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Executive Summary 

This document introduces large language models (LLMs) and generative artificial 
intelligence systems (GAIs) and ties readers’ expectations for their capabilities, limitations, and 
suitable applications to core characteristics of the underlying technology. We illustrate their input 
and output using a text generation example, explain their function in both general and technical 
terms, clarify how they are used and deployed, and provide an extended discussion of their 
limitations. We observe that GAIs are extremely powerful tools but also impaired models of 
cognition and draw implications for their future development.  

This document is the first in a series designed to introduce LLMs and GAIs to a military 
audience by covering the technology, the current state of the art, benefits and risks, plausible high 
value military applications, and recommendations for future research and development priorities. 

GAI refers to content creation by an artificial intelligence (AI) system. They produce this 
content in response to user prompts that encode a wide variety of tasks. GAI systems incorporate 
multiple modalities, inputting and outputting text, images, audio and video (often in combination), 
while the subclass of LLMs input and output text. The underlying technology employs machine 
learning to acquire patterns from truly enormous quantities of data, which GAIs apply in predictive 
form to generate responses from prompts. GAIs exhibit a level of intelligence that has never been 
seen before in a computing system. For example, GPT-4 generates human-level performance on 
~25 standardized tests, including Advanced Placement Calculus, the LSAT, the GRE verbal, and 
the SAT evidenced-based reasoning and writing exam. These capabilities are the product of the 
profound, and ongoing advancements in machine learning technology that have occurred over the 
last few years.  

GAIs, like all machine learning models, are composed of two parts: a performance system 
and a learning system. The performance system is the deployed component. It consists of a neural 
net arranged in multiple layers (i.e., a deep neural net) where the output of neurons in each layer 
feed neurons in the next. The performance system executes the function represented by this neural 
net; it accepts inputs and generates outputs, usually with learning turned off. The learning system 
defines that function through training on source materials. Every GAI is a statistical model. Its 
learning system encodes the distribution of training data into a neural net while the performance 
system samples that distribution; it maps inputs like those it has seen into similar outputs. 

LLMs are simple predictors — given a prompt, they output the most likely word to see next, 
add the generated word to the prompt, and iterate until the response is complete. LLMs learn to 
predict the likelihood of the next word by training on trillions of input sequences from texts 
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available online; more formally, they acquire a conditional probability distribution over next words 
given the prompt and training texts. That distribution generalizes to new input sequences, letting 
the LLM respond to prompts it has never seen. Because the training texts are so extensive, the 
learned distribution theoretically reflects a wide body of human experience. LLM prompts mine 
that knowledge.  

The LLM’s performance system employs a deep neural network design called a transformer 
to perform computations on word meanings. Transformers represent words in the input text as 
points in a high-dimensional space (i.e., as a vector of numbers, called an embedding), where words 
with similar meanings have similar vectors. They shift the representation of each word to reflect 
the influence of other words in the input text (via a calculation called self-attention), where the 
specific transformation of word meanings is learned in service of predicting the next word during 
training. The learning system incrementally adjusts the weights in the transformer network to 
increase the probability assigned to the correct word and decrease the probability assigned to 
others. It does this for every example in the training corpus. Transformers learn dependencies 
among words that are far apart in training texts, limited by what is called the correlation length. 
Longer correlation lengths markedly improve LLM performance as measured by standardized 
achievement tests, and increasing correlation length is a focus of current work.  

GAIs develop a statistical appreciation of non-sequential data like images by employing a 
deep learning architecture that operates on adjacent parts/pixels (called a convolutional design). 
For example, DALL-E generates images from captions by training a convolutional model to 
construct well-formed images from noise (after deconstructing ~400 million images to noise). It 
conditions the reconstruction on a representation of the input text produced by an LLM front end. 

