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Executive Summary 

IDA was tasked to develop methodologies for assessing the quality of decision-
making by autonomous systems as part of the test and evaluation, verification and 
validation (TEV&V) process for autonomous systems. This paper identifies the key 
challenges and necessary innovations associated with testing and evaluating the quality of 
decision-making by machines with autonomous capabilities, either on their own or when 
operating in human-machine teams. 

Modern computer processing power and inexpensive memory have enabled new 
algorithms and computational approaches that led to a state-space explosion in autonomous 
systems. The number of possible combinations of current inputs, memory contents, mission 
contexts, and possible courses of action is so large and varied that it is impossible to ever 
test even a representative sample of these combinations. Data from multiple modalities are 
processed to build and maintain a dynamic world model that describes both the external 
environment and the internal state of the machine. Systems extrapolate possible courses of 
action, rather than choosing from a predefined list, then prioritize and select an action while 
accounting for current conditions, other entities, commander’s intent, and system status. 
The resulting state space is not merely too large to test exhaustively—it is also too complex 
and nonlinear for traditional statistical methods (e.g., design of experiments) to be able to 
guarantee adequate “coverage” of the state space. Autonomous systems that share 
responsibilities (perception, reasoning, and course of action selection) with humans show 
even faster state-space explosion and present additional development challenges arising 
from the need to include the human-machine teaming concept of operations (CONOPS) as 
part of the system design. For such systems, much more experimentation and discovery 
will be needed during development than is common (or desirable) in a traditional program. 

Autonomous capabilities may also involve greater potential safety and vulnerability 
hazards than traditional systems. Shifting some cognitive tasks from humans to machines 
increases the “failure surface” of the system in ways that are not yet well-understood. For 
instance: 

1. Failure modes traditionally avoided through reliance on human training and 
common sense will require explicit assurance through test and evaluation 
(T&E), possibly requiring new T&E methods and resources. 



iv 

2. Autonomous machines that share both design and training are likely to exhibit 
identical failure modes, raising the possibility of coherent failures (possibly 
simultaneous) across an operating force.  

3. Machine decision-making, in certain circumstances, may prove too rapid or too 
remote for adequate human oversight.  

Not all autonomous capabilities, such as some standard practices for testing systems 
that make decisions by simple thresholding or that fuse information from a small number 
of sensors, will pose new challenges to TEV&V. What characterizes these systems, and 
makes traditional testing effective, is the low dimensionality of the state space. Commercial 
automobiles already feature autonomous capabilities of this kind, such as anti-lock braking 
systems, smart cruise control, and hands-free parallel parking. In the future, as more 
sensors are added and the algorithms integrate information from more sensors and control 
more of the car’s actions (e.g., steering, acceleration, braking), the dimensionality of the 
state space will increase until at some point exhaustive testing will no longer be feasible. 

One key to addressing the state-space explosion will be the ability to search the state-
space efficiently for problematic areas. This may not be sufficient, but work has begun in 
this area. As noted above, statistical sampling of the environment/mission set will not work, 
because the relevant sampling distributions are likely to be unknown for autonomous 
systems—even in the absence of an adversary. System decision-making behavior 
(perception, reasoning, and selection) can in principle be diagnosed and explained—but 
this will require novel instrumentation of the internal cognitive processes and new 
characterizations of what proper cognition looks like from the inside.  

Modeling and simulation (M&S), and live, virtual and constructive testbeds will be 
essential tools for the analysis and assessment of autonomous capabilities. These tools will 
need to explore the decision envelope of autonomous capabilities, rather than the physical 
envelope with which we are familiar. Further, there will need to be transparency of 
decision-making in both the human and the machine elements of the human-machine team. 
This transparency will require specialized instrumentation and probably extensive data 
logging. The tools and the associated transparency will be needed to shape exploration of 
the state space, as well as to assess quality of decision-making. Some of these tools will be 
new or applied in new ways to the development and TEV&V of autonomous capabilities.  

These M&S support tools will be an essential part of the test resources needed for 
TEV&V of autonomous capabilities. M&S to support exploration of a decision space, 
artificial intelligence to enhance efficiency and effectiveness of test planning and design, 
and instrumentation of both human and machine decision-making all remain open 
challenges. The instrumentation will at times be restricted by the space, weight, and power 
constraints common to DoD systems. It will also need to accommodate ongoing regression 
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testing and expanded range hazards, in recognition of the potential for greater hazards with 
autonomous systems. 

The challenges imposed on TEV&V by the state-space explosion, and on 
development and TEV&V by any human-machine systems with substantial teaming, do 
not necessarily arise in programs that seek to add only minimal autonomous capability to 
existing manned or unmanned systems, analogous to anti-lock brakes or smart cruise 
control in cars. As a result, there is at least the prospect that the necessary tools and 
infrastructure could keep up with the T&E demands of increasing autonomous capabilities 
in some of the near-term future systems.  
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1. Introduction 

A. Autonomous Capabilities and Artificial Intelligence 
The DoD is pursuing autonomous capabilities in support of a wide variety of 

missions. The 2018 National Defense Strategy specifically calls out artificial intelligence 
(AI) and autonomy as necessary enablers of future U.S. military capability. To date many 
of these systems have provided straightforward enhancements of human performance. 
Commercial automobiles already feature autonomous capabilities of this kind, such as anti-
lock braking systems, smart cruise control, and hands-free parallel parking. The anti-lock 
braking system decides whether to pump the brakes on the basis of fairly simple 
thresholding of an easily understood sensor. Capabilities of this sort, which represent 
evolutionary refinements over their non-autonomous predecessors, generally pose no new 
challenges for development, testing or fielding. 

Systems based on the straightforward examination of thresholds do not pose 
additional development or test and evaluation (T&E) challenges. The perception, 
reasoning, and selection steps are all straightforward and one-dimensional. At the other 
end of the spectrum, we now have the ability to design systems that take in 
multidimensional inputs, construct and maintain complex internal world models, develop 
alternative courses of action, and select among those possible actions in ways that cannot 
be understood in terms of a linear sequence of logical steps. Such systems may require new 
approaches to development, testing, and fielding.  

Both the “Third Offset” of the previous administration and the recent 2018 National 
Defense Strategy specifically call for AI, autonomy, and “big data” analytics to 
differentiate U.S. military capabilities from those of potential adversaries. As part of this 
focus, there are programs in the pipeline that will rely on active teaming between a human 
and an AI-enabled autonomous partner, providing significant mutual support. This real-
time interaction between humans and AI introduces timing sensitivities and psychological 
factors that add orders of magnitude to the complexity of ensuring safe, secure, and 
dependable system-of-systems performance. 

B. Overarching T&E Challenges of Autonomy 

1. Exploding State Space 

It may be useful to think of the autonomous capabilities embedded in a machine in 
terms of how they implement the OODA loop (Observe-Orient-Decide-Act) (Hammond 
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2001; Roske 2016). Both humans and machines with autonomous capabilities perceive, 
reason, and select courses of action. 1 We say “select” rather than “decide” to emphasize 
that in the machine case, there are implicit and explicit decisions being made during the 
“perception” and “reasoning” stages as well. (In contrast, the evolved human ability to 
observe a scene instantly and without conscious reflection prompts us to say that the human 
simply “saw” what was there.) These perception- and reasoning-related decisions must be 
designed into the machine, for example by explicit instructions or via a trained neural net. 
For example, the system must decide whether a given sensor input indicates the presence 
of an entity, decide what kind of entity, and decide how many entities.  

If the machine fails to respond appropriately, we do not know a priori whether the 
problem is in the perception of the entities, the reasoning about their status, or the selection 
of an appropriate course of action. (It could also be a problem with the sensor itself, and 
not a failure of the decision-making at all.) For machines, we need additional information 
to be able to determine where in the perceive-reason-select sequence the decision-making 
went wrong. The complexity of how the system’s AI processes its inputs and selects actions 
is what makes autonomy possible. The algorithms used typically involve high orders of 
recursion, feedback loops, and parallel processing of information, combined with extensive 
use of training data. It is generally impossible to understand what the software is doing in 
terms of line-by-line execution logic, and the possible combinations of inputs and 
execution paths is intractably large. This is referred to as the “state-space explosion”—any 
attempt to enumerate the possible distinct states the system could be in, or the possible 
execution paths of the software, is doomed to failure (Clark et al. 2012). Statistical 
sampling of the possible combinations of state space (machine status/external 
environment/mission/training data…) will not solve this problem, because the relevant 
sampling distributions are likely to be unknown for autonomous systems—even in the 
absence of an adversary. For adaptive systems—those that learn or modify their function 
after fielding—even predicting what states might be reachable in the future is difficult. 
Confidence in the autonomous capability will depend on building confidence in the entire 
perception, reasoning, and selecting sequence. We will need to identify techniques that 
enable testers to know that they have explored the decision state space adequately, even 
though it cannot be explored exhaustively or with established statistical techniques. 

While developing these techniques will be challenging, there are precedents in both 
the defense and safety communities. The approach is to build a persuasive “dependability” 
or “assurance” argument using all the available information as evidence (Tate et. al. 2016). 
For example, in the defense world, systems with energetic materials are fielded after 
analyses have established very low limits (typically less than 1 chance 1 million or 1 chance 

                                                 
1 We note that for some AI approaches, and for humans in many circumstances, there may not always be 

clean divisions between perception, reasoning, and selection. We will continue to use this language for 
illustrative purposes. 
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in 10 million) on the probability of a catastrophic failure. It is infeasible to test to statistical 
significance such low probabilities. Similarly, in the flight-safety and medical-device 
communities there are procedures for establishing safety when exhaustive testing is not a 
possibility (NATO 2018). 

2. New Elements of Design 

Traditionally, DoD systems are designed to achieve certain performance measures, 
perhaps with some attention to envisioned operator-machine interactions. Then, after 
design and prototyping are complete, the human operators are trained in using the system. 
For AI-enabled systems with autonomous capabilities in the areas of perception, reasoning, 
or selecting courses of action, this approach is unlikely to work (Ilachinski 2017, viii.) 
Overall performance of the human-machine system will typically be sensitive to the details 
of the concept of operations (CONOPS) for how and when humans and machines will 
interact. There are a panoply of trust issues in getting humans to appropriately use the 
perception, reasoning, or course-of-action selecting capabilities of a machine teammate. In 
cases where any of these activities or responsibilities are shared, it remains an open 
question how best to dynamically assign these responsibilities. CONOPS will now be in 
part a feature of design. The design will need to explicitly address the type and level 
of operator trust that will maximize operational effectiveness (Parasuraman, Sheridan and 
Wickens 2000).  

There is currently no theoretical basis to guide the design of human-autonomy 
interfaces and CONOPS (Ilachinski 2017, xvi), but there is a considerable body of work 
on human-machine interfaces (e.g., Billings 1997; Bass and Pritchett 2008). Further, there 
is beginning to be research into human-machine interface (HMI) and related CONOPS for 
operation of unmanned or remotely controlled systems (Rice, Keim and Chhabra 2015); 
however, we have found little research on HMI related to systems with substantial 
autonomous capabilities. In the absence of a theoretical basis, early experimentation and 
testing will be required as part of design and development. The experimentation will need 
to include actual human operators or close surrogates. Diagnosis and improvement of team 
performance will require visibility into the decision-making processes of both the humans 
and the machines. The instrumentation required for this will be new, possibly system-
specific, and will differ substantially between human and machine within the joint human-
machine system. 

3. Challenges of Autonomy and the DoD Acquisition Process 

We note here that these challenges manifest themselves throughout the acquisition 
process. Current Policy on Autonomous Weapons Systems (DoDD 3000.09) even 
mandates activities before formal program initiation and after fielding. How the challenges 
manifest themselves throughout the acquisition life cycle are described in Appendix A.
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2. Assessing Autonomous Decision-making 

A. The Importance of Diagnosis 
As noted in Section 1.B.1, state-space explosion and highly nonlinear responses to 

changes in inputs will make it impossible to test perception, reasoning, and selection 
functions exhaustively or by statistical sampling. This means that it will be impossible to 
verify and validate the dependability of system decision-making using only mission-level 
performance measures and “black box” testing. Assessing the quality of decision-making 
will require visibility into the inner workings of the various decision engines providing the 
autonomous capabilities. 2  During development, system design and engineering will 
depend on being able to allocate blame for undesired behaviors or performance shortfalls 
to know what problem needs to be fixed. Diagnosis—being able to explain why the system 
is behaving the way it does—will thus be central both to being able to make the system 
work at all and to achieving confidence that its performance will be dependable. 

The importance of diagnosis is well illustrated by recent highly publicized accidents 
involving vehicles with autonomous and semi-autonomous capabilities. For example, in 
two separate incidents, a Tesla vehicle operating in the semi-autonomous “auto-pilot” 
mode rear-ended a stationary fire-truck at 60 mph (Statt 2018; Stewart 2018) . In another 
recent incident, an autonomous vehicle developed by Uber fatally struck a pedestrian who 
was crossing the roadway outside a crosswalk at night (Lee 2018a ). In the latter case, the 
vehicle was under test and a safety driver was present, but the driver was not able to 
intervene to prevent the accident. These incidents, which are currently under investigation 
by the National Traffic Safety Board, are examples of catastrophic failures that may occur 
in testing and fielding of autonomous systems. Determining the root cause(s) of such 
incidents is crucial but challenging. Were these incidents the result of hardware failures, 
software defects, or deliberate design choices? If the system was working as designed, are 
there design improvements that could reduce the likelihood of such events, or are these 
incidents reflective of unavoidable trade-offs that must be tolerated? At the time of this 
writing, the National Transportation Safety Board (NTSB) investigations have not yet been 
completed, so we do not have enough details to provide definitive answers. Some details 
in news reports to date (Shepardson 2018; Nemo 2018; Stewart 2018; Lee 2018b) provide 

                                                 
2 We note here that “white box” or “clear box” testing also requires visibility into the internal structure of 

the component or system. In white box testing, the visibility is intended to ensure more exhaustive 
coverage, which we believe will be infeasible for advanced systems with autonomous capabilities. What 
we believe will be needed is visibility that supports an assessment when exhaustive coverage is 
infeasible (see istqb.org and softwaretestingfundamentals.com). 
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useful examples for our wider discussion of diagnosis in autonomous decision making. We 
will refer to these incidents below to illustrate specific aspects of the diagnosis problem. 

1. The Nature of Performance Shortfalls or Undesired Behavior 

Even if exhaustive testing is impractical, we expect extensive testing using a variety 
of modeling and simulation (M&S) tools to provide important information. Sometimes the 
result will be that everything appears to be working correctly. If that is not the case, an 
important function of diagnosis is to enable classification of shortcomings into:  

 Situations that must be endured, because the problem cannot be fixed. 

 Trade-offs—problems that can be lessened by making something else worse. 

 Situations where feasible changes in design or implementation could improve 
performance across the board. 

Consider a simple example of a Doppler radar system to be used to detect ground 
targets of interest. For fast-moving targets, very high performance is expected. Doppler 
processing can easily distinguish movers from the stationary background. If the system is 
having trouble identifying targets, it is not functioning as designed—the problem is in the 
implementation. This should be a problem that can be fixed without performance trade-
offs. 

For slow-moving targets, the situation is more complicated. Wind or leakage from 
objects with large returns can induce false alarms even in a correctly functioning system. 
Raising the Doppler threshold for detection would reduce the false alarms, but at the cost 
of reducing the number of true detections. There is no pure solution to this problem—
rather, an assessment must be made about which combination of missed detections and 
false alarms is operationally preferred. Diagnosis can inform this choice by highlighting 
technical limitations and human factors issues associated with a given point on the trade-
off curve, but the underlying problem always remains. 

For stationary targets, there is an additional complexity: there may be background 
objects indistinguishable from the target. This is the case even for high-resolution 
“imaging” radars. Given the sensor and size, weight, and power (SWaP) constraints, there 
may be no design that will perform as desired when the target is imaged against certain 
backgrounds. Recognizing when this is the case is important for efficient development of 
a useful system. 

The questions for diagnosis then are: 

 Did the system perform as expected?  

 If not, is the environment one in which it is possible for it to perform well? 
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 If the system is expected to perform well, does the performance need to be 
traded off or can shortcomings be fixed? 

If the performance is below expectations then a deeper level of diagnosis is required 
to localize the shortfall in one or more autonomous capabilities, or their interactions, or the 
interactions between humans and autonomy. However, even the question of which regime 
we are in will be difficult for many autonomous systems, due to the lack of a predictive 
theory of which problems are easy (like fast-moving targets) and which problems are hard 
(like stationary targets). 

The recent accidents involving Uber and Tesla vehicles illustrate the distinction 
between performance that can be traded off and performance that can be fixed. The Tesla 
system, for example, relies on radar that has a high false-alarm rate for stationary objects 
while the vehicle is moving. Hence, to avoid frequent and unnecessary (and potentially 
dangerous) stops during “typical” operation, the autopilot system is designed to ignore 
radar returns from stationary objects, leaving the human driver responsible for avoiding 
any actual stationary obstacles.3 Similarly for Uber (and likely other autonomous vehicles), 
the alarm rate due to genuine but benign objects in the road (e.g., small rocks, trash bags, 
paper, etc.) leads to a trade-off between caution and speed/comfort. Uber has reportedly 
prioritized comfort in this trade-off, and some suggest that the fatal accident was a result 
of this design choice (Lee 2018b; Shepardson 2018). Hence these systems likely behaved 
as intended. If this is the case, reducing fatalities will require not merely improved 
perception of potential hazards, but also a modified human-machine CONOPS, matching 
the false-positive and false-negative rates to a role that humans can perform reliably. 
Uber’s intent to develop a fully autonomous system will depend on being able to reduce 
both error rates simultaneously to acceptable thresholds, which may or may not be possible 
at present. Until it is, the optimal design will not (in general) be the design that gives the 
smallest possible role to the human driver.  

2. Diagnosis in the Case of Human-Machine Teaming 

As we have just seen, there are additional failure modes in the case of human-machine 
teaming. In particular, there are failures that need to be attributed to the interaction between 
human and machine, and to the allocation of responsibilities between human and machine, 
rather than to either one individually. 

Extend the radar example in the previous section to add a target cuing system to the 
Doppler radar detector. Suppose we observe that the human system operator is failing to 
notice a certain type of threat. There are many conceivable reasons for this: 

 The radar is not detecting that threat. 

                                                 
3 Ignoring stationary or slow moving targets is typical for Doppler radar systems. 
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 The perception function is not correctly classifying the target 

 The system is reasoning that cuing is not appropriate for this target. 

 The system is selecting the wrong course of action for making the human aware 
of the target. 

 The human is failing to notice the cuing information provided by the system. 

The problem might also be some combination of the above. Determining which of 
these are working as intended and which are not may require extensive instrumentation of 
the internal states of the autonomous capabilities. Only then can the analysis proceed to the 
question of whether the problem is caused by errors in the code, incorrect choice of 
algorithm, inappropriate training data, poor human-machine interface design, inadequate 
(human) training, or some combination of those factors.  

The many possible approaches to human-machine teaming will be constrained by the 
design. In particular, the possible command-and-control relationships will be determined 
by the design, which in most cases limits possible CONOPS. The case with which we are 
most familiar is the human as operator of the machine. There is a strict hierarchy. If the 
human and the machine are teammates, both the possible failure modes and the diagnosis 
become more complex. It may be impossible to “localize” failures in either the machine or 
the human. For example, there may be multiple teaming courses of action that would be 
successful, but the machine might pursue one while the human pursues another, leading to 
failure that cannot easily be attributed to either. We will consider these questions in more 
detail in Section B, where we discuss how to measure them. 

B. Instrumenting Decision-making 
The term instrumentation suggests specific, quantitative measurements such as 

velocity, acceleration, or response time. Much of traditional developmental testing is based 
on identifying the appropriate physical measurements needed to support system 
development and evaluation. Operational testing, in contrast, requires determinations of 
effectiveness and suitability—inherently qualitative judgments. There are also important 
qualitative developmental test and evaluation (DT&E) determinations, such as readiness 
for initial operational test and evaluation (IOT&E). In the case of autonomous systems, 
these qualitative determinations will also include correctness and adequacy of the training 
data used (Zhang, Zhou, and Wright 2018), the quality of the human-machine teaming 
CONOPS (Ilachinsky 2017, xvi), and the quality of the learning exhibited by machines to 
be fielded with unsupervised learning capabilities (Goix 2016). 

In Section A we discussed the importance of being able to understand why an 
autonomous system is making the decisions it makes. This is a key enabler both of 
successful system development and of eventually establishing that a system is effective 
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and suitable for certain purposes. In this section we discuss several specific kinds of 
diagnostic information that will be needed to support successful development, timely 
certification, and effective operations when humans and machines work together. 

1. Distinguishing Poor Reasoning from Flawed Perception 

Beginning with the earliest stage of information processing—perception—it is 
necessary to distinguish breakdowns that occur at the perception stage from those that 
occur at the reasoning stage (Saffioti 1997). Returning to our Doppler radar example, we 
need to be able to tell whether the problem is with how the radar returns are being 
interpreted or with the conclusions drawn from those interpreted returns. 

Human beings sometimes have trouble seeing the distinctions between sensory input, 
interpretation of that input, and extrapolation (reasoning) from those interpretations 
because much of that process is subconscious in human perceptions. It seems perfectly 
natural to say “I see a brown dog,” but in fact the ideas of “brown” and “dog” arrive very 
late in the processing of visual input (Agrawal et al. 2014). The brain “sees” a pattern of 
nerve excitations arriving from the retina, along with parallel inputs that will be interpreted 
as color information. The brain processes this information into a constructed photo-like 
image, which is presented to the conscious mind. That image is further interpreted as a 3-
D visual field, adding information about relative sizes and distances. Semantic tags like 
“dog” might be added at this point as part of perception, for familiar kinds of dog. For 
unfamiliar kinds of dog, additional reasoning might be required (it has fur, four legs, and a 
muzzle, and a human is walking it on a leash). 

For autonomous systems, every stage from raw sensor input (in terms of photon 
counts or voltages) to semantic tagging of inferred entities (e.g., “there is an object about 
12 meters away at bearing 117°, and it is a dog”) must be designed and implemented using 
a combination of signal processing, logic, and artificial intelligence algorithms. Perception 
is hard, and fundamental challenges remain even after five decades of research and 
development (Nixon and Aguado 2012). It only seems easy and natural to us because we 
all rely on highly evolved neurobiological systems that do the hard work for us without 
conscious effort on our part. 

To distinguish flawed perception from downstream errors in reasoning, we would 
need to have access to the outputs of the perception function in a human-interpretable 
format that could be compared against the designers’ specification of what “correct” 
perception should look like, given the inputs to the sensors. This is more complex than it 
sounds, for several reasons. First, the internal world-model of the system will typically not 
be anything like the internal world-model maintained by a human being (see, e.g., Drouilly, 
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Rives, and Morisset 2015).4 Basically, the world model is the database that can be accessed 
and used by the various decision engines. This database will have been explicitly designed 
into the machine and will usually contain a number of implicit, and hence impossible to 
modify, assumptions. Translating world-model states and state-changes into terms that 
human testers can compare against “ground truth” may be challenging all by itself. Second, 
what constitutes a “correct” (or even adequate) world model is highly mission-dependent. 
There is no operational value in world-model contents that are never actually used for 
perception, reasoning, or selection—or that only add noise to those decisions. Finally, it 
will also generally not be true that the information that is most useful to humans when 
doing a given mission is the same as the information that is most important to an 
autonomous system doing the same mission (Drouilly, Rives, and Morisset 2015). 

Instrumenting perception, then, requires both measuring the sensor outputs that are 
being presented to the perception module and measuring how the machine’s world-model 
is changing as a result. Diagnosis of whether perception is working as intended will further 
require knowing what the machine’s internal representation of ground truth should look 
like, which possible features of an internal world-model are important for correct reasoning 
and selection, and whether all this processing is happening fast enough to support real-time 
operations. 

Consider again the fatal accident involving the Uber self-driving vehicle. In that case, 
the autonomous vehicle failed to stop when a pedestrian crossed its path unexpectedly. 
Early indications suggest that the vehicle did detect the pedestrian, but did not choose to 
initiate evasive action (Shepardson 2018; Lee 2018b). The question, then, is why not? One 
possibility is that the pedestrian was misidentified as a benign object in the road (e.g., a 
plastic bag), indicating incorrect perception. Another possibility is the system may have 
misidentified where the pedestrian was with respect to the roadway, also indicating 
incorrect perception. Either of these cases would involve corrective action involving the 
perception module. Alternatively, the system may have extrapolated that the pedestrian 
would be out of the way by the time the vehicle reached that point of the roadway, which 
would be a case of incorrect reasoning. And finally, as noted above, the vehicle may have 
accurately identified the hazard, but left corrective action to the driver due to the high false-
positive rate of such identifications. These possibilities are purely speculative at this stage 
and are only discussed for illustrative purposes. Having knowledge of the vehicle’s world 
model before, during, and after the incident will be necessary to fully tease out where the 
failure lies.  

                                                 
4 By “world-model” we refer to the database of information available to the perception, reasoning, and 

selection functions. The possible data values that populate this database and the feedback loops by 
which the outputs of perception, reasoning, and selection can modify those contents are design-time 
choices. These choices will always reflect implicit assumptions and are impossible to modify at run-
time. 
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2. Distinguishing Bad Choices from Poor Reasoning 

Just as we need to be able to distinguish incorrect perception from downstream errors 
in decision-making, we also need to be able to distinguish downstream errors in course-of-
action selection from poor reasoning. A bad choice is one that would be inconsistent with 
mission goals and priorities, despite the system’s current understanding of the world being 
complete and correct. 

We saw above that distinguishing poor reasoning from flawed perception requires 
being able to compare internal system world-model states against ground truth. In the same 
way, distinguishing poor selection from poor reasoning also requires being able to compare 
the system’s understanding of the world (as arrived at through reasoning) against the 
“correct” representation of the world for purposes of selecting courses of action. The 
purpose of the outputs of perception is to support good reasoning; the purpose of the 
outputs of reasoning is to support good choices. There is no a priori reason to suspect that 
the same kinds of simplifications and/or errors are equally important in both cases. This 
leads to the conclusion that the relevant measures of effectiveness and measures of 
performance for individual AI modules within an autonomous system are both architecture-
dependent and mission-dependent. 

In terms of diagnosis, this will often lead to a multistage problem. First we must 
determine what kinds of error or data summarization in a world-model are problematic for 
the downstream decision modules. Then we can test for whether a given module is 
producing the kind of outputs needed downstream. If it is not, we must further determine 
whether the problem is that the module has not been coded correctly or whether it is the 
working as designed, but is the wrong kind of module. If it is working as designed, is the 
problem in the choice of algorithm, the choice of training data, or the hardware it is 
implemented on? Can that be remedied, or do we need a new design for this part of the 
architecture? These questions induce a feedback loop in the design process that could 
potentially involve major changes to the system architecture. 

3. Distinguishing Incomplete World–Models from Incorrect World-Models 

Like the distinctions made above, an incomplete (i.e., inadequate) world-model is 
often confused with an incorrect world-model. An incorrect world-model is inconsistent 
with ground truth. An incomplete world-model is one where the world-state information 
maintained by the system is not adequate to support good operational decision-making, no 
matter how good the perception, reasoning, and selection algorithms being employed, even 
when the contents of the model are fully consistent with ground truth.  

Consider the example of an autonomous vehicle deciding how to brake. Real-time 
traction feedback from the drive wheels might or might not be sufficient information for 
effective braking in all circumstances. Significantly better performance in icy conditions 
might be possible if the world-model included temperature information, or recent weather 
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history, or a database of road surface materials. If absence of such information is preventing 
acceptable braking performance in some conditions, that is an example of an incomplete 
world model. 

World models can be incomplete either because they fail to represent necessary 
information of a particular type (as in the example just given), or because they represent 
that information at the wrong level of granularity (e.g., knowing that it has rained within 
the last week is not as valuable as knowing that it is has been raining for half an hour). 
Distinguishing those two cases may require experimentation. Identifying missing classes 
of world-model data early in development will be particularly important, since the remedy 
might involve additional sensors or communications in addition to improved data-fusion 
algorithms.  

4. Distinguishing Bad Algorithms from Bad Training Data 

Many current approaches to autonomy rely heavily on the use of multimodal 
supervised learning, a type of machine learning in which a system is trained to produce 
desired outputs for a given input through the use of labeled multimodal training data.5 The 
data labels, which establish ground truth for each training instance, are used to provide 
corrective feedback when the algorithm produces incorrect output and positive 
reinforcement when it produces correct output. Multimodal learning has proved to be a 
powerful tool in areas like image classification, speech and handwriting recognition, and 
speech synthesis (Baltrušaitis, Ahuja, and Morency 2017). 

The capabilities of any supervised learning system depend on the characteristics of 
the training data set. To begin with, the system cannot learn to produce outputs that were 
not labeled in the training data—an image classifier cannot guess whether a given image 
contains a cat unless the training data instances were labeled as “contains a cat” or “no cat.” 
More subtly, the system can only learn to respond appropriately to the range of cases 
presented in the training set. If all the training pictures labeled as “contains a cat” showed 
either house cats or tigers, the system probably will not be very good at categorizing 
pictures containing cougars or jaguars. If the system is meant to be able to recognize 
cougars as cats, this is a problem that is neither an error in the design nor a bug in the code. 

Still more subtly, systems intended to recognize rare events are especially difficult to 
train. A common approach is to use a “balanced” training set in which positive and negative 
instances are roughly equal in number, but to apply a weighted penalty function in the 

                                                 
5 The term multimodal here refers to inputs of more than one type (e.g., a combination of visual images, 

sounds, radar and/or lidar signals, stored references, etc.). For machine-learning purposes, video inputs 
are themselves multimodal, involving a combination of color, contrast, intensity, and time-series 
information. Similarly, human speech carries information not only through phonetics, but also pitch, 
timbre, pace, para-verbal sounds, etc. Interpreting video imagery or human speech is thus a multimodal 
problem all by itself. 
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training updates, so that false positives are penalized more heavily than false negatives. 
This introduces bias into the system response, in exchange for increased confidence in 
positive responses. At the same time, because positive instances are rare, it may be difficult 
to find enough distinct labeled positive instances to construct an adequate balanced training 
set. The usual approach in this case is to oversample the available positive instances, which 
increases the risk of overfitting to the peculiarities of those instances. 

If a supervised learning system exhibits poor false-positive or false-negative behavior 
in practice, it might be difficult to determine whether the problem is due to the algorithm 
or due to the training data used. Cross-validation can help, but is of limited value for rare 
events because of the oversampling of the positive cases, making all test sets look alike. 
Experimentation with different algorithms and different sample and cross-validation 
schemes may be necessary. There is also ongoing research in new “explainable artificial 
intelligence” techniques (see, e.g., Samek, Wiegand, and Müller 2017) that can (in some 
cases) reverse-engineer the parameters of the trained supervised learning module to 
determine how (in human-understandable terms) the system is making its output decisions. 
These techniques require detailed access to the internal topology and numerical weights of 
the algorithm being used. The Defense Advanced Research Projects Agency is currently 
pursuing a substantial effort in this area (Gunning n.d.). 

5. Unsupervised Learning 

A number of commercial applications of AI exhibit learning without the use of labeled 
input data. Called unsupervised learning, it has been used primarily in the areas of 
classification and anomaly detection. Unsupervised learning can be used before fielding 
(e.g., to learn to categorize unstructured data), or it can be used to continuously improve 
performance during operations. DoD has expressed interest in fielding military systems 
with the ability to learn while deployed, particularly in the area of counter-cyberattack 
systems that may need to adapt to changing threats on time scales too fast for human 
command and control (Dua and Du 2016, 100ff.).  

In practice, one approach to T&E of systems that continue to learn during deployment 
might be to hedge our bets by allowing the learning to take place, but only permit the 
systems to act on the new beliefs after an examination of lessons learned. Regardless of 
whether the fielded systems are expected to be permitted to act on unsupervised learning, 
the quality of the learning algorithms will need to be assessed. In most cases, there will be 
an unsupervised learning phase during development. During that phase, it will be important 
to develop an understanding of the quality of learning and the behavior of the learning 
algorithm, which will apply to post-fielding learning as well. This raises the question of 
how to instrument learning and how to interpret the measurements taken. What does correct 
learning look like, at the level of algorithm parameters and machine-learning outputs? 
What warning signs should testers be looking for? 
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In terms of diagnosis, the evaluations to be supported by the measurements include 
the following: 

 Has the learning algorithm been coded correctly (debugging)? 

 Is the learning algorithm behaving as predicted? 

 Does the learned behavior improve performance in the context that prompted the 
learning? 

 Does the learned behavior decrease performance in other contexts? 

– If so, are we in a constrained trade space, or is it possible to preserve the 
improved performance while avoiding the decreased performance? 

– Do we need to retrain the CONOPS, or change the CONOPS, or both? 

In general, assessing the performance of unsupervised learning is difficult. Even 
defining measures of performance that are meaningful and operationally useful is a 
challenge (Goix 2016). In practice, it may prove to be easier to build unsupervised learning 
systems than to assess how well they are working. 

6. Teaming CONOPS 

Assessing the teaming CONOPS will require a lot of transparency. Visibility will be 
needed into the decision-making of all team members. The “team” may be understood to 
be anything from a single human-machine pair, to a collection of collaborating autonomous 
machines, to an arbitrary mix of autonomous human and machine agents collaborating to 
accomplish a mission. In all cases, the CONOPS will need to be evaluated on the basis of 
how well the elements of the team perform together to accomplish the mission. (Kalyanam 
et al. 2016)  

Ultimately, the human must be trained to the CONOPS engineered into the machine. 
Mismatches in expectation between human teammates and machine designers, or 
CONOPS that are not well-suited to human capabilities, can lead to serious operational 
shortfalls, as evidenced by the recent accidents involving Uber and Tesla vehicles. In the 
Tesla incidents, vehicles operating in the semi-autonomous autopilot mode rear-ended 
stationary fire-trucks at high speed (>50 mph) (Statt 2018; Higgins 2018). Based on 
warnings found in the Tesla manual, it is likely that detecting stationary objects while the 
vehicle is driving at highway speeds is difficult for the radar system used by Tesla, and 
hence Tesla vehicles rely on the human drivers to be alert at all times to intervene in such 
cases (Stewart 2018). In both incidents, however, the drivers were distracted during 
operation and did not have their hands on the wheel. Similar incidents with Tesla vehicles 
suggest that drivers may become overconfident in Tesla’s semi-autonomous capabilities 
with time and, as a result, are not as engaged with driving as intended. The CONOPS 
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assumed by the designers are perhaps unrealistic; being alert for long periods of time with 
no actual duties is not something humans are good at (Davies and Parasuraman 1982). 

The Uber vehicle that was involved in the fatal crash was designed to operate 
autonomously and was under test (Lee 2018a; Shepardson 2018). Hence, the intended Uber 
CONOPS does not in principle involve human teaming for driving. The driver in this case 
was present as an external safety monitor to mitigate the impact of potential failures during 
testing. But video released from the vehicle during the incident suggests that the driver was 
distracted and could not perform corrective action when the vehicle ultimately failed to 
recognize the pedestrian in the roadway. This can be seen as a failure in test safety planning 
because unrealistic expectations are placed on safety drivers. Again, the NTSB 
investigations are not complete, so to date, these are simply possible explanations. This 
incident does suggest that even for “fully” autonomous systems, human teaming CONOPS 
still need to be considered and optimized to ensure safe operations during testing. 

We note that the fixes to the Uber and Tesla systems will require different solutions 
and probably different approaches. This is a consequence of differences in the target 
CONOPS. In general, during CONOPS development, it will be vital to be able to trace 
specific operational performance outcomes back to details of the CONOPS, even as the 
humans involved are themselves learning and adapting. The instrumentation needed to 
understand how CONOPS are affecting outcomes in pure machine-machine collaborations 
is already difficult. Section C addresses the even more complex problem of instrumenting 
for human-machine CONOPS evaluation, including instrumenting human cognitive 
behaviors. 

C. Transparency, Explanation, and Trust 
This section addresses how to assess the quality of decision-making in a collaborative 

context. One of the major challenges of humans collaborating with autonomous machines 
is that a machine capable of performing without human input would largely result in the 
human being out of the loop during routine performance. Specifically, out-of-the-loop 
unfamiliarity comprises three conditions: (1) the human is unaware of the autonomous 
system’s state or the logic driving its operations (i.e., perception is degraded); (2) the 
human realizes too late when something goes wrong with autonomous system functions 
(i.e., reasoning is disrupted); and (3) the human is either too slow or completely unable to 
intervene due to skill degradation over time (i.e., decision-making and action execution are 
weakened). There is a general belief that these problems could be lessened if the human is 
better kept in the loop by receiving continuous explanations of autonomous systems 
functions (i.e., making the systems more transparent) or by adjusting parameters that 
influence human trust in the autonomous system. Trust and transparency are not mutually 
exclusive variables; system transparency plays a significant role in shaping trust in the 
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system just as trust plays a vital role in operator interaction with both transparent and 
opaque systems. 

1. Making Autonomous Decision-making Transparent to Humans 

Automation transparency has been defined as “the descriptive quality of an interface 
pertaining to its abilities to afford an operator’s comprehension about an intelligent agent’s 
intent, performance, future plans, and reasoning process” (Wright et al. 2017). This might 
not realistically imply full awareness of all these elements on the part of the human; the 
emphasis is generally on the “operator’s comprehension” or information that is required by 
the human to maintain just sufficient awareness of system functions. Transparency, which 
has been treated as a measure of the automation’s openness in information communicated 
to the operator through the interface, encompasses what the automation is currently doing, 
which information is being used, how it is being processed, and when it is provided 
(Westin, Borst and Hillburn 2016). From a design standpoint, decisions have to be made 
regarding how much and in what ways information should be provided about the criteria, 
uncertainty, and rationale underlying automation’s judgments and problem-solving (Bass 
and Pritchett 2008). Research has indicated that acceptance and trust in automation can 
suffer because of the system’s opacity (Christoffersen and Woods 2002; Sarter et al. 1997) 
or mismatches in underlying strategy because the human would solve this problem 
differently (Westin, Borst and Hillburn 2016). Past and most current models of human-
automation interaction have assumed a human in charge of automation in a supervisory 
control position, which requires a high level of awareness of system function on the part 
of the human. But in the emerging domain of autonomous systems and human-machine 
teaming, the need for machine transparency and human awareness of machine functions is 
even greater. 

The increase of automated technologies stems from the view that operators should do 
as little as possible, since they constitute a major source of variation and unpredictability 
in system performance. But the process of increasing automation often results in humans 
being assigned to tasks that the automation designers were incapable of automating due to 
their technical complexities. When combined with lack of transparency about automation 
functions, human operators are forced to interact with systems that are difficult to 
understand and use, which reinforces the rate of human error in collaborative operations 
with automated systems, rather than reducing it (Helldin et al. 2014). Automation surprises 
resulting from the automation not performing as expected or acting in a way not 
anticipated, have been associated with several “out-of-the-loop” human performance issues 
(Sarter, Woods, and Billings 1997). Specifically, CONOPS that influence machine design 
may, in turn, drive poor decisions in humans. During the initial stages of trust development, 
humans often rely on additional sources to substantiate information provided by the system, 
but the need for verification diminishes as trust in the system increases. This is why 
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transparency of automated system decisions or relevant supplemental information is 
necessary, at least in the initial stages of interaction between a human and a machine.  

Several frameworks have been proposed to build greater transparency into the designs 
of autonomous systems. For example, Billings (1997) proposed a set of “human-centered 
automation” guidelines that highlight the need for including the human operator in the 
execution of automated tasks, providing appropriate information distribution, and 
implementing automated functions that are easy to learn and use. For example, the mixed-
initiative approach (Tecuci, Boicu, and Cox 2007) stresses the importance of dialogue 
between the human and the automation and of requiring human input during the problem-
solving processes, whereas the team-player approach looks upon the automated system as 
a member of the team that needs to be taken into account when coordinating the tasks 
allocated to either the human or the automation. Despite the differences in these 
frameworks, the common underlying message is that designers must keep humans in the 
loop to avoid well known problems such as degraded trust and inappropriate automation 
utilization. Human workload could also be kept at an acceptable level to maintain 
situational awareness (Helldin et al. 2014).  

One common method for increasing automation transparency is to provide 
explanations underlying the automation’s behavior. In the context of e-commerce and 
semantic web services, diagnostics applications in health care, and museums and cultural 
institutions, these explanations typically provide an argument for why the user should 
accept a recommendation (e.g., by comparing it with previous choices), noting what users 
with similar preferences have chosen or pointing out why a certain item is believed to 
match the user’s characteristics. 

Although well-designed explanations can foster trust and lead to better use of 
automation, poorly designed explanations can be counterproductive by obstructing 
understanding, resulting in degraded decision-making (Herlocker et al. 2004). 
Furthermore, increasing transparency by providing more information can exacerbate 
mental workload if the amount of information exceeds what the operator is capable of 
processing at any given time (Marois and Ivanoff 2005). From an interface-design 
perspective, high transparency can lead to cluttered displays (Moacdieh and Sarter 2015). 
Therefore, optimal transparency should ideally present vital functional information while 
simultaneously reducing operator information-processing demands. In any system, the 
design process is highly dependent on domain knowledge, and iterative testing and 
evaluation are the best way forward to determine optimal parameters for automation 
transparency (Westin, Borst, and Hillburn 2016).  

2. Enabling Appropriate Trust by Human Team Members 

The prevalence of autonomous systems is expected to lead to a significant 
redistribution of operational responsibility between human operators and automated 
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systems. With increasing autonomy, the role of the human will metamorphose from that of 
a primary controller to that of an active teammate sharing control with automation. 
Specifically, autonomous systems with both human and machine components need to be 
modeled as partners rather than as tools. These partners would ideally support or assist 
each other in performing functions that might be difficult or even impossible for either 
component to perform alone.  

One method that interface designers are increasingly using to improve the 
effectiveness of partnerships is to integrate anthropomorphic attributes (McBride and 
Morgan 2010). These attributes create more “natural” interactions intended to elicit user 
trust and increase system acceptance (Marsh and Meech 2000). Ideally, autonomous 
machines should be designed to interact or behave in a manner similar to a human, imitating 
human language structures where applicable while also possessing unique knowledge and 
functional algorithms that may be inaccessible to the human teammate (Madhavan and 
Wiegmann 2007). No matter how robust the design, however, it is likely that such 
autonomous system software will fall short of expectations at some point. Such shortfalls 
are most likely to occur when humans misunderstand the capabilities of the machine (and 
vice versa), or when the entire system has become the subject of hacking or some other 
form of technological sabotage. Such situations will lead to a loss of trust on the part of the 
human.  

Trust refers to the expectation of, or confidence in, another. It is based on the 
probability that one party attaches to cooperative or favorable behavior by other parties 
(Barber 1983, Muir 1987). For optimal trust in teammates within an autonomous system, 
the human must be aware of and understand several characteristics of the autonomous 
system. According to Sheridan (1988), humans use seven system design characteristics to 
assign trust: reliability, robustness, familiarity, understandability, usefulness, explication 
of intention, and dependability. Furthermore, it is not sufficient for human operators just 
to learn to trust a machine; the trust must be calibrated to the actual characteristics of the 
automated system. Calibration is a term used to describe the process by which automated 
system partners learn to adjust their behavior based upon the specific characteristics (e.g., 
reliability and performance) of the system. When trust is miscalibrated, the perceived and 
actual performance of the system are not in proper alignment with one another (McGuirl 
and Sarter 2006). As can be seen in Figure 1, mistrust (or over-trust) is defined as human 
trust exceeding the automation’s capabilities, leading to over-reliance on the automation, 
where the human deems periodic verification and validation of information being provided 
by the system as unnecessary. Distrust (or under-trust) occurs when operators 
underestimate the reliability of the automation and fail to rely on it as must as they should. 
Distrust prevents realization of the full benefits of the automated tool; mistrust prevents 
maximization of the human’s strengths.  
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Source: Adapted from Wickens, Gempler and Morphew (2000). 

Figure 1. Model of Trust Calibration.  

 
Although many factors influence trust, effective training methods for trust in 

automation have received little attention. The Technology Acceptance Model incorporates 
ease of use along with two other trust characteristics, perceived usefulness and behavioral 
intention, to determine whether or not a user will accept an automated system (Mathieson, 
Peacock and Chin 2001). The system design characteristics believed to influence user trust 
also include system integrity, level of security (Jian, Bisantz, and Drury 2000), and the 
level of automation (Parasuraman et al., 2000). Two variables have been repeatedly 
demonstrated to build and maintain human trust in machines: (1) consistency, the sustained 
good performance (of the system) over time (Kantowitz, Hanowski, and Kantowitz 1997), 
and (2) predictability, the repeated appearance of the same (machine) error that the human 
can predict and acclimate to (Muir and Moray 1996). Overall, training to enable calibrated 
trust in autonomous systems should focus on the logic driving system functions, the 
principles underlying interface (i.e., visible to humans) design, and an analysis of 
operational conditions.  

To establish optimal indices for both transparency and trust, experimental test beds 
must be constructed based on the principles of experimental design for behavioral research. 
This includes creating simulations and scenarios that can be iteratively tested with 
“sample” autonomous machines and human participants. The parameters for such 
experimental design and some examples in the domain of human-autonomy interaction are 
discussed in the next section.  

3. Experimentation for Human-Machine Teaming 

Maes (1994) presented a model of an informal “testing” approach to study trust and 
human-machine teaming. In this model, as the user spends more time with a machine, the 
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user becomes more able to predict the actions of the machine, and the degree of trust 
increases. This supports the theory that trust is developed over time through mutually 
satisfying interactions between two parties. However, if trust is breached during the course 
of the experiment, its immediate effects will be revealed in (1) shifts in objective task 
performance and (2) verbal reports of trust in the system.  

The human-autonomous agent interaction problem space is relatively new; in the last 
few years, a few autonomy research programs, such as the U.S. Department of Defense 
Autonomy Research Pilot Initiative (ARPI; Department of Defense 2013), have started to 
investigate some of the key human-autonomy teaming issues that are necessary for mixed-
initiative teams to perform effectively. ARPI encompasses some good examples of how 
experiments can be designed to test the effectiveness of human-autonomy teaming in a 
variety of defense-relevant contexts. One notable example under the ARPI, the 
Autonomous Squad Member (ASM) project, encompasses a suite of research efforts 
framed around a human’s interaction with a small ground robotic team member in a 
simulated dismounted infantry environment (Chen et al. 2018).	The ASM is a robotic agent 
carrying supplies while autonomously moving toward a rally point. The ASM’s reasoning 
process uses information from the environment, outcomes of its past actions, current 
resource levels, and its understanding of the current state of its human teammates to inform 
its actions (Gillespie et al. 2015). The autonomous agent’s behavior embodies transparency 
in that it helps its human teammates to maintain situational awareness by conveying 
information about its plans, perceptions, reasoning, decision-making, and projected 
outcomes through its interface. The ASM’s communication (to the human) also includes 
information about its perceived interpretations of the human’s intent. This is an initial step 
in capturing bidirectional transparency between human and machine in an experimental 
setting, one in which the human would receive valuable information not only about 
machine states but also about the machine’s mental model of the human teammate’s 
behavior.  

In a typical human factors experiment, the participant would monitor a simulated 
environment for threats and would perform a predefined “mission” with different display 
configurations (i.e., interfaces that communicate with the autonomous machine), with each 
interface reflecting a different level of information complexity. For example, one set of 
participants would interact with an interface that would only provide information relevant 
to the current states and goals of the autonomous system; a second interface condition 
would provide information on the machine’s reasoning process and projected outcomes; a 
third interface condition would provide information on the machine’s interpretations of 
human behavior, etc. Various combinations of the three interfaces are possible, with the 
highest level of complexity (and potentially workload) associated with an interface that 
provides information combining all of the above.  
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Along the lines of information complexity, transparency is another variable that can 
be experimentally manipulated by changing the amount and specificity of information 
provided to the human at specific points in the mission. For example, Chen and Barnes 
(2012) conducted an experiment to study human interaction with RoboLeader, an 
autonomous planning agent that acted as a mediator between an operator and a team of 
subordinate robots. In a series of scenarios, participants engaged in multiple tasks while 
guiding a convoy of robotic vehicles through a simulated environment with the assistance 
of RoboLeader. Communication transparency was manipulated via the content of 
RoboLeader’s reports, which varied the amount of reasoning conveyed to the human 
teammate. The no-transparency condition consisted of RoboLeader’s simply notifying the 
participant when a route change was recommended. In the medium-transparency condition, 
RoboLeader notified the participant when a route change was recommended and included 
the reason for the suggested change (e.g., “dense fog observed”). The high-transparency 
condition was the same as in the medium condition, but also included when the information 
was received that RoboLeader based its recommendation on (e.g., “dense fog observed,” 1 
hour). Results revealed that joint human-agent performance was most efficient in the 
medium-transparency condition because sufficient information was provided to make 
informed decisions (as opposed to the “no transparency” condition) without leading to 
information overload and complacency (or, over-trust of and over-reliance on the 
autonomous agent) that was observed in the high-transparency condition. 

In experimental paradigms to test human-autonomous agent interaction, several 
variables are measured on the human side of the equation: trust (in the autonomous agent), 
reliance (willingness to depend on the autonomous agent), complacency potential 
(tendency to over-depend on the autonomous agent and failure to intervene or overturn 
automation errors), and situation awareness and workload (during the interactive 
experience). On the “machine side” of the equation, the most important variables to 
measure are the accuracy of the autonomous agent’s perceptions of human behavior, its 
ability to translate this interpretation into decisions and to convey these decisions on an 
easily understandable interface, transparency of machine decision-making to the human, 
and appropriateness of the timing of machine interactions with humans. To measure these 
parameters and establish optimal operational indices for mixed-initiative systems, iterative 
testing and evaluation must be conducted in experimental settings similar to the examples 
discussed in this section. To date, the research literature addresses the relevant quantities 
underlying collaboration and how to measure them. However, we have not yet progressed 
to a theory that allows us to assess quality of decision-making in general, as opposed to 
decision-making linked to a specific scenario. Despite progress in identifying relevant 
factors and how to measure them, this remains an open area for research.  
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3. Summary and Discussion 

We have identified two elements of autonomous systems that will require new 
approaches to test and evaluation: the state-space explosion powered by advances in 
computer hardware and the requirement for human teaming with machines with 
autonomous capabilities. These challenges have impacts throughout development, test, and 
evaluation; materiel-release; and operations, as detailed in the appendix. Robust human-
machine teaming will probably also require experimentation that links CONOPS and 
machine design. Section 2 of this paper described how diagnosis, instrumentation, and 
transparency of the human and machine processes would be instrumental in successful 
fieldling of autonomous capabilities. Here we provide initial thoughts on the research, 
development, and infrastructure needed to achieve this.  

A. Research 
Research to mitigate the impact of the exploding state space is needed to support the 

diagnosis function. Techniques are needed to more efficiently search the state space for 
problem areas. Some work in this area is underway by focusing testing on regions of the 
state space where outputs change rapidly with small changes in inputs (e.g., JHU APL 
RAPT; Mullins et al. 2018). In addition, there is work at SEI in developing analytics for 
monitoring operational software behavior by recording and assessing the relations of inputs 
and outputs over time. Progress in these areas will be essential in developing confidence 
for those systems that cannot be tested exhaustively (de Niz 2017). As an added benefit, 
progress will also improve our ability to test systems that can be tested exhaustively. 

One of the challenges will be avoiding rare, catastrophic outcomes. For a system to 
be accepted it is generally necessary to argue that as possible outcomes get worse they also 
become increasingly rare and further, that the bad outcomes are so rare that the risks are 
justifiable. This applies even to systems with no autonomous capabilities, and the 
techniques outlined above are initial steps in this direction. These approaches will be even 
more important for testing autonomous capabilities.  

A particular challenge for such systems is the possibility of emergent behavior, that 
is, behavior radically different from anything anticipated or intended by the designers. 
There is no general underlying theory that would allow us to forecast what regions of the 
input space might trigger emergent behavior or how extensive (and hence easy to find in 
testing) these regions are. There is ongoing work in formal methods to address this and 
other challenges. 
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Finally, we note that research into human behavior when interacting with machines 
with significant autonomous capabilities remains an open and active area, as discussed 
above. There are no characterizations of the nature and timing of information exchanges 
between humans and machines needed to enable effective collaboration and engender 
appropriate trust. Experimentation will be needed to address the general questions of 
optimal information flow. Further experimentation in the context of specific systems will 
be needed as well. Characterization of a machine’s “world view” in terms comprehensible 
to a human is another area of unfinished research. 

B. Development 
Development of novel instrumentation approaches that provide visibility into the 

decision processes of the machines—and into the cognitive processes of the humans—will 
be critical. Diagnosis will be key in development and in testing to ensure dependability. 
Tools that can collect and archive relevant information about both human and machine will 
be needed. 

In addition, there will be suites of M&S tools with novel needs for resolution and 
fidelity. M&S tools to characterize the decision envelope as distinct from  the physical 
envelope will be needed. These tools can be developed to use low-resolution or low-fidelity 
models of the environment, but will need precise representations of sensor input format 
expected by the perception module. A low-fidelity weather model can be used to drive a 
perception engine and allow one to assess the decisions being made, but the formats have 
to match for it to work.  

Tools of this type allow one to examine a point in the decision space. Tools built to 
explore the space efficiently (built on approaches such as RAPT mentioned above) will 
also be needed. Efficient exploration may often require much faster than real-time M&S 
support. Building these tools with just the minimum resolution for an assessment will be a 
key element in the efficiency.  

C. Infrastructure 
The essential autonomy-driven infrastructure will be software test beds with extensive 

data-archiving capability. The test beds will be needed to house the M&S developed to 
drive the scenarios in which the perception, reasoning, and selection decision engines 
operate. In addition, extensive data archiving and retrieval capacity will be needed for two 
reasons. First, the experimentation and feedback loops required early in development can 
probably be executed more efficiently if the data on earlier designs is maintained. Second, 
in cases where exhaustive testing is not possible, the development record will be part of 
the argument made for dependability at the time of materiel release decisions. We will want 
the M&S-driven test and evaluation to be as efficient (and therefore as exhaustive) as 
possible. This will extend the circumstances when exhaustive testing is feasible and 
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increase confidence in the systems when it is not. Live, virtual, and constructive facilities 
will be needed to address questions of human machine teaming. How CONOPS are 
designed into the machine and how the CONOPS are tested will require participation of 
operators or operator surrogates—either other humans or models. Early experimentation 
may require both AI-driven simulation of human behavior and human emulation of AI 
behavior to support this exploration of possible teaming concepts. Live, virtual, and 
constructive facilities will also be needed for diagnosis of the human-machine teaming. It 
will be necessary to immerse the humans (and the machine) into a virtual reality that 
provides transparency into their decision-making.  

D. Final Thoughts 
The challenges imposed on test and evaluation, verification and validation (TEV&V) 

by the state-space explosion, and on development and TEV&V by any human-machine 
systems with active teaming, do not necessarily arise in programs that seek to add only 
minimal autonomous capability to existing manned or unmanned systems. The research 
and tools discussed here can make these developments more efficient, and perhaps expand 
the boundaries of what capabilities can be developed and tested with traditional 
approaches. As a result, there is at least some prospect that the necessary tools and 
infrastructure could keep up with the T&E demands of increasing autonomous capabilities 
in future systems.  
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Appendix A. 
The Impact of Autonomy throughout the 

Acquisition Life Cycle 

The development and acquisition of autonomy-based capabilities will introduce 
challenges to test and evaluation (T&E) throughout the system life cycle. Here, we examine 
the impact of challenges and recommendations discussed above on each phase of the 
system life cycle. Figure A-1 displays the standard system life cycle as defined in DoD 
Instruction 5000.02, Section 5.c.(3). We will use this life cycle to frame the alterations that 
autonomy introduces to the typical T&E process. 

 

 
 Figure A-1. Operation of the Defense Acquisition System from DoD Instruction 5000.02, 

Section 5.c.(3) January 2015, USD(AT&L) 

Before Formal Development 
Autonomy introduces practical challenges even before entry into the standard system 

life cycle, in the form of an initial assessment to determine the autonomous capabilities 
with the greatest impact, which is necessary for subsequent evaluation efforts. The inherent 
complexity of autonomous system acquisition will require early planning of activities and 
assessments to enable the overall process to ultimately fit together in a timely manner to 
provide sufficient information for appropriate system diagnosis. This theme will continue 
throughout the acquisition process, with the general effect of shifting activities to an earlier 
point in the process. To this end, any autonomous capabilities must be characterized in 
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order to identify appropriate strategies for instrumentation of the autonomous system and 
subsequently tailor the remainder of the process in anticipation of the challenges associated 
with the T&E of autonomous systems before formal development. The statement of DoD 
Directive 5000.01 with regard to tailoring program strategies is especially important during 
the development of autonomous capabilities, due in large part to the T&E challenges 
associated with developing a sufficiently rich body of  quantitative data to accurately assess 
autonomous capabilities.1 In fact, the GAO (2015) has linked the failure of several large-
scale IT development efforts to the lack of appropriate program tailoring. Given the 
complex nature of autonomous capability development and the IT basis for autonomous 
capabilities, program tailoring based on an initial characterization of the involved 
autonomy will be fundamental to the success of autonomous capability development. 

Beyond the determination of instrumentation strategies, an initial characterization of 
autonomous capabilities must also determine the applicability of DoD Directive 3000.09, 
“Autonomy in Weapon Systems.” This directive establishes DoD policy and assigns 
responsibilities for the development and use of autonomous and semi-autonomous 
functions in weapons systems, including both manned and unmanned platforms. In so 
doing, this document establishes guidelines designed to minimize the probability and 
consequences of failures of autonomous capabilities. The directive has a specific focus on 
weapon systems that apply force, whether lethal or nonlethal, kinetic or non-kinetic. Figure 
A-2 displays a flowchart that may be used to determine if DoDD 3000.09 applies. 

 

                                                 
1 DoDD 5000.01, paragraph 4.3.1 states, “There is no one best way to structure an acquisition program to 

accomplish the objective of the Defense Acquisition System. MDAs and PMs shall tailor program 
strategies and oversight, including documentation of program information, acquisition phases, the 
timing and scope of decision reviews, and decision levels, to fit the particular conditions of that 
program, consistent with applicable laws and regulations and the time-sensitivity of the capability 
need.” 
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 Figure A-2. Flowchart for Determining Whether DoDD 3000.09 Applies 

 
When DoDD 3000.09 does apply, additional efforts are necessary to ensure that the 

system design and development approach display several qualities (enumerated in DoDD 
3000.09; see below) before the formal development of the autonomous capability may 
proceed. Ensuring these qualities will require developing a body of quantitative evidence 
to demonstrate the existence of specific attributes of the autonomous capability. This 
implies a shift of T&E tasks necessary to support an initial assessment of autonomous 
weapon systems, to even before entry into the formal development process. Moreover, 
autonomous weapon system development requires laying the groundwork for both 
verification and validation (V&V) and T&E even before the first step of formal 
development as a result of DoDD 3000.09. That is, Enclosure 3 of DoDD 3000.09 
specifically requires that: 

Before a decision to enter into formal development, the USD(P), 
USD(AT&L), and CJCS shall ensure: 

1. The system design incorporates the necessary capabilities to allow commanders 
and operators to exercise appropriate levels of human judgement in the use of 
force.  
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2. The system is designed to complete engagements in a timeframe consistent with 
commander and operator intentions and, if unable to do so, to terminate 
engagements or seek additional human operator input before continuing the 
engagement.  

3. The system design includes safeties, anti-tamper mechanisms, and information 
assurance in accordance with Reference (a) [DoD Instruction 8500.01], 
addresses and minimizes the probability or consequences of failures that could 
lead to unintended engagements or to loss of control of the system.  

4. Plans are in place for V&V and T&E to establish system reliability, 
effectiveness, and suitability under realistic conditions, including possible 
adversary actions, to a sufficient standard consistent with the potential 
consequences of an unintended engagement or loss of control of the system. 

5. A preliminary legal review of the weapons system have been completed, in 
coordination with the General Counsel of the Department of Defense (GC, DoD) 
and in accordance with References (b) [DoD Directive 5000.01] and (c) [DoD 
Instruction 5000.02], DoD Directive 2311.01E (Reference (f)), and where 
applicable Reference (d) [DoD Directive 3000.03E]. 

DoDD 3000.09 is primarily concerned with minimizing failures that could lead to 
unintended engagements or loss of control of autonomous weapons systems. To that end, 
the directive mandates the creation of a plan for “rigorous hardware and software V&V 
and realistic developmental and operational T&E, including analysis of unanticipated 
emergent behavior” (DoDD 3000.09 Enclosure 2.a). Note this plan must also include the 
definition of metrics and procedures to “identify any new operating states and changes in 
the state transition matrix” (DoDD 3000.09 Enclosure 2.b.(1)). to support subsequent 
regression testing whenever the autonomous capabilities are updated. Therefore, this plan 
is intended to provide a path to developing trust in autonomous capabilities, with specific 
focus on demonstrating that autonomy will not degrade the safety of those that employ it.  

While DoDD 3000.09 does not apply to all systems that have significant levels of 
autonomous capabilities, the approach to laying the groundwork for T&E early is likely to 
be necessary for all such systems. As noted above, the complexity inherent in autonomous 
capabilities leads to a state-space explosion that makes exhaustive evaluation of an 
autonomous capable infeasible. Coping with this reality demands building up sufficient 
data to support an understanding of the autonomous operation, which itself demands 
evaluation of the autonomous capability that continues throughout system development 
and is based on the particular capabilities involved. Early assessment of the involved 
capabilities and development approach is therefore necessary to support the development 
process. Furthermore, autonomous systems that include significant human-machine 
interactions demand early identification of appropriate strategies for developing and 
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assessing CONOPS as well as initial planning for any necessary experimentation. Thus, 
even in the situation that the formality of DoDD 3000.09 does not apply, the need for 
framing T&E activities before formal development based on identified characteristics of 
the system is present for any autonomous capability.  

Materiel Solution Analysis 
During the Materiel Solution Analysis (MSA) phase, the T&E groundwork laid 

before the start of formal development must be refined to support ongoing system 
development. In particular, the Initial Capability Document, or other documentation (e.g., 
DoDAF or AoA guidance), should be reviewed for further details regarding any complex 
autonomy. Several capabilities that may appear in the Initial Capability Document will 
suggest the potential for challenges that will require refining the T&E approach (e.g., 
handling big data is likely to imply machine-learning and data-management challenges). 
Identifying any challenges early will allow addressing them by developing appropriate 
mechanisms for system instrumentation and tailoring the acquisition process to the specific 
realities of the system being developed.  

Identifying challenges will require a careful consideration of the system design, with 
particular focus on key performance parameters (KPPs), key support areas, and their 
supporting rationale. For example, the Net Ready KPP applied to autonomous capabilities 
implicitly requires human-machine cooperation analogous to machine interoperability. 
Because testing shared human-machine missions and decision-making remains an 
immature field, several additional challenges will likely arise throughout the remainder of 
the acquisition process. As exemplified here, missions that are new or conducted in new 
ways, such as involving artificial agents, may signal implicit challenges that should be 
anticipated early. 

Beyond simply refining the approach to T&E, measurements of the system must begin 
during the MSA phase. Measurements must start early to support diagnosis of complex 
autonomous systems and facilitate identification of separable aspects of the systems to 
simplify the operation of subsequent efforts. In addition, data collection must start early, 
even though the data may be used late in development or in support of fielding decisions; 
the need to establish trends in autonomous system behavior demands that data regarding 
system operation be collected throughout all phases of development. Such archived data 
will be essential for assessing the quality of decision-making in those circumstances when 
state-space explosion makes exhaustive testing infeasible. Note that the required data-
collection approach and necessary supporting infrastructure will depend on the situation. 
Hazard information is certainly necessary for autonomous systems, although the nature of 
the approach for collecting this information depends on the applicability of DoD 3000.09 
or the expectation of software safety releases. Alternatively, subsequent T&E of human-
machine teaming systems will require early characterization data to support further system 
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refinement. Migration of responsibilities from the operator to the software introduces 
additional coupling of development, test, experimentation, and possibly evolving tactics, 
techniques, and procedures. Each of these elements must be separated, to the extent 
possible, on the bases of data that characterize the nature of the interaction between human 
and machine to support a tractable evaluation of the total system. Thus, early establishment 
of measurement systems is critical to the ongoing development of autonomous systems. 

A refined understanding of the autonomous capabilities and early measurement data 
must also be applied to plan later approaches to system evaluation. Note that autonomous 
capabilities may change how missions are accomplished, or even what missions can be 
accomplished. Thus, planning for evaluation of new features of mission accomplishment 
will cut across all other challenges and begin during the MSA phase. Since systems with 
autonomous capabilities are agents as well as tools used by operators, planning during the 
MSA phase must identify the method to evaluate the agents’ actions. This planning must 
also determine an approach to developing appropriately calibrated trust of operators. The 
identification of both the evaluation approach and the calibration of trust require early 
measurement data. Note that beyond simply supporting evaluation of intended system 
behaviors, planning must also enumerate those things that the system must not do. Such an 
enumeration requires the identification of risks (probability and consequence) of any 
undesirable actions in a more general fashion than is likely available from initial 
documentation. Risk identification should include both risks of system malfeasance and 
risks associated with unintended emergent behavior. Planning the evaluation in the MSA 
phase will allow subsequent T&E operation. 

Technology Maturation and Risk Reduction 
Experimentation and prototyping is significant for the success of autonomous system 

development, and thus the competitive prototyping of the Technology Maturation and Risk 
Reduction (TMRR) phase is critical for the subsequent development of the autonomous 
capabilities. To enable useful experimentation, appropriate facilities and mechanisms must 
be identified according to the characteristics of the autonomous capability. These facilities 
and mechanisms must appropriately address any safety considerations and provide the 
appropriate instrumentation for T&E. An approach for conducting the necessary 
experimentation will therefore need to be defined sufficiently early in the acquisition 
process to enable assessment of the required facilities and mechanisms. 

The operation of T&E during TMRR largely relies on the software development 
producing testable and representative portions of the system at regular intervals. Planned 
T&E activities must therefore include assessment of the software-development approach 
employed for autonomous system development and tailor the T&E schedule to the 
particular development schedule. In addition, the T&E planning should anticipate ongoing 
testing and assessment of cyber vulnerabilities as the system evolves. Furthermore, because 
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the T&E planning should identify the points at which training data must be available, the 
T&E during the TMRR must be based on the software-development schedule for the 
autonomous capabilities.  

In addition to the standard software-development considerations, the T&E of 
autonomous systems must also consider any human-machine interactions early in the 
process as well. Particular emphasis is needed for cognitive elements formerly provided by 
trained humans that now need to be designed and matured in the machine. These elements 
have the effect of shifting many system considerations left when autonomous system 
acquisitions are compared with that of more traditional systems, since these elements are 
solidified during design/build time and not in subsequent personal training. In support of 
such testing, identifying human operators to support iterative testing later in the acquisition 
process must occur during the planning of the TMRR phase to allow sufficient time for the 
associated training and logistics necessary to bring human resources to bear. Note that 
human operators must be identified both for interacting with the machine portions of the 
autonomous systems as well as to serve as component analogues for any live, virtual, and 
constructive simulation activities. Thus, the TMRR must address the practical realities of 
involving human participants in the acquisition process rather than allowing these activities 
to occur during a later phase.  

Planning during the TMRR must also support later fielding decisions. Specifically, 
the data and analyses necessary to support full-rate production (FRP) and full-material 
release must be identified early so that these data may be appropriately collected and 
analyzed. Note that this is especially true for data related to human-machine teaming as 
well as data related to range hazards, since both these cases demand establishing system 
trends rather than examining performance relative to a threshold. 

The TMRR phase ends with Milestone B, implying that testing has shown the 
following qualities for software systems, such as those that underpin autonomous 
capabilities:2  

 Algorithms exist and will provide the needed capability. 

 SWaP constraints will not preclude the effective use of the algorithm. 

 Early measurements on latency, power, and cooling are appropriate. 

 The data necessary to train algorithms exist. 

Establishing these capabilities via T&E during TMRR will demand a few specialized 
activities that depend on the nature of the autonomous system involved. For example, data 
may be necessary to train algorithms both to check for the performance and to examine 

                                                 
2 Major Defense Acquisition Programs: Certification Required before Milestone B or Key Decision Point 

B Approval, 10 USC Section 2366b (2011). 
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robustness; such data should be provided during the course of the TMRR or their 
generation should be specified. Systems that involve human-machine teaming will require 
a more iterative assessment as the operators and designers eventually determine the most 
effective means of human-machine teaming interaction.  

Finally, a DT&E sufficiency assessment addressing plans, schedules, resources, risks 
of concurrency, and entrance criteria for the production phase must be conducted 
(mandated by DoD Instruction 5000.02). In addition to the concepts already highlighted 
herein, the entrance criteria should specifically include a demonstration of adequate 
transparency, attention to hazards, and the presence of data to support quantification of 
risk. 

Programs That Enter at Milestone B 
Programs that enter the acquisition cycle at Milestone B should still largely have 

addressed the above concerns, albeit in a potentially less formal manner. Of particular note, 
a determination of the applicability of DoDD 3000.09 must already be made for programs 
that enter at Milestone B. In the case that DoDD 3000.09 applies, these programs must 
demonstrate safety assurance through commander control before entering the formal 
acquisition process. Beyond the concerns of DoDD 3000.09, the requirements of 10 USC 
Section 2366b for technology demonstration and DT&E sufficiency assessments still apply 
for all systems. Risks of concurrency, in particular, will warrant special attention. The 
formal structure phases discussed above should ensure that input data for training, plans 
for human-machine teaming testing, and data archiving to support ultimate fielding are all 
in place; these aspects of the T&E process must still exist in the absence of a formal 
process. In addition, for systems with substantive human-machine teaming, extensive 
experimentation to support CONOPS development will need to be completed for a positive 
sufficiency assessment. Generally speaking, the full set of activities outlined above for the 
MSA and TMRR phases will need to be completed. 

Engineering and Manufacturing Development 
During the completion of autonomous system development, the four notions of safety, 

reliability, interoperability, and cybersecurity must all be treated on an equal footing with 
performance. T&E must therefore have sufficient capability and capacity to archive 
measurements and assessment results across five notions  to support later full-material 
release. Note that the assessments of each concept are logistically interrelated (e.g., a safety 
evaluation and supporting data will be needed for open-air testing) and a clear plan that 
addresses each relevant aspect of the autonomous system is necessary at the onset of 
Engineering and Manufacturing Development (EMD). Furthermore, examination of 
software safety, performance, reliability, interoperability, and cybersecurity will require 
extensive system integration as well as an integrated approach to regression testing. This 
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is driven by software coupling across domains through multiple interfaces and will require 
the critical system software to be tested and embedded in the system sufficiently early to 
allow for subsequent T&E. Throughout the integration process, cybersecurity T&E should 
address both attack vectors and at-risk functionality, archiving a historical record of 
identified vulnerabilities and responses. The completion of autonomous system 
development therefore presents a multidimensional program that requires integration of 
both the system and the testing approach. 

Those systems that involve human-machine teaming will continue to present 
additional challenges to the development process. Significantly, the involvement of human 
operators, and potentially M&S surrogates for human operators, will be critical to the final 
system design. In large part, this involvement should support experimentation to determine 
appropriate CONOPS for the overall system of human and machine. In planning for EMD, 
any additional logistics or training necessary for the involvement of human operators must 
be considered.  

The EMD phase ends with Milestone C, which requires an assessment of the 
sufficiency of the developmental T&E completed and the operational T&E planned. This 
assessment is likely to necessitate a complete summary of DT&E activities, including both 
completed DT&E as well as plans and resources for remaining DT&E. This summary effort 
will need to identify any risks exacerbated by the deferred DT&E, which must consider the 
additional complexities and assessment interdependencies implied by the development of 
an autonomous system. In addition, the Milestone C assessment will need to characterize 
the level of demonstrated readiness for IOT&E across several challenges specific to 
autonomous systems. For example, IOT&E must address hazards that might arise from 
post-fielding adaptability of the system. In addition, planning for IOT&E must consider 
the availability of validated and verified, quality input data for the operational testing of 
data-dependent systems. Moreover, there must be adequate attention to human-machine 
interfaces in training of warfighters that will participate in operational testing.  

Milestone C decisions are often primarily about risk. As a result, the evaluation must 
include a sufficient treatment of what the system must not do or must do only under very 
rare circumstances. Supporting this will likely require an evaluation of the history of 
regression testing results as a means to provide insight into the maturity and stability of the 
software. This historical view of the autonomous capability is especially important in 
developing an understanding of system trends in light of the infeasibility of exhaustive 
testing approaches. Utilizing system-evaluation results along with collected supporting 
data enables the connection of flaws in perception or decisions to resultant impacts on 
performance and reliability in a substantive manner. Note that reliability of perception or 
decision-making software does not directly map to either the failure rate (i.e., mean time 
between failures for electronics) or probability of failure (i.e., percent failure for munitions) 
of the overall capability system; that is, “Failure Definition and Scoring Criteria” are 
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unlikely to capture relevant features of autonomous capability such as the reliability of 
individual phases of the autonomous operation. Instead, custom, subsystem-specific 
definitions of software reliability for autonomous capabilities (e.g., definitions that focus 
on the particular activities of perception) are likely necessary.  

Production and Deployment 
Milestone C will no longer be the end of development or developmental test for 

autonomous systems. Software development continues throughout system operation, as 
new bugs are found and patched or features are added. In addition, regression testing never 
ends and is instead an ongoing, continuous effort. While such continuation of regression is 
only mandated for weapon systems (DoDD 3000.09), such an effort is necessary to ensure 
appropriate system behavior in changeable environments, missions, or CONOPS. As 
missions continue to evolve, ongoing development and developmental test efforts will be 
necessary. The test and evaluation master plan must address an OT&E plan for the future, 
especially if the system is self-adaptive.  

Planning for OT&E of autonomous capabilities must address several unique 
challenges. As noted above, the CONOPS will be a feature of the design for human-
machine teaming systems. Recall that experimentation and testing are necessary to support 
the design and development of CONOPS due to the lack of an available theoretical basis. 
Human operators will need to be available to support the continuous software development 
associated with the experimental refinement of CONOPS. In addition, the complexity of 
autonomous systems, especially when operating in groups or when teamed with human 
operators, implies that OT&E will eventually reveal unexpected features of the underlying 
algorithms. OT&E must then rely on system transparency to turn such features into 
opportunities or fixes, as appropriate. Finally, while testing will continue throughout the 
system operation, fully continuous testing may not be necessary—spot checking may be 
sufficient. The planning effort must evaluate each of these aspects and develop an approach 
appropriate for the system at hand. 

Operations and Support 
The perception and decision-making elements of fielded autonomous capabilities are 

expected to continue to advance. This will certainly be the case for any self-adaptive or 
self-organizing system. In addition, missions will evolve, and ongoing use of autonomous 
capabilities are likely to yield new standards for CONOPS. As capabilities and missions 
evolve, so too will expectations for the system safety, performance, reliability, 
interoperability, and cybersecurity, even if these expectations are not reflected in formal 
requirements or specifications. T&E will therefore be required to describe and potentially 
support adaptation of autonomous capabilities throughout their overall lifespan. This 
directly affects software maintenance, which will extend beyond finding bugs and 
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incorporating deferred capabilities to include the addition of unplanned capabilities. As a 
result, system-regression testing will be ongoing and likely rely on T&E or M&S 
capabilities initially established during the system development. Thus, T&E should expect 
to continue to advance during the sustainment of autonomous systems.  

Summary of Life-Cycle Impacts 
Autonomous capabilities of machines will pose new and novel challenges for T&E 

throughout the system life cycle. T&E will have to shift many activities to address the 
inherent complexity of autonomous capabilities and minimize risks of concurrency. The 
requirement to design machines to do what humans were trained to do will require earlier 
operator involvement and increased attention to the human-machine interactions 
throughout the life cycle. T&E must be designed throughout to mitigate the distinctive 
challenges associated with autonomous capabilities; this will include beginning T&E 
earlier and archiving more data than would be done for systems with no autonomous 
capabilities.  
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Abbreviations 

AI artificial intelligence 
ARPI Autonomy Research Pilot Initiative 
ASM Autonomous Squad Member 
CONOPS concept of operations 
DARPA Defense Advanced Research Projects Agency 
DT&E developmental test and evaluation 
EMD Engineering and Manufacturing Development 
GAO Government Accountability Office 
IOT&E initial operational test and evaluation 
KPP key performance parameter 
M&S modeling and simulation 
MSA Materiel Solution Analysis 
NTSB National Transportation Safety Board 
OODA observe-orient-decide-act 
SWaP size, weight, and power 
T&E test and evaluation 
TEV&V test and evaluation, verification and validation 
TMRR Technology Maturation and Risk Reduction 
V&V verification and validation  
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