-examples/
https://github.com/dwavesys-examples/name-of-project
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html
https://www.gitpod.io/%23get-started
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/learning/hub/home
https://amaiya.github.io/quixotic/

20

notebook in Appendix E that demonstrates querying the framework for supported
algorithms (or tasks) and sampling a couple of them both locally and on a D-Wave QPU.
Just as with running the D-Wave example projects, it is necessary to first place your API
token in your local environment. To install the latest Quixotic version 0.0.6, it is very
important to use Python 3.7 or Python 3.8 so that pre-built Python Package Index (PyPI)
binary wheels can be downloaded. You can mostly follow the same instructions used for
the D-Wave environment above. However, instead of the

pip install -r requirements.txt

step, do

pip install quixotic jupyter

Of course, Jupyter is unnecessary if you are not using notebooks.

21

Appendix A. Azure Code

A. qrng.qs
The source code below is written in Q#, Microsoft’s language, which can implement

hybrid quantum algorithms.
namespace Qrng {

 open Microsoft.Quantum.Canon;
 open Microsoft.Quantum.Intrinsic;
 open Microsoft.Quantum.Measurement;
 open Microsoft.Quantum.Math;
 open Microsoft.Quantum.Convert;
 open Microsoft.Quantum.Arrays;

 // Quantum operation that generates a single random classical
 // bit using a simple quantum circuit.
 operation SampleQuantumRandomNumberGenerator() : Result {
 use q = Qubit(); // Allocated by default to |0⟩

 // Put the qubit to superposition
 H(q); // H❘0⟩ = ❘+⟩ = (|0⟩ + |1⟩)/sqrt(2)

 // Measure the qubit value, with probabilities given by:
 // P(Zero) = ⟨+|0⟩⟨0|+⟩ = 50%
 // P(One) = ⟨+|1⟩⟨1|+⟩ = 50%
 return M(q);
 }

 operation SampleRandomNumberInRange(max : Int) : Int {
 mutable output = 0; // Q# requires binding a value at declaration
 repeat {
 mutable bits = EmptyArray<Result>();
 for idxBit in 1..BitSizeI(max) {
 set bits += [SampleQuantumRandomNumberGenerator()];
 }
 set output = ResultArrayAsInt(bits);
 } until (output <= max); // # i.e., redo QRNG if answer is too big
 return output;
 }

 @EntryPoint()
 operation RunIt(max_result: Int) : Unit {
 Message("Using quantum RNG to generate a number from 0 to " +
 $"{max_result}.");
 mutable output = SampleRandomNumberInRange(max_result);
 Message($"The generated number is {output}.");

22

 }
}

B. qrng_host.py
"""
Script that invokes quantum code in Qrng.qs for a silly bit-by-bit
quantum random number generation.
"""
import sys
from typing import Iterable

import qsharp
from Qrng import SampleQuantumRandomNumberGenerator

generate random numbers from 0..max, which may be provided as an argument
MAX_RESULT = 50 if len(sys.argv) < 2 else int(sys.argv[1])

def generate_random_bits() -> Iterable[int]:
 """
 Call the quantum operation as many times as there are bits needed to
 define the maximum of the range. For example, if max == 7, you need three
 bits to generate all the numbers from 0 to 7.
 """
 for _ in range(0, MAX_RESULT.bit_length()):
 # Call the quantum operation and store the random bit in the list
 yield SampleQuantumRandomNumberGenerator.simulate()

def convert_to_int(bit_string: Iterable[int]) -> int:
 """
 Interpret the bit string as a binary literal.
 """
 return int("".join(str(x) for x in bit_string), 2)

print(f"Using quantum RNG to generate a number from 0 to {MAX_RESULT}.")

Variable to store the output
RESULT = MAX_RESULT + 1
while RESULT > MAX_RESULT: # i.e., redo QRNG if answer is too big
 RESULT = convert_to_int(generate_random_bits())

print(f"The generated number is {RESULT}.")

23

Appendix B. IBM Qiskit Jupyter Notebook

A. In [1]
import qiskit
from qiskit import (__qiskit_version__, QuantumCircuit, QuantumRegister,
 ClassicalRegister, execute)
from qiskit.providers.aer import AerSimulator
qiskit.__qiskit_version__

B. Out[1]
{'qiskit-terra': '0.19.2', 'qiskit-aer': '0.10.3', 'qiskit-ignis': '0.7.0', 'qiskit-ibmq-provider': '0.18.3', 'qiskit-aqua':
None, 'qiskit': '0.34.2', 'qiskit-nature': None, 'qiskit-finance': None, 'qiskit-optimization': None, 'qiskit-
machine-learning': None}

C. In[2]
%matplotlib
import numpy as np
import math
from qiskit.visualization import plot_histogram

Define circuit, including measurements
circuit = QuantumCircuit(1, 1)
circuit.h(0)
circuit.measure(0, 0)
circuit.draw(output='mpl')

D. Out[2]
Using matplotlib backend: agg

E. In[3]
backend = AerSimulator()

Leverage a qubit to calculate a single random bit

24

def quantum_random_bit():
 job = execute(circuit, backend, shots=1)
 hist = job.result().get_counts()
 return 0 if '0' in hist else 1