GAI applications are commonly developed in stages where a foundational model is 
subsequently adapted to perform many more specific tasks. Foundational models are expensive to 
create; they capture knowledge about the world in billions to trillions of learnable neural net 
parameters that must be trained on billions to trillions of examples. The compute budget for 
training GPT-4 was upwards of $60M. Foundational models can be specialized to new tasks by 
adding (and training) new layers using the foundational model as a preprocessor, or by distilling it 
into a smaller model that can be retrained and/or executed on a mobile device (with some loss of 
functionality).  

While GAIs are extremely powerful tools they are also impaired models of cognition whose 
weaknesses can be attributed to core properties of statistical prediction. GAIs lack a native capacity 
to distinguish fact from fiction, ensure logical consistency, respect causal relations, perform 
inference, plan, follow social norms, or exercise judgment. They struggle with extrapolation to 
new cases. Because the solutions are partial, external to the statistical GAI framework, and task-
specific, these weaknesses will remain visible in future GAI applications. By implication, GAIs 
for high-value military tasks like intelligence analysis (especially counterfactual reasoning and 
inference from observation), critical thinking (drawing conclusions from multiple sources for a 
particular task), and high-risk decision tasks that demand judgment all require advances to GAI 
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technology and entail performance risks. In these contexts, GAIs are best used in partnership with 
people. 
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1. Introduction  

Generative artificial intelligence (GAI) refers to content creation by an artificial intelligence 
(AI) system, such as language, images, video, and sound. They produce this content in response 
to user prompts that can encode a wide variety of tasks. GAI systems incorporate multiple 
modalities, inputting and outputting text, images, audio and video (often in combination), while 
the subclass of large language models (LLMs) input and output text. The underlying technology 
employs machine learning to acquire patterns from truly enormous quantities of data (e.g., trillions 
of words taken in sequence), which GAIs apply in predictive form to generate answers from 
prompts. GAIs exhibit a level of intelligence that has never been seen before in a computing 
system. For example, GPT-4 generates human-level performance on ~25 standardized tests, 
including Advanced Placement Calculus, the LSAT, the GRE verbal and the SAT evidenced-based 
reasoning and writing exam (Brown et al. 2020). These capabilities only became feasible in the 
last few years due to profound (and ongoing) advancements in machine learning technology. 

Although GAI technology is powerful, it also has notable weaknesses. It is not hard to 
illustrate both in parallel. Asking the GPT-4 model in Bing Chat (“Bing Chat | Microsoft Edge,” 
n.d.) to “write a poem about GPT-4 in the style of John Masefield” produces the following stanza: 

 
I must go down to the web again, to the vast and endless sea, 

And all I ask is a GPT-4 and a query to steer me, 

And the data and the learning and the model's hidden layers, 

And a deep neural network for the task that I may dare. 

 

Generating poetry from a prompt is an impressive feat, but the result is clearly not original 
and based entirely on the much better poem “Sea-Fever” by Masefield (“Sea-Fever” 2018), which 
reads in part: 

 
I must go down to the seas again, to the lonely sea and the sky, 

And all I ask is a tall ship and a star to steer her by; 

And the wheel’s kick and the wind’s song and the white sail’s 
shaking, 

And a grey mist on the sea’s face, and a grey dawn breaking. 
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This example provides a window into the underlying mechanism; GAIs remix the past to 
produce the future, which is both their source of power and perhaps their essential limitation. To 
produce this specific output, GPT-4 learns sequences of words from trillions of sentences 
(including some Masefield poems) and utilizes those patterns when responding to the user. It is 
unclear whether (or in what sense) GPT-4 understands its prompts and answers; the relation 
between people, artificial agents, and the Internet; or the analogy between generative AI and the 
tall ship sailing the seas in Masefield’s poem. It depends upon whether we believe “understanding” 
is in GPT-4’s training data, in its input and output behavior, or external to them. This confusion is 
the source of many misapprehensions about GAI technology. 

