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Executive Summary 

Quantum computing via cloud services is a fairly recent development. The major 
quantum cloud computing service providers (QCSPs) available in the United States are 
IBM Quantum, D-Wave Leap, Azure Quantum, Amazon Braket, and Google Quantum 
Computing Service. The quantum circuit model of computation, which currently applies to 
all the above services except D-Wave, relies on the presence of qubits, which are 
represented by a circuit line that interacts with boxes representing unitary gates. The ability 
of a set of qubits to represent all possible combinations of zeros and ones and the 
phenomenon of quantum entanglement within a multi-qubit state both contribute to the 
power of quantum computing to more efficiently compute many classes of problems. In 
many practical cases, there is a need to combine classical computing resources with the 
quantum processor in hybrid algorithmic workflows. 

In this report, we demonstrate each QCSP in one or two configurations and describe 
how to set up a development environment for each. A critical piece of this is learning what 
quantum simulators are available for testing your code with smaller problems on classical 
hardware. In the case of D-Wave, the analog simulation resource is called a sampling 
emulator. 

For the circuit model-based services, we present a quantum random number generator 
in code for each environment along with sample output. We selected this example to 
minimize the amount of quantum mechanical understanding needed by the reader while 
still demonstrating a truly quantum result produced by a hybrid algorithm. 

The computing model for D-Wave is called quantum annealing, and it is able to set 
up larger numbers of coupled qubits, which are typically mapped to some optimization 
problem, and let the system “relax” into low energy states representing likely solutions. 
Typically, multiple runs are made, and the ground state properties are the results sampled 
from each run. In this paper, we use examples from Arun Maiya’s Quixotic framework to 
quickly and easily set up entire classes of optimization problems and submit them to D-
Wave for a result. 
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1. Introduction 

A. Scope 
This report is meant to explain and explore what can currently be accomplished 

through the use of cloud providers for quantum computing. It provides a researcher with 
basic familiarity of the two commercially available quantum computing architectures, an 
understanding of the problems that may be solved with each, and instructions on how to 
get started with cloud offerings from Azure, IBM, Amazon, and D-Wave. We have 
assumed some familiarity with the basic concepts of quantum computing. An Introduction 
to Quantum Computing (Kaye, Laflamme, and Mosco 2007) is a good introductory 
textbook and is available electronically. Another good resource for software development 
practitioners is Quantum Computing: Program Next-Gen Computers for Hard, Real-World 
Applications (Mehta 2020), which takes the approach of initially hiding the usual 
mathematic formalism behind a simplified abstract graphical “Qubelet Model,” in which 
qubits are represented as pictures called qubelets. 

This report does not attempt to discuss quantum hardware or the future trajectory of 
quantum computing in any detail. That said, it is often said that we are in the era of Noisy 
Intermediate-Scale Quantum (NISQ) computers. Bharti et al. (2022) defines NISQ 
computers as being “composed of hundreds of noisy qubits, i.e., qubits that are not error 
corrected, and therefore perform imperfect operations within a limited coherence time.” 
Bharti et al. is a literature review of what can be done with NISQ machines and of the 
future directions of quantum algorithms. 

B. Setting Up a Development Environment 
Although this report does show how to install and use the various quantum computing 

tools and environments, it was necessary to limit efforts to one or two environments per 
quantum cloud provider. The URLs given in the footnotes will lead to documentation that 
shows a variety of other valid alternative options. 

We relied on the following personal preferences: (1) using a code editor like Visual 
Studio Code,1 (2) using the popular high-level interpreted language, Python,2 (3) working 

                                                 
1 https://code.visualstudio.com/ 
2 https://www.python.org/, “popular” according to the TIOBE index (https://www.tiobe.com/tiobe-index/) 

in February 2022 

https://code.visualstudio.com/
https://www.python.org/
https://www.tiobe.com/tiobe-index/
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within a Linux environment when possible, and (4) leveraging containerization to define 
the environments. Containerization can refer to Open Container Initiative (OCI) 
containers, as provided by popular software like Docker or Podman.3,4 We also recommend 
leveraging the Python virtual environment (venv) mechanism5 when installing Python 
packages. 

C. A Brief History of the Quantum Cloud 
This paper does not provide an exhaustive list of quantum cloud service providers 

(QCSPs) that exist worldwide, but instead focuses on a few of the largest players based 
primarily in North America. Many companies are producing quantum computers and 
making them available to these QCSPs. This paper does not attempt to list these companies, 
but anyone exploring these cloud services will quickly discover their existence in the QCSP 
documentation of quantum compute options. For example, IonQ6 and Rigetti7 provide 
quantum compute resources to Amazon Web Services (AWS) Braket, Azure Quantum, and 
Google Quantum Computing Service.8 Indeed, Google’s initial QCSP offering had IonQ 
as its sole compute provider. 

The timeline in Table 1 considers only the cloud services aspect of the companies’ 
quantum computing efforts. D-Wave, for instance, has the most venerable quantum effort 
of the QCSPs, having been founded in 1999 to develop quantum hardware. D-Wave was 
also the first company to announce commercially available quantum computing hardware 
in May 2011 (Johnson et al. 2011). However, IBM began providing quantum cloud services 
over two years before D-Wave. 

 
Table 1. A Timeline of Quantum Cloud Service Provider Launches 

Provider Name Public Launch Date 

IBM Quantum (as IBM Quantum Experience) May 2016 

D-Wave Leap (v1) October 4, 2018 

Azure Quantum (Private Preview) November 4, 2019 

                                                 
3 https://www.docker.com/ 
4 https://podman.io/ 
5 https://docs.python.org/3/library/venv.html 
6 https://ionq.com/ 
7 https://www.rigetti.com/ 
8 As can be seen at https://aws.amazon.com/braket/, https://docs.microsoft.com/en-

us/azure/quantum/overview-azure-quantum, https://quantumai.google/cirq/devices, and 
https://quantumai.google/cirq/rigetti/access 

https://www.docker.com/
https://podman.io/
https://docs.python.org/3/library/venv.html
https://aws.amazon.com/braket/
https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum
https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum
https://quantumai.google/cirq/devices
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D-Wave Leap (v2) February 26, 2020 

Azure Quantum (Limited Preview) May 19, 2020 

AWS Braket August 13, 2020 

Azure Quantum (Public Preview) February 1, 2021 

IBM Quantum (redesigned and renamed) March 2021 

Google Quantum Computing Service June 17, 2021 

 

D. General Structure of Quantum Code 

1. Circuit Model of Computation, and Reversibility 
The opening chapter of Kaye, Laflamme, and Mosco (2007) introduces the circuit 

model of computation. This model (depicted in Figure 1) describes a form of Turing 
machine that takes its inputs on a finite set of n wires, each representing one classical bit 
(i.e., a value of 0 or 1). Algorithms are implemented by gates that take some number of 
wires, k, and generate outputs on the same number of wires, k. These gates are defined as 
reversible, which means that it must be possible to place a value on the output wires, run 
the gate in reverse, and reproduce the original input on the input wires. 
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Note. Every gate has an equal number of input and output wires. This is necessary for the gates to be 

reversible. The inputs and outputs are classical bits (i.e., 0 or 1). Adapted from Kaye, Laflamme, and 
Mosco (2007). 

Figure 1. Example of a Classical Circuit Model 

The final output state of interest is represented by the bits measured from some set of 
output wires. The authors show it is always possible to map general non-reversible circuits 
to a reversible version that uses only reversible gates. To accomplish this, results of interest, 
whether intermediate or final, are copied to “spare” output wires that have no effect when 
running the circuit in reverse to see the inputs. 

2. Quantum Circuit Model of Computation 

 
Note. The triangles on the right represent measurement-basis measurement of the qubits in �𝜓𝜓𝑓𝑓�. Note that 

this circuit is only reversible back to |𝜓𝜓𝑖𝑖⟩ = |0000⟩9 if one omits these final measurements (Kaye, 
Laflamme, and Mosco 2007). 

Figure 2. A Quantum Circuit Corresponding to the Classical Circuit in Figure 1 

This same reversible circuit model is often popular for defining quantum algorithms, 
where it is known as the quantum circuit model of computation, an example of which is 
shown in Figure 2. Each input bit of the prior circuit model is replaced by a qubit. A qubit 
can be represented in Dirac notation as |𝜑𝜑⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩, showing its most general form 
as a superposition of the measurement-basis eigenstates. The coefficients, α and β, are 

                                                 
9 The shorthand notation for four qubits, |𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⟩,  is equivalent to writing |𝑎𝑎⟩|𝑏𝑏⟩|𝑐𝑐⟩|𝑑𝑑⟩. 
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called amplitudes. These amplitudes are complex numbers. Complex amplitudes are 
necessary in quantum mechanics to model wave mechanical interference effects. 
Reversible gates are replaced by unitary gates, which are the quantum equivalent. The gates 
alter the states of the qubits (possibly entangling qubit states together) such that a 
measurement of one qubit affects the subsequent measurement result of another.10 Results 
are not simply the values of the output wires, as in the classical version previously 
described. Instead, one must make a measurement that will result in 0 or 1, with the 
probability of each depending on the qubit state. The asterisk operator in the following 
equation indicates the application of the complex conjugate: 

(𝑥𝑥 + 𝑖𝑖𝑖𝑖)∗ ≡ 𝑥𝑥 − 𝑖𝑖𝑖𝑖.  

For|𝜑𝜑⟩ as defined earlier,  

𝛼𝛼∗𝛼𝛼 +  𝛽𝛽∗𝛽𝛽 = |𝛼𝛼|2 + |𝛽𝛽|2 = 1, 

𝑃𝑃(0) =  𝛼𝛼∗𝛼𝛼,  and 

𝑃𝑃(1) = 𝛽𝛽∗𝛽𝛽 . 

P(x) means the probability of measuring the given measurement-basis state. Part of 
the power of quantum computing often lies in the ability to place sets of qubits in states 
that are admixtures of |0⟩ and |1⟩ and effectively compute against all possible states at 
once. 

Applying gates to multiple qubits simultaneously often results in entanglement of the 
qubits (i.e., multi-qubit states that cannot be summarized simply as a set of separate one-
qubit states). This second aspect of quantum mechanics is another oft-described feature 
that makes quantum computing powerful. The act of measurement can often project the 
portion of the solution space that solves a problem much quicker in, for example, 𝑂𝑂(log𝑛𝑛) 
(“logarithmic time”) rather than 𝑂𝑂(𝑛𝑛𝑘𝑘) (“polynomial time”) or, worse yet, 𝑂𝑂(𝑒𝑒𝑛𝑛) 
(“exponential time”). 

While the circuit model defined above is the model most commonly implemented in 
quantum computing hardware and is the most studied in the theoretical/algorithmic 
literature, it is not the only model for quantum computing. D-Wave, described in more 
detail below, was early to market with adiabatic or quantum annealing (QA) computers. 
These rely much more on collective entanglement properties of many qubits at once, and 
they compute by preparing a state and then letting the system naturally seek the lowest, or 

                                                 
10 Indeed, while outside the scope of this report, entanglement is often usefully leveraged in quantum 

algorithms. 
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ground, energy state. Repeating this process multiple times while measuring the ground 
state provides the desired result and is less sensitive to noisy qubits. The model is, however, 
more limited in the types of problems it can solve. 

3. Classical Programs Are Still Needed 
Classical here is defined in contrast with quantum — it really refers to standard 

electronic computers.11 Despite being composed of semiconductor technology that 
leverages quantum material properties, standard computers perform their logic on standard 
classical electronic bits. The software frameworks described here typically have provision 
for both quantum and classical portions of computation, because it is quite typical for 
quantum software to have both a classical and quantum portion. 

For example, consider the oft-mentioned Shor’s algorithm (Shor 1994) for finding 
prime factors of large numbers in polynomial time, which will break the public key 
cryptography when quantum computers with enough sufficiently low-noise qubits become 
available. It consists of a classical algorithmic loop, where each iteration determines input 
for the quantum logic (which is based on the quantum Fourier transform). The output of 
the quantum computation is post-processed classically to determine if the factorization has 
succeeded or failed or if it needs additional iterations. In the last case, the results inform 
the next iteration of the loop. 

Successfully executing algorithms like the one described earlier depends on the 
coordinated operation of a quantum computer and a classical computer. The latter drives 
the former, often using intermediate results to inform the next quantum execution (see 
Figure 3 for another example of this). Later in this document, the terms quantum algorithm 
and quantum computation refer to the strictly quantum portions of algorithms. Classical 
algorithm and classical computation will refer to the strictly classical portion. The terms 
hybrid algorithm and hybrid computation will be used to refer to computations such as 
Shor’s algorithm described above. Algorithm or computation will be used without 
adjectives when the meaning is clear in context. 

 

                                                 
11 This choice of words is an imperfect analogy with the contrast between classical Lagrangian/Newtonian 

mechanics and quantum mechanics. 
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Note. 𝑈𝑈�𝜃⃗𝜃�12 is a parameterized circuit that takes a set of angles and generates the initial state �𝜃𝜃0����⃗ � or 

subsequent �𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛���������⃗ � states from the default all-|0⟩ state. The angles are fed at each iteration into 𝑈𝑈�𝜃⃗𝜃�. 
After the basis-change circuit, which rotates to the energy-measuring Hamiltonion basis, the 
measurements indicate the evaluated ground state energy by classically evaluating the objective function. 
Well-known classical optimization techniques are used to arrive at a new estimate for �𝜃⃗𝜃� or to determine 
that sufficiently precise convergence on the optimum has succeeded (Bharti et al. 2022). 

 

Figure 3. Schematic Representation of a Hybrid Algorithm for Computing the Ground State 
of a Hamiltonian (H) 

 

 
  

                                                 
12 The 𝜃⃗𝜃 notation is used to make explicit that θ in the figure represents a set of angles. 
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2. Quantum Cloud Providers Overview 

A. Overview 
Among the circuit-based QCSPs, Azure and IBM Quantum compete not only through 

their respective frameworks and libraries, but also by offering competing programming 
language visions. IBM’s OpenQASM is an academic and industry-standard language that 
has evolved over several years. Azure’s Q#, on the other hand, provides a familiar 
paradigm for .NET developers and has the benefit of having been designed from the ground 
up to be explicit about quantum operations versus classical algorithms. Every provider 
offers software frameworks and associated libraries with at least a Python binding, but they 
often offer bindings for other languages as well. Serious developers of quantum algorithms 
need the capability to simulate their quantum logic on classical hardware, and each QCSP 
makes provision for this as well, offering multiple simulators of varying capability, scale, 
and purpose. The analogs to simulators  in annealing-based systems are sampling 
emulators. 

All providers provide free trial usage options for learning purposes, with the exception 
of Google which is still in an early private preview stage. However, it is still possible to 
download Google’s framework and run it using one of the provided local simulators. For 
comparison, Table 2 provides some details on the QCSP offerings. 

 
Table 2. Summary of QCSPs Discussed in this Report 

Provider Circuit or 
Annealing-
based 

Available 
Simulators 

Own 
Language? 

Framework 
and Libraries 

Web-Based 
Development13 

Azure 
Quantum 

Circuit Full state, Sparse, 
Simple resource 
estimator, Trace-
based resource 
estimator, Toffoli, 
Noise14 

Q# Microsoft QDK No 

                                                 
13 Not counting the ability to develop using Jupyter notebooks, which are supported by all providers in the 

table. 
14 https://docs.microsoft.com/en-us/azure/quantum/machines/ 
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Provider Circuit or 
Annealing-
based 

Available 
Simulators 

Own 
Language? 

Framework 
and Libraries 

Web-Based 
Development13 

IBM 
Quantum 

Circuit State vector, 
Stabilizer, 
Extended 
stabilizer, MPS, 
QASM15 

OpenQASM Qiskit Composer GUI 

Google 
Quantum 
Compute 
Service 

Circuit State vector or 
Density matrix16 

No Cirq, 
OpenFermion, 
TensorFlow 
Quantum17 

No 

AWS 
Braket 

Both Local (State 
Vector only), 3 
Hosted options: 
State vector, 
Density matrix, 
Tensor network 

No AWS Braket 
software 
development kit 
(SDK) 

No 

D-Wave 
Leap 

Annealing 
(with plans 
for circuit) 

Optimizing and 
sampling emulator 
solvers18 

No Ocean SDK19 GitPod- and 
JupyterHub-
based20 

 

B. Azure Quantum 
From a user perspective, the Azure Quantum offering is centered around the 

Microsoft Quantum Development Kit (QDK),21 which can be used on Linux, Windows, or 
MacOS (see Figure 4). To have access to quantum hardware via the Azure Quantum 

                                                 
15 https://quantum-computing.ibm.com/admin/docs/admin/manage/simulator/ 
16 https://quantumai.google/cirq/simulation 
17 https://quantumai.google/cirq, https://quantumai.google/openfermion and 

https://www.tensorflow.org/quantum 
18 https://docs.dwavesys.com/docs/latest/c_solver_intro.html#emulators 
19 https://docs.ocean.dwavesys.com/en/stable/ 
20 https://www.gitpod.io/ and https://jupyter.org/hub 
21 https://www.microsoft.com/en-us/quantum/development-kit/ 

https://quantumai.google/openfermion
https://www.gitpod.io/
https://www.microsoft.com/en-us/quantum/development-kit/
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service, you will need login access to the Azure service. Use a Microsoft Account22 to sign 
in at https://portal.azure.com/.  

Q# is the QDK’s language for expressing hybrid algorithms. It is also possible to code 
just the inherently quantum portions of algorithms in Q# and use a classical computing 
language like Python 3 or C# to drive the execution. For the example in Appendix A, the 
environment was installed using the “.NET CLI and pip” instructions at 
https://docs.microsoft.com/en-us/azure/quantum/install-python-qdk while installing the 
Python 3 qsharp package into a Python venv. When using an activated venv, the python 
command always invokes the venv’s version of Python, which is why the python3 
command is not seen in this section. 

 
Note. Image source: https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum 

Figure 4. Stages of Quantum Code Development with the Microsoft QDK 

Appendix A contains an example adapted from the QDK tutorials that leverages a 
qubit to generate random integers as sequences of random bits. It contains two source files. 
The first file, qrng.qs, contains Q# source code defining both quantum code and all the 
necessary classical code to drive it. As will be shown, it can be launched directly using 
.NET command-line tools. The second file, qrng_host.py, shows that the classical parts of 
the code can also be implemented in Python, and the quantum code in qrng.qs can be driven 
from a Python process. 

In qrng.qs, a quantum function,23 SampleQuantumRandomNumberGenerator, is 
defined. This function generates a qubit measurement result, with coin flip odds of 
returning the special measurement result values Zero or One. This function is purely 
quantum, and it defines the circuit depicted in Figure 5: 

                                                 
22 A Microsoft login account can be created at https://signup.live.com/. 
23 Functions are called operations in Q#. 

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/quantum/install-python-qdk
https://signup.live.com/
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Note. Adapted from Mehta (2020). This figure is very close to the diagrams generated by IBM’s Qiskit 

(described later) and to the appearance of the same circuit in the Qiskit graphical coding environment. 
The top line represents the single qubit. The boxed H represents the Hadamard gate, which places the 
qubit into a 50-50 admixture of |0⟩ and |1⟩ (specifically (|0⟩ +  |1⟩) √2⁄ ). The analog gauge symbol 
represents a measurement in the |0⟩ and |1⟩ measurement bases, with the 0 or 1 result being placed in 
the classical register, c. 

Figure 5. Quantum Circuit for Generating a Random Classical Bit 

Next, qrng.qs defines a classical function, SampleRandomNumberInRange, that 
invokes the first function enough times to generate a bit string that can range from zero to 
a given maximum value. If the bit string represents an integer greater than the maximum, 
it preserves a uniform probability distribution by starting over and trying again until a valid 
result is obtained. 

The final function in qrng.qs, RunIt, is classical and is tagged as the entry point, 
accepting an argument from the command line. It invokes the second function and prints 
human-readable output. The code is run from source folder by invoking, for example: 

dotnet run --max-result=100 

If the --max-result argument isn’t provided, a useful help message will be output explaining 
how to provide the missing input. 

The Python 3 script qrnh_host.py leverages a Python package provided in the QDK 
called qsharp.24 This package is never explicitly invoked in the script, but the import 
qsharp statement makes it possible to then import the quantum operation from our Q# file 
and call it. From the command line, it is invoked similarly, for example: 

python qrng_host.py 100 

To run this on actual Azure-accessible quantum hardware, the Python script needs the 
following lines included after the import section: 
 
qsharp.azure.connect( 

   resourceId="/subscriptions/.../Microsoft.Quantum/Workspaces/WORKSPACE_NAME", 

   location="West US") 

                                                 
24 https://docs.microsoft.com/en-us/python/qsharp-core/qsharp 

https://docs.microsoft.com/en-us/python/qsharp-core/qsharp
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qsharp.azure.target("ionq.simulator") 

 
where the resourceId and location strings, and the target argument string are replaced by 
appropriate values for your credentials and preferred processor. The line invoking the local 
quantum simulator is replaced with this: 
yield qsharp.azure.execute(SampleQuantumRandomNumberGenerator, shots=1,  
                           jobName="Generate random bit") 

If you attempt to run this code, you will likely discover that each execution of the 
operation on the cloud’s quantum hardware is subject to high demand and time-consuming 
queuing.25 With an execution request for each randomly generated bit, it could take quite 
a while to get a result. One could certainly go back to the drawing board and improve the 
algorithm to simultaneously prepare and measure multiple independent qubits at once up 
to the number of qubits provided by that quantum machine. However, the goal is not to 
instruct on how to create the best or fastest quantum random number generator. Quantum 
computers are unlikely to make current hardware random number generators obsolete in 
the coming decades. Rather, the goal is to illustrate the cooperation of classical and 
quantum computing hardware with an easily understood quantum operation. 

C. IBM Quantum 

1. Description 
IBM has been offering cloud access to quantum computers since 2016 and claims to 

be the first company to do so. The company has steadily been expanding the capabilities 
of its quantum hardware, regularly graduating research hardware to production use in its 
cloud. As of this writing, there are 23 different systems available on IBM’s cloud, 
computing with quantities of qubits ranging from 1 to 65. IBM’s current research system 
has 127 qubits, and there is a public roadmap26 with plans for systems with more than 1,000 
qubits by 2024. 

IBM’s own language for quantum development is called OpenQASM.27 The author 
of this report has, in the past, used IBM’s online resources to learn about quantum 
programming with OpenQASM 1.0 and OpenQASM 2.0, which had limited capabilities 
for the classical portion of hybrid algorithm. The most recent revision, OpenQASM 3.0, 
has added more support for the classical side, enabling full hybrid algorithms running on 
cloud systems that support it.  

                                                 
25 Typically lasting a few minutes. 
26 https://research.ibm.com/blog/quantum-development-roadmap 
27 QASM is a generally used abbreviation standing for Quantum Assembly/Assembler 

https://research.ibm.com/blog/quantum-development-roadmap
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IBM has a very approachable interface for newcomers to quantum circuits, called the 
IBM Quantum Composer, which is a graphical interface for directly manipulating a 
quantum circuit diagram to build up circuits. Graphical manipulations are translated into 
the OpenQASM language; the OpenQASM representation may be directly edited and the 
changes are reflected in the graphical representation. Circuits may be run on a simulator 
or, if an IBM Quantum account is obtained, run on one of the available quantum computers 
in IBM’s cloud offering. 

2. Installation 
We found that leveraging IBM Quantum’s Python 3 package, Qiskit,28 and Jupyter 

was a very quick way to approach using IBM Quantum. The following instructions detail 
how to do this in any typical Linux environment: 

1. Create a working folder and activate a venv within. 

a. mkdir -p qiskit/venv && cd qiskit 

b. python3 -m venv 

c. source venv/bin/activate 

2. Upgrade installation tools to the latest versions:29 pip install --upgrade pip setuptools 

3. Install Qiskit and, optionally, Jupyter and associated packages. 

a. pip install qiskit 

b. pip install jupyter jupyterlab matplotlib 

4. If you wish to work with the Qiskit textbook at https://qiskit.org/textbook,  

a. pip install --upgrade wheel 

b. pip install seaborn 

As with other quantum SDKs, developers usually start with a quantum simulator that 
runs locally before running their algorithms on actual quantum hardware. IBM Quantum 
is the default quantum backend; IonQ and Azure Quantum, among others, are supported.30 
Qiskit Runtime31 is a cloud offering that can run full hybrid algorithms written using the 
qiskit-ibm-runtime Python package. 

                                                 
28 https://qiskit.org/ 
29 Because of the venv, the correct Python 3 pip executable is aliased. 
30 https://qiskit.org/documentation/partners/ 
31 https://github.com/qiskit/qiskit-ibm-runtime 

https://qiskit.org/textbook
https://qiskit.org/
https://qiskit.org/documentation/partners/
https://github.com/qiskit/qiskit-ibm-runtime
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See Appendix B for a Jupyter notebook that implements a version of the quantum 
random number generation example introduced in the Azure Quantum section. The 
notebook uses the Aer simulator,32 a local simulator capable of simulating noisy qubits. If 
you wish to run code on an actual quantum computer, obtain an API token from your user 
profile page on IBM Quantum and run the following short Python program on your system: 
from qiskit import IBMQ 

IBMQ.save_account('«API Token»') 

This will save your credential to a local file. To use your credential in your programs, 
execute the following commands first:  
from qiskit import IMBQ 

provider = IBMQ.load_account() 

If you want to connect to any real quantum device, you can modify the first section 
of the notebook where the qiskit.providers package is imported from: 
 
from qiskit.providers.ibmq import least_busy 

real_devices = provider.backends(simulator=False, operational=True) 

backend = least_busy(real_devices) 

In general, there will be a queue of jobs in front of yours. Even if there is no wait, 
there is latency associated with submission into the job queue, compilation into control 
commands for the quantum hardware, and execution. Now, when qiskit.execute() is invoked, 
it will be necessary to wait for the job result to be ready before accessing it. It is possible 
to view your submitted jobs on the IBM Quantum web interface. A simple way to wait on 
the result in your code is to insert the following command: 

job.wait_for_final_state() 

In a real application, it would be wise to add a timeout parameter to the call and check 
for possible exceptions. 

D. Google Quantum Computing Service 
Google’s Quantum Computing Service33 is, at present, only open to those on an early-

access list. There is a questionnaire34 that research projects can use to request access. As 
with the other cloud services, Google offers a Python package that allows for coding the 
quantum circuit model, called Cirq.35 For completeness, Appendix D includes a version of 
                                                 
32 https://github.com/Qiskit/qiskit-aer 
33 https://quantumai.google/quantum-computing-service 
34 https://docs.google.com/forms/d/1DfUWu4zUAJ87GKy-ZoTHrFri5IwIteKtMxKfsy3lmHE 
35 https://pypi.org/project/cirq/ 

https://github.com/Qiskit/qiskit-aer
https://quantumai.google/quantum-computing-service
https://docs.google.com/forms/d/1DfUWu4zUAJ87GKy-ZoTHrFri5IwIteKtMxKfsy3lmHE
https://pypi.org/project/cirq/


16 

the quantum random number generator example that can be run locally using Cirq’s built-
in circuit simulator. A list of available quantum processors and simulators is also 
available.36 

E. Amazon Braket 
Introductory reading material on AWS focuses on keeping the entire quantum 

development workflow inside the AWS infrastructure. When doing this, the simulation of 
quantum circuits is performed on the same AWS Elastic Compute Cloud (EC2) VM 
instance as your Jupyter notebook or by a managed quantum simulator hosted by AWS. 
Like the other cloud providers, an SDK is provided as a Python package, amazon-braket-
sdk.37 We will also describe how to set up a local environment that uses the SDK, which 
can use a local simulator, or to invoke actual quantum hardware via AWS. Complex 
simulations or actual quantum processing are accomplished via properly authenticated calls 
into AWS infrastructure. 

To work within an AWS-provisioned Jupyter notebook requires spinning up a 
specialized Sagemaker EC2 instance that is at least an ml.t3.medium instance (250 free 
hours for the first two months after creating your first instance, $0.05/hour thereafter).38 
To save money in initial experimentation, it is possible to run simulations locally on your 
notebook instance. To accomplish this, launch jobs in your notebooks using the create() 
method of the class braket.jobs.local.local_job.LocalJob. This will spin up a Docker 
container for running the type of simulator you specified. Even more simply, you can use 
the LocalSimulator class.39 Charges for managed simulator (typically $/minute of 
processing) or quantum processing unit (QPU) usage (typically billed in USD/task plus 
USD/shot) are easily browsed once you have enabled Braket on your AWS account.  

                                                 
36 https://quantumai.google/cirq/ecosystem#supported_quantum_cloud_services 
37 https://github.com/aws/amazon-braket-sdk-python and https://amazon-braket-sdk-

python.readthedocs.io/en/latest/ 
38 https://aws.amazon.com/sagemaker/pricing 
39 https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-run-circuit.html 

https://quantumai.google/cirq/ecosystem%23supported_quantum_cloud_services
https://github.com/aws/amazon-braket-sdk-python
https://amazon-braket-sdk-python.readthedocs.io/en/latest/
https://amazon-braket-sdk-python.readthedocs.io/en/latest/
https://aws.amazon.com/sagemaker/pricing
https://docs.aws.amazon.com/braket/latest/developerguide/braket-get-started-run-circuit.html
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Note. The developer (1) authors circuits and other code on a Jupyter notebook in AWS, (2) runs simulations 

on an AWS-hosted quantum simulator, and when ready, and (3) executes on actual quantum hardware, 
termed Quantum Processing Units (QPUs). (4) Results are made available in S3 buckets, and (5) 
integration with other AWS services like Identity, IAM, CloudWatch, CloudTrail and EventWatch is 
available. (Source: https://docs.aws.amazon.com/braket/latest/developerguide/braket-how-it-works.html.) 

Figure 6. Amazon Braket Workflow 

Braket also offers support for the hybrid quantum programs — that is, standard 
compute resources relatively local to the QPU can work in a feedback loop iterating 
quantum jobs based on prior quantum results. The GitHub repo cited at the beginning of 
this section includes a README with instructions for using the AwsQuantumJob class to 
execute examples/job.py. 

Amazon offers three different managed quantum simulators: a state vector simulator 
(SV1), a tensor network simulator (TN1), and a density matrix simulator (DM1).40 Thus 
far, Amazon does not natively produce its own QPU hardware. Rather, it relies on third-
party providers IonQ and Rigetti. It even allows you to run on QA hardware at D-Wave, 
which is discussed in the next section. As of March 7, 2022, Braket supports IBM’s 
OpenQASM 3.0 for applicable gate-based QPUs. When enabling Braket on an AWS 
account, it is made clear that your code, data, and results transit to/from outside of AWS 
when executing on these third-party resources (also see Figure 6).  

Braket’s documentation is not explicit about the fact that that you can install its SDK 
locally and play with it using a local quantum simulator.41 To run on one of the managed 
simulators or an actual QPU from your own installation, set up credentialed connections as 

                                                 
40 https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator 
41 See https://github.com/aws/amazon-braket-sdk-python#available-simulators and examine the source 

code at examples/local_bell.py in the repository. 

https://docs.aws.amazon.com/braket/latest/developerguide/braket-how-it-works.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html#choose-a-simulator
https://github.com/aws/amazon-braket-sdk-python#available-simulators
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described at https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-
aws-credentials Then, as shown in the example at examples/bell.py, replace your 
LocalSimulator device with a device instance leveraging an AWS resource: 
from braket.aws import AwsDevice 
device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1") 

Braket has mature support for prioritized hybrid algorithm execution.42 As detailed at 
the resource in the footnote, it is expected that the hybrid code obtains the device Amazon 
Resource Name (ARN)43 from its environment. There are multiple ways to set the 
environment variables; the most straightforward is to use 
braket.aws.AwsQuantumJob.create(…) when submitting the job from code. It takes several 
arguments. The first positional argument is the ARN of the QPU (or simulator) you want 
to use. Additional arguments specify source file, code entry point, continuation form a prior 
incomplete job, and S344 bucket to store results in. 

F. D-Wave 

1. Leap 
D-Wave may be the oldest quantum computing company, having been founded in 

1999. To date, the company has focused on QA, in which qubits and the couplings between 
them naturally seek their lowest energy state(s). This contrasts with the quantum circuit 
computation model described earlier and used by all the other services. Annealing has 
provided an advantage of being much less susceptible to qubit noisiness, making it easier 
to build systems that can make use large numbers of qubits. As described below, a large 
class of optimization problems of business and logistics interest lend themselves to being 
computed this way. 

QA lacks the general applicability of the quantum circuit model of computation (often 
called gate-model computation in D-Wave’s literature). However, for the subset of 
optimization problems it is suited for, it works well, and has been finding practical 
application for years already. These are typically tasks that can be expressed using a binary 
quadratic model. D-Wave’s libraries allow these to be defined as quadratic unconstrained 
binary optimization (QUBO) problems or through the use of an Ising model, which is more 
familiar to physicists and material scientists. QA is best used to solve such issues as 
logistics with complex constraints, modeling molecular interactions, and financial portfolio 
optimization (e.g., optimizing between yield and risk). 

                                                 
42 https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs.html 
43 https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html 
44 Simple storage service, see https://docs.aws.amazon.com/s3/ 

https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-aws-credentials
https://github.com/aws/amazon-braket-sdk-python#boto3-and-setting-up-aws-credentials
https://docs.aws.amazon.com/braket/latest/developerguide/braket-jobs.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/s3/
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D-Wave Leap provides two easy ways to start learning and using its system within 
your web browser. Both require you to first set up a developer account at 
https://cloud.dwavesys.com/leap/signup. 

For a Visual Studio Code-like experience, working with Python source code files, D-
Wave offers a GitPod-based45 cloud IDE called D-Wave Leap.46 With it, one can directly 
browse and open the various code examples offered at https://github.com/dwave-
examples/. As with the gitpod.io service, it is also possible to enter any GitHub project 
URL and access it directly with a prepared D-Wave environment. 

There are also Jupyter notebook projects in the dwave-examples GitHub organization 
page. There is a prepared JupyterHub environment47 for these that allows one to easily 
open and work with any of the examples. 

It is relatively simple to set up a local environment for any of the example projects as 
well. The following steps should work in most Linux environments: 

• git clone https://github.com/dwavesys-examples/«name-of-project» 

• cd «name-of-project» 

• python3 -m venv .venv 

• source .venv/bin/activate 

• pip install --upgrade pip setuptools wheel 

• pip install -r requirements.txt 

• (First project only) Install your D-Wave Leap credentials using the steps described at 
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html.  

After these steps, peruse the example project README, which will instruct you on 
running the code or starting the notebook server, as appropriate. 

2. Quixotic Framework 
Arun Maiya has produced a Python framework, called Quixotic,48 that further 

simplifies the generation and running of these types of problems. Quixotic puts various 
popular graph algorithms within easier reach for defining and submitting to D-Wave’s 
quantum processors or to AWS (which, as of this writing, partners with mostly gate-based 
quantum processing providers; D-Wave is its sole annealing-based processing provider). 
In addition to the written guidance on the Quixotic website, we have provided a Jupyter 

                                                 
45 https://www.gitpod.io/#get-started 
46 Accessible at https://cloud.dwavesys.com/leap/ 
47 Accessible at https://cloud.dwavesys.com/learning/hub/home 
48 https://amaiya.github.io/quixotic/ 

https://cloud.dwavesys.com/leap/signup
https://github.com/dwave-examples/
https://github.com/dwave-examples/
https://github.com/dwavesys-examples/name-of-project
https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html
https://www.gitpod.io/%23get-started
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/learning/hub/home
https://amaiya.github.io/quixotic/
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notebook in Appendix E that demonstrates querying the framework for supported 
algorithms (or tasks) and sampling a couple of them both locally and on a D-Wave QPU. 
Just as with running the D-Wave example projects, it is necessary to first place your API 
token in your local environment. To install the latest Quixotic version 0.0.6, it is very 
important to use Python 3.7 or Python 3.8 so that pre-built Python Package Index (PyPI) 
binary wheels can be downloaded. You can mostly follow the same instructions used for 
the D-Wave environment above. However, instead of the  

pip install -r requirements.txt 

step, do 

pip install quixotic jupyter 

Of course, Jupyter is unnecessary if you are not using notebooks. 
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Appendix A. Azure Code 

A. qrng.qs 
The source code below is written in Q#, Microsoft’s language, which can implement 

hybrid quantum algorithms. 
namespace Qrng { 
 
    open Microsoft.Quantum.Canon; 
    open Microsoft.Quantum.Intrinsic; 
    open Microsoft.Quantum.Measurement; 
    open Microsoft.Quantum.Math; 
    open Microsoft.Quantum.Convert; 
    open Microsoft.Quantum.Arrays; 
 
    // Quantum operation that generates a single random classical 
    // bit using a simple quantum circuit. 
    operation SampleQuantumRandomNumberGenerator() : Result { 
        use q = Qubit();  // Allocated by default to |0⟩ 
 
        // Put the qubit to superposition 
        H(q);  // H❘0⟩ = ❘+⟩ = (|0⟩ + |1⟩)/sqrt(2) 
 
        // Measure the qubit value, with probabilities given by: 
        //   P(Zero) = ⟨+|0⟩⟨0|+⟩ = 50% 
        //   P(One)  = ⟨+|1⟩⟨1|+⟩ = 50% 
        return M(q);           
    } 
 
    operation SampleRandomNumberInRange(max : Int) : Int { 
        mutable output = 0;  // Q# requires binding a value at declaration 
        repeat { 
            mutable bits = EmptyArray<Result>();  
            for idxBit in 1..BitSizeI(max) { 
                set bits += [SampleQuantumRandomNumberGenerator()];  
            } 
            set output = ResultArrayAsInt(bits); 
        } until (output <= max);  // # i.e., redo QRNG if answer is too big 
        return output; 
    } 
 
    @EntryPoint() 
    operation RunIt(max_result: Int) : Unit { 
        Message("Using quantum RNG to generate a number from 0 to " + 
                $"{max_result}."); 
        mutable output = SampleRandomNumberInRange(max_result); 
        Message($"The generated number is {output}."); 
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    } 
} 

B. qrng_host.py 
""" 
Script that invokes quantum code in Qrng.qs for a silly bit-by-bit 
quantum random number generation. 
""" 
import sys 
from typing import Iterable 
 
import qsharp 
from Qrng import SampleQuantumRandomNumberGenerator 
 
 
# generate random numbers from 0..max, which may be provided as an argument 
MAX_RESULT = 50 if len(sys.argv) < 2 else int(sys.argv[1]) 
 
def generate_random_bits() -> Iterable[int]: 
    """ 
    Call the quantum operation as many times as there are bits needed to 
    define the maximum of the range. For example, if max == 7, you need three 
    bits to generate all the numbers from 0 to 7. 
    """ 
    for _ in range(0, MAX_RESULT.bit_length()): 
        # Call the quantum operation and store the random bit in the list 
        yield SampleQuantumRandomNumberGenerator.simulate() 
 
 
def convert_to_int(bit_string: Iterable[int]) -> int: 
    """ 
    Interpret the bit string as a binary literal. 
    """ 
    return int("".join(str(x) for x in bit_string), 2) 
 
print(f"Using quantum RNG to generate a number from 0 to {MAX_RESULT}.") 
 
# Variable to store the output 
RESULT = MAX_RESULT + 1 
while RESULT > MAX_RESULT:  # i.e., redo QRNG if answer is too big 
    RESULT = convert_to_int(generate_random_bits()) 
 
print(f"The generated number is {RESULT}.") 
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Appendix B. IBM Qiskit Jupyter Notebook 

A. In [1] 
import qiskit 
from qiskit import (__qiskit_version__, QuantumCircuit, QuantumRegister, 
                    ClassicalRegister, execute) 
from qiskit.providers.aer import AerSimulator 
qiskit.__qiskit_version__ 

B. Out[1] 
{'qiskit-terra': '0.19.2', 'qiskit-aer': '0.10.3', 'qiskit-ignis': '0.7.0', 'qiskit-ibmq-provider': '0.18.3', 'qiskit-aqua': 
None, 'qiskit': '0.34.2', 'qiskit-nature': None, 'qiskit-finance': None, 'qiskit-optimization': None, 'qiskit-
machine-learning': None} 

C. In[2] 
%matplotlib 
import numpy as np 
import math 
from qiskit.visualization import plot_histogram 
 
# Define circuit, including measurements 
circuit = QuantumCircuit(1, 1) 
circuit.h(0) 
circuit.measure(0, 0) 
circuit.draw(output='mpl') 

D. Out[2] 
Using matplotlib backend: agg 

 

E. In[3] 
backend = AerSimulator() 
 
# Leverage a qubit to calculate a single random bit 
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def quantum_random_bit(): 
    job = execute(circuit, backend, shots=1) 
    hist = job.result().get_counts() 
    return 0 if '0' in hist else 1 

F. In[4] 
from typing import Iterable 
 
def generate_random_bits(upper_limit: int) -> Iterable[int]: 
    """ 
    Call the quantum operation as many times as there are bits needed to 
    define the maximum of the range. For example, if max == 7, you need three 
    bits to generate all the numbers from 0 to 7. 
    """ 
    for _ in range(0, upper_limit.bit_length()): 
        # Call the quantum operation and store the random bit in the list 
        yield quantum_random_bit() 
 
def convert_to_int(bit_string: Iterable[int]) -> int: 
    """ 
    Interpret the bit string as a binary literal. 
    """ 
    return int("".join(str(x) for x in bit_string), 2) 
 
def quantum_random_int(upper_limit: int): 
    """ 
    Using quantum RNG to generate a number from 0 to upper_limit 
    """ 
    result = upper_limit + 1 
    while result > upper_limit:  # i.e., redo QRNG if answer is too big 
        result = convert_to_int(generate_random_bits(upper_limit)) 
    return result 

G. In[5] 
# E.g., throw 100-sided quantum die 5 times 
for _ in range(5): 
    print(1 + quantum_random_int(99)) 

H. Out[5] 
18 
60 
52 
54 
79 
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Appendix C. Braket Code 

Below is the Quantum Random Number Generator example as entered into a 
Braket/Sagemaker Jupyter notebook. 
# general imports 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
# AWS imports: Import Braket SDK modules 
from braket.circuits import Circuit 
from braket.devices import LocalSimulator 

A. Build a random bit circuit 
# Define coin-flip circuit (measurement is automatic when run) 
circuit = Circuit().h(0) 
 
# This shows a circuit diagram representation. The T lines 
# show time steps, of which there is only one in in this 
# particular circuit. 
print(circuit) 
T  : |0| 
q0 : -H- 
T  : |0| 

B. Use a local simulator to run on a Sagemaker notebook machine 

This is more limited in capability than the AWS managed simulators. 

# set up device 
device = LocalSimulator() 
 
# Leverage a qubit to calculate a single random bit 
def quantum_random_bit(): 
    result = device.run(circuit, shots=1).result() 
    counts = result.measurement_counts 
    return 0 if '0' in counts else 1 

C. Implement classical logic side of hybrid code 

This code is identical to that in the Qiskit example. 

from typing import Iterable 
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def generate_random_bits(upper_limit: int) -> Iterable[int]: 
    """ 
    Call the quantum operation as many times as there are bits needed to 
    define the maximum of the range. For example, if max == 7, you need three 
    bits to generate all the numbers from 0 to 7. 
    """ 
    for _ in range(0, upper_limit.bit_length()): 
        # Call the quantum operation and store the random bit in the list 
        yield quantum_random_bit() 
 
def convert_to_int(bit_string: Iterable[int]) -> int: 
    """ 
    Interpret the bit string as a binary literal. 
    """ 
    return int("".join(str(x) for x in bit_string), 2) 
 
def quantum_random_int(upper_limit: int): 
    """ 
    Using quantum RNG to generate a number from 0 to upper_limit 
    """ 
    result = upper_limit + 1 
    while result > upper_limit:  # i.e., redo QRNG if answer is too big 
        result = convert_to_int(generate_random_bits(upper_limit)) 
    return result 
 
 
# E.g., throw 100-sided quantum five times 
for _ in range(5): 
    print(1 + quantum_random_int(99)) 
35 
38 
70 
82 
96 
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Appendix D. Google Cirq Code 

A. Python source file qrng.py 
This is the Quantum Random Number Generator example coded against Google’s 

Python package, cirq. It borrows heavily from earlier Python codes. 
import cirq 
from typing import Iterable 
 
# 1. Define coin-flip circuit (measurement is automatic when run) 
 
qubit = cirq.GridQubit(0,0) 
circuit = cirq.Circuit(cirq.H(qubit), 
                       cirq.measure(qubit, key='m')) 
print(circuit) 
 
# 2. Use a local simulator, and leverage a qubit to calculate a 
#    single random bit 
device = cirq.Simulator() 
def quantum_random_bit(): 
    result = device.run(circuit, repetitions=1) 
    return result.measurements['m'][0][0] 
 
     
#3.Implement classical logic side of hybrid code 
# This code is identical to that in the Qiskit example. 
 
 
def generate_random_bits(upper_limit: int) -> Iterable[int]: 
    """ 
    Call the quantum operation as many times as there are bits needed to 
    define the maximum of the range. For example, if max == 7, you need three 
    bits to generate all the numbers from 0 to 7. 
    """ 
    for _ in range(0, upper_limit.bit_length()): 
        # Call the quantum operation and store the random bit in the list 
        yield quantum_random_bit() 
 
def convert_to_int(bit_string: Iterable[int]) -> int: 
    """ 
    Interpret the bit string as a binary literal. 
    """ 
    return int("".join(str(x) for x in bit_string), 2) 
 
def quantum_random_int(upper_limit: int): 
    """ 
    Using quantum RNG to generate a number from 0 to upper_limit 



28 

    """ 
    result = upper_limit + 1 
    while result > upper_limit:  # i.e., redo QRNG if answer is too big 
        result = convert_to_int(generate_random_bits(upper_limit)) 
    return result 
 
 
# E.g., throw 100-sided quantum five times 
for _ in range(5): 
    print(1 + quantum_random_int(99)) 
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Appendix E. Quixotic Jupyter Notebook 

from quixotic.core import QuantumAnnealer 
 
QuantumAnnealer.supported_tasks() 
maximum_clique 
minimum_vertex_cover 
minimum_weighted_vertex_cover 
maximum_independent_set 
maximum_weighted_independent_set 
maximum_cut 
weighted_maximum_cut 
structural_imbalance 
traveling_salesperson 
 
import networkx as nx 
 
GRAPH_SEED = 1334 
LAYOUT_SEED = 1971 
 
def generate_graph(size): 
    return nx.erdos_renyi_graph(size, p=0.5, seed=GRAPH_SEED) 
 
def draw_graph(graph): 
    positions = nx.spring_layout(graph, seed=LAYOUT_SEED) 
    nx.draw(g, with_labels=True, pos=positions) 
     
# defaults to local annealing simulator 
def max_clique(graph, task, backend='local'): 
    qo = QuantumAnnealer(graph, task=task, backend=backend).execute() 
    return qo.results() 
 
def draw_subgraph(graph, nodes): 
    positions = nx.spring_layout(graph, seed=LAYOUT_SEED) 
    sub = graph.subgraph(nodes) 
    nx.draw(graph, pos=positions, with_labels=True) 
    nx.draw(sub, pos=positions, node_color="r", edge_color="r") 
     
def show_task_subgraph_for_random_graph(size, task, backend='local'): 
    g = generate_graph(size) 
    draw_subgraph(g, max_clique(g, task, backend=backend)) 
 
show_task_subgraph_for_random_graph(size=8, task='maximum_clique') 
Executing locally. 
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show_task_subgraph_for_random_graph(size=8, task='minimum_vertex_cover') 
Executing locally. 

show_task_subgraph_for_random_graph(size=8, task='minimum_vertex_cover', backend='dwave') 
Executing on D-Wave LEAP. 
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