F. In[4]
from typing import Iterable

def generate_random_bits(upper_limit: int) -> Iterable[int]:
 """
 Call the quantum operation as many times as there are bits needed to
 define the maximum of the range. For example, if max == 7, you need three
 bits to generate all the numbers from 0 to 7.
 """
 for _ in range(0, upper_limit.bit_length()):
 # Call the quantum operation and store the random bit in the list
 yield quantum_random_bit()

def convert_to_int(bit_string: Iterable[int]) -> int:
 """
 Interpret the bit string as a binary literal.
 """
 return int("".join(str(x) for x in bit_string), 2)

def quantum_random_int(upper_limit: int):
 """
 Using quantum RNG to generate a number from 0 to upper_limit
 """
 result = upper_limit + 1
 while result > upper_limit: # i.e., redo QRNG if answer is too big
 result = convert_to_int(generate_random_bits(upper_limit))
 return result

G. In[5]
E.g., throw 100-sided quantum die 5 times
for _ in range(5):
 print(1 + quantum_random_int(99))

H. Out[5]
18
60
52
54
79

25

Appendix C. Braket Code

Below is the Quantum Random Number Generator example as entered into a
Braket/Sagemaker Jupyter notebook.
general imports
import matplotlib.pyplot as plt
%matplotlib inline

AWS imports: Import Braket SDK modules
from braket.circuits import Circuit
from braket.devices import LocalSimulator

A. Build a random bit circuit
Define coin-flip circuit (measurement is automatic when run)
circuit = Circuit().h(0)

This shows a circuit diagram representation. The T lines
show time steps, of which there is only one in in this
particular circuit.
print(circuit)
T : |0|
q0 : -H-
T : |0|

B. Use a local simulator to run on a Sagemaker notebook machine

This is more limited in capability than the AWS managed simulators.

set up device
device = LocalSimulator()

Leverage a qubit to calculate a single random bit
def quantum_random_bit():
 result = device.run(circuit, shots=1).result()
 counts = result.measurement_counts
 return 0 if '0' in counts else 1

C. Implement classical logic side of hybrid code

This code is identical to that in the Qiskit example.

from typing import Iterable

26

def generate_random_bits(upper_limit: int) -> Iterable[int]:
 """
 Call the quantum operation as many times as there are bits needed to
 define the maximum of the range. For example, if max == 7, you need three
 bits to generate all the numbers from 0 to 7.
 """
 for _ in range(0, upper_limit.bit_length()):
 # Call the quantum operation and store the random bit in the list
 yield quantum_random_bit()

def convert_to_int(bit_string: Iterable[int]) -> int:
 """
 Interpret the bit string as a binary literal.
 """
 return int("".join(str(x) for x in bit_string), 2)

def quantum_random_int(upper_limit: int):
 """
 Using quantum RNG to generate a number from 0 to upper_limit
 """
 result = upper_limit + 1
 while result > upper_limit: # i.e., redo QRNG if answer is too big
 result = convert_to_int(generate_random_bits(upper_limit))
 return result

E.g., throw 100-sided quantum five times
for _ in range(5):
 print(1 + quantum_random_int(99))
35
38
70
82
96

27

Appendix D. Google Cirq Code

A. Python source file qrng.py
This is the Quantum Random Number Generator example coded against Google’s

Python package, cirq. It borrows heavily from earlier Python codes.
import cirq
from typing import Iterable

1. Define coin-flip circuit (measurement is automatic when run)

qubit = cirq.GridQubit(0,0)
circuit = cirq.Circuit(cirq.H(qubit),
 cirq.measure(qubit, key='m'))
print(circuit)

2. Use a local simulator, and leverage a qubit to calculate a
single random bit
device = cirq.Simulator()
def quantum_random_bit():
 result = device.run(circuit, repetitions=1)
 return result.measurements['m'][0][0]

#3.Implement classical logic side of hybrid code
This code is identical to that in the Qiskit example.

def generate_random_bits(upper_limit: int) -> Iterable[int]:
 """
 Call the quantum operation as many times as there are bits needed to
 define the maximum of the range. For example, if max == 7, you need three
 bits to generate all the numbers from 0 to 7.
 """
 for _ in range(0, upper_limit.bit_length()):
 # Call the quantum operation and store the random bit in the list
 yield quantum_random_bit()

def convert_to_int(bit_string: Iterable[int]) -> int:
 """
 Interpret the bit string as a binary literal.
 """
 return int("".join(str(x) for x in bit_string), 2)

def quantum_random_int(upper_limit: int):
 """
 Using quantum RNG to generate a number from 0 to upper_limit

28

 """
 result = upper_limit + 1
 while result > upper_limit: # i.e., redo QRNG if answer is too big
 result = convert_to_int(generate_random_bits(upper_limit))
 return result

E.g., throw 100-sided quantum five times
for _ in range(5):
 print(1 + quantum_random_int(99))

29

Appendix E. Quixotic Jupyter Notebook

from quixotic.core import QuantumAnnealer

QuantumAnnealer.supported_tasks()
maximum_clique
minimum_vertex_cover
minimum_weighted_vertex_cover
maximum_independent_set
maximum_weighted_independent_set
maximum_cut
weighted_maximum_cut
structural_imbalance
traveling_salesperson

import networkx as nx

GRAPH_SEED = 1334
LAYOUT_SEED = 1971

def generate_graph(size):
 return nx.erdos_renyi_graph(size, p=0.5, seed=GRAPH_SEED)

def draw_graph(graph):
 positions = nx.spring_layout(graph, seed=LAYOUT_SEED)
 nx.draw(g, with_labels=True, pos=positions)

defaults to local annealing simulator
def max_clique(graph, task, backend='local'):
 qo = QuantumAnnealer(graph, task=task, backend=backend).execute()
 return qo.results()

def draw_subgraph(graph, nodes):
 positions = nx.spring_layout(graph, seed=LAYOUT_SEED)
 sub = graph.subgraph(nodes)
 nx.draw(graph, pos=positions, with_labels=True)
 nx.draw(sub, pos=positions, node_color="r", edge_color="r")

def show_task_subgraph_for_random_graph(size, task, backend='local'):
 g = generate_graph(size)
 draw_subgraph(g, max_clique(g, task, backend=backend))

show_task_subgraph_for_random_graph(size=8, task='maximum_clique')
Executing locally.

30

show_task_subgraph_for_random_graph(size=8, task='minimum_vertex_cover')
Executing locally.

show_task_subgraph_for_random_graph(size=8, task='minimum_vertex_cover', backend='dwave')
Executing on D-Wave LEAP.

31

References

Bharti, Kishor, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alberin-Lea,
Abhinav Anand, Matthias Degroote, et al. 2022. “Noisy intermediate-scale
quantum algorithms.” Reviews of Modern Physics 94.
doi:10.1103/RevModPhys.94.015004.

Johnson, M W, M H.S. Amin, S Gildert, T Lanting, F Hamze, and N Dickson. 2011.
“Qunatum annealing with manufactured spins.” Nature 194-198.
doi:10.1038/nature10012.

Kaye, Phillip, Raymond Laflamme, and Michele Mosco. 2007. An Introduction to
Quantum Computing. Oxford University Press.
doi:10.1093/oso/9780198570004.003.0004.

Mehta, Nihal. 2020. Quantum Computing: Program Next-Gen Computers for Hard,
Real-World Applications. Raleigh, NC: The Pragmatic Bookshelf.
https://pragprog.com/titles/nmquantum/quantum-computing/.

Shor, P.W. 1994. “Algorithms for quantum computation: discrete logarithms and
factoring.” Proceedings 35th Annual Symposium on Foundations of Computer
Science. IEE Comput. Soc. Press. 124-134. doi:10.1109/sfcs.1994.365700.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-06-22 Non-Standard
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Developing in the Commercial Quantum Cloud HQ0034-19-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Dale Visser, Arun S. Maiya C5211
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

NS D-33113 Institute for Defense Analyses
730 East Glebe Road
Alexandria, VA 22305
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

IDA Institute for Defense Analyses
730 East Glebe Road, Alexandria, VA 22305 11. SPONSOR’S / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: Dale Visser
14. ABSTRACT

There are several quantum computing cloud service providers available in the United States. This report gives a brief
overview of what quantum computing is, and shows how to get started developing on the services available from IBM, D-
Wave, Azure, Amazon and Google. An IDA-developed framework for leveraging quantum annealing systems for graph and
optimization solutions is also described.

15. SUBJECT TERMS

Quantum Computing, Cloud Services, Software Development

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

30

19a. NAME OF RESPONSIBLE PERSON
Institute for Defense Analyses

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

Unclassified Unclassified Unclassified

	1. Introduction
	A. Scope
	B. Setting Up a Development Environment
	C. A Brief History of the Quantum Cloud
	D. General Structure of Quantum Code
	1. Circuit Model of Computation, and Reversibility
	2. Quantum Circuit Model of Computation
	3. Classical Programs Are Still Needed

	2. Quantum Cloud Providers Overview
	A. Overview
	B. Azure Quantum
	C. IBM Quantum
	1. Description
	2. Installation

	D. Google Quantum Computing Service
	E. Amazon Braket
	F. D-Wave
	1. Leap
	2. Quixotic Framework
	Appendix A. Azure Code
	A. qrng.qs
	B. qrng_host.py

	Appendix B. IBM Qiskit Jupyter Notebook
	A. In [1]
	B. Out[1]
	C. In[2]
	D. Out[2]
	E. In[3]
	F. In[4]
	G. In[5]
	H. Out[5]

	Appendix C. Braket Code
	A. Build a random bit circuit
	B. Use a local simulator to run on a Sagemaker notebook machine
	C. Implement classical logic side of hybrid code

	Appendix D. Google Cirq Code
	A. Python source file qrng.py

	Appendix E. Quixotic Jupyter Notebook

	NS D-33113 - Cover.pdf
	About This Publication
	For More Information
	Copyright Notice

	Blank Page
	Blank Page
	Blank Page