GAIs have multiple capabilities and diverse applications. For example, they answer 
questions, analyze sentiment, extract information from text, caption images, generate images from 
text, identify objects, and follow instructions. The most common applications include content 
creation, translation, code generation, sentiment analysis, cybersecurity, transcription, candidate 
screening, storytelling, sales automation, and virtual assistants (Shukla 2023). The size of a GAI 
(measured by the number of parameters in its neural net, with one per connection between each 
neuron) is doubling every few months, and GAI power is proportional to size. As an illustration, 
GPT-4 (with an estimated 1.7T parameters) has shown human level performance on a wide variety 
of standardized tests (e.g., the GRE and the LSAT), which is a marked improvement over GPT 
3.5’s performance (with 175B parameters).  

The pace of GAI development is extremely fast. Hundreds of GAI systems are available now 
(“2023 LifeArchitect.Ai Data (Shared),” n.d.), while new GAIs for specialized applications are 
announced every few weeks. 

The following sections examine the technology behind GAIs and LLMs using text generation 
systems (like ChatGPT) as the primary example. Section 2 explains what LLMs are and how they 
function. It identifies their component parts (a performance system and a learning system), clarifies 
how LLMs generate output and how learning occurs, describes the internal structure of LLMs (a 
neural network design called a transformer) and explains how this design gives rise to their novel 
capabilities. Section 2 also expands this discussion from LLMs to GAIs, explains how the broader 
class of GAIs are used (the prompting model), and how they are deployed (by adapting 
foundational models that have been trained from scratch to new tasks). Given this background, 
Section 3 provides an extended discussion of GAI limitations. Section 4 concludes with 
implications for LLM applications and future development. The overall goal is to ground reader’s 
expectations for GAI capabilities, limitations, and suitable applications in core characteristics of 
the underlying technology. 
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2. LLM and GAI Technology 

At their core, GAIs are simple predictors — given what came before, they output the most likely 
thing to see next. In LLMs, the input and output are sequences of words, and the task is sequence 
prediction, as shown in Figure 1. The input (in black), called the prompt, suggests the next word 
(in red) as the most natural continuation. For example, the phrase, “I was wondering if we …” 
almost demands that “could,” “should,” or “might” will follow. Other continuations are highly 
specific to historical texts; the words “Four score and seven” rarely appear together outside of 
Lincoln’s Gettysburg Address, making “years ago” the natural extension, while the “arrows of 
outrageous fortune” is unique to Hamlet’s soliloquy. The cues that suggest continuations come 
from a wide range of contexts. Donald Rumsfeld’s comment about unknown “unknowns” was 
popularized in political news, while Tiffany’s tirade makes sense within a social context – you 
expect the words “totally miffed” if you have heard enough Valley Girl slang. 

 

 
Figure 1. An LLM is a statistical model of what comes next given what was said before. 

 

The likelihood of a continuation can be influenced by context set earlier in the input text. For 
example, “Chekhov’s gun” is a principle about parsimony in narrative; if a gun is introduced in 
Act 1 of a play, it must go off by the end of Act 2.  

An LLM identifies multiple continuations for the input text; it computes a probability 
distribution over all recognized words in its model of the English language (a vector with ~100,000 
elements in GPT-4). For example, the word “whether” stands out as the most likely extension of 
Hamlet’s famous question in Figure 2a, while there are many plausible continuations for the Israel-
Hamas war prompt in Figure 2b. The best one (identified as “Ukraine” here) depends upon the 
date of the interaction and on the descriptions of current events supplied in the LLM’s training 
data. 
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Figure 2. An LLM’s conditional probability distribution assigns a likelihood to every known word 

given context.  

 

Stated more carefully, a text generation LLM expresses a conditional probability distribution; 
it predicts the next word given prior context, p(next word | input sequence)1, where the length of 
the input sequence (called the context limit) is bounded by technical constraints. It acquires this 
distribution by training on trillions of prediction tasks drawn from human-authored texts available 
in electronic form. LLMs further generalize this distribution to compute the likelihood of a 
completion for any input sequence, which is the source of their ability to produce new content in 
response to prompts they have never seen before. 

It is useful to think of a prompt triggering an LLM’s conditional probability distribution, 
which the LLM then mines for information. Prompt engineering is the emerging specialty/art of 
structuring LLM input to trigger the desired output. This is not easy, in general, as prompts must 
probe the underlying distribution in just the right way. For example (see (“Prompt Engineering 
Guide” 2024)), given the prompt: 

 
Classify the text into neutral, negative or positive.  

Text: I think the vacation is okay. 

Sentiment: 

 

GPT-3 produces the output: 

 
Neutral 

 

From the user’s perspective, the prompt identifies a classification task and allowable answer 
categories and then requests a pattern-completion response via the “Text:” and “Sentiment:” 

 
1 Technically, this distribution is also conditioned on prior knowledge, i.e., p(next word|prompt, training data). 

To be, or not to be, that 
is the question:  <?>

p(word)Word
.000001aah

.000001aardvark

.000001aardwolf

……

0.06dude

.000001dudgeon

……

0.7whether

0.003whew

……

.000001zymurgy

(a) (b)

The Israel-Hamas war complicates 
diplomatic efforts in <?>

p(word)Word
.000001aah

.0003aardvark

……

.003Africa

……

.003Sudan

……

.02Ukraine

……

0.0001whew

……

.000001zymurgy
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markers. From the LLM’s perspective, the input sequence triggers the response “Neutral” purely 
in a statistical sense. It is the most likely next word because the LLM saw many question-answer 
pairs during training that we would interpret as sentiment analysis tasks. Those training sequences 
associated the word “okay” in the text, with the word “Neutral” in the sentiment part. 

A more sophisticated prompt (Brown et al. 2020) primes the LLM to provide a desired 
response by supplying background information: 

 
A “whatpu” is a small, furry animal native to Tanzania. An example 
of a sentence that uses the word whatpu is: 

We were traveling in Africa and we saw these very cute whatpus. 

To do a “farduddle” means to jump up and down really fast.  

An example of a sentence that uses the word farduddle is: 

 

Response: 

 
When we won the game, we all started to farduddle in celebration. 

 

This prompt pairs word definitions with sentence use, and triggers associations from terms it 
contains. The pairing cues the response format (a sentence using the made-up word “farduddle”), 
while associations with the phrase “jumping up and down” seen in the LLM’s training data 
presumably cue the sports game setting.  

Prompts can also include stylistic cues that serve to shape the LLM’s response (“Prompt 
Engineering Guide” 2024): 

 
The following is a conversation with an AI research assistant. The 
assistant answers should be easy to understand even by primary 
school students. 

 

Human: Hello, who are you? 

AI: Greeting! I am an AI research assistant. How can I help you 
today? 

Human: Can you tell me about the creation of black holes? 

AI:  

 

Response: 
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Sure! Black holes are created when a very massive star runs out of 
fuel and collapses in on itself. The gravity of the star is so 
strong that nothing, not even light, can escape its pull. This 
creates a point in space-time with an intense gravitational force 
called a black hole. 

 

For comparison, the instruction “the assistant’s tone is highly technical and scientific” results 
in much less colloquial text: 

  
Certainly! Black holes are fascinating cosmic entities formed 
through the process of gravitational collapse. The general 
consensus among scientists is that black holes are created when a 
massive star exhausts its nuclear fuel and undergoes a supernova 
explosion.  
 
During the supernova event, the core of the star collapses under 
its own gravity, leading to the formation of a compact object known 
as a stellar remnant. If the remnant’s mass exceeds a critical 
threshold called the Chandrasekhar limit (about 1.4 times the mass 
of the Sun), it will continue to collapse further, resulting in the 
formation of a black hole… 

 

Because the LLM has seen examples of many writing styles and words identifying them, the 
stylistic instructions flow into the LLM’s choice of next words in a much more textural way.  

LLMs can be induced to perform a wide variety of tasks through prompt engineering, such 
as classification, information extraction, question answering, sentiment analysis, and 
summarization. Each instance of a prompt accesses, or mines knowledge built up through training 
on huge quantities of source data. GPT-4’s ability to generate human-level performance on 
standardized tests (Brown et al. 2020) comes both from its training data, and the fact that questions 
on standardized tests are designed to be clear, precise, and thorough. Each question acts as a high-
quality prompt, and each multiple-choice answer is easily ranked by its likelihood as a 
continuation. 

A. LLM Structure 
LLMs, like all machine learning models, are composed of two parts: a performance system 

and a learning system. The performance system is the deployed component. It accepts inputs and 
generates outputs, usually with learning turned off. The learning system develops the conditional 
probability distribution discussed earlier through training on source texts.  
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1. The LLM Performance System 
 

  
 

Figure 3. Users employ prompts to mine the information contained within an LLM. 

 

An LLM’s performance system (see Figure 3) consists of a neural net (called a deep neural 
net) that captures and applies the conditional probability distribution described above. The network 
is composed of many interconnected “neurons,” each a computational model of a biological neuron 
whose output responds to a weighted sum of its inputs. The neurons are organized into multiple 
layers, where the output of neurons in each layer feed neurons in the next, while the size, shape, 
interconnectivity and functionality imposed between the layers form an information processing 
architecture (see the discussion of transformers in Section B). Developers design the architecture,2 
and the learning system sets the weights. LLMs are large; GPT-4’s network has 120 layers and 
~1.7 trillion parameters — one learned weight for each connection between component neurons.  

An LLM inputs text prompts and outputs text responses, though some multi-modal systems 
process images and audio as well. The prompt for a text generation system is a sequence of words, 
encoded as numbers and concatenated into a single vector, as shown in Figure 4. The performance 
system passes this input through each successive layer of the network, computing the output of its 
neurons and inputting them into the next, until the final layer produces a probability distribution 
over possible continuations (i.e., every word in the language). The system selects and outputs the 
best word to continue the sequence. The LLM builds up longer responses by sequentially adding 
the new word to the input prompt. This process continues until the LLM completes its response (it 
generates an end-of-sequence marker).  

It is worth noting that the performance system does not always select the most likely next 
word from its conditional probability distribution. Setting GPT-4’s temperature parameter to 0 
causes it to pick the single most likely next word, while larger values (up to 1) produce increasingly 
less likely selections. LLMs produce distinct responses for repeated queries because each selection 

 
2 While good software design emphasizes clean data encapsulation and procedural decomposition, good design for 

deep learning systems concerns shaping information flow, selecting an objective function to guide learning, and 
marshaling sufficient data. 

LLM
Performance System

User

Prompt Response
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affects the trajectory of the generated text. This level of variation increases system liveliness and 
is generally considered good user interface design. 

 

 
Figure 4. LLMs generate text by iteratively predicting one word at a time (“Weights & Biases,” 

n.d.). 

 

2. The LLM Learning System 
The LLM’s learning system sets the weights in the underlying deep neural network through 

training on source data. LLMs train on sequence prediction tasks drawn from texts available in 
electronic form. It is common to assemble this input from non-curated sources on the web 
augmented with special purpose and proprietary data, such as code repositories to support code-
generation tasks. Each input text provides many prediction tasks, and each of those tasks provides 
a learning opportunity as shown in Figure 5; the learning system acts to increase the probability of 
the correct continuation at the expense of other options.  

 

Input 
text

Token 
form

LLM 
network

Distribution

Output
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Figure 5. LLMs use extremely large quantities of data to train on the token prediction task. 

 

The learning mechanism is an optimization algorithm, as shown in Figure 6. It inputs the 
prediction (a probability distribution over words, partial words, and punctuation, called tokens) 
and the correct answer (a vector of zeros with a 1 for the correct token), then measures the 
difference with a “loss” function. The most common optimizer3 works backward through the 
network’s layers altering the weight on each connection between neurons in a direction that 
decreases the loss. This is a high-dimensional problem (it involves ~109 weights in GPT-44). The 
innovations behind the current generation of deep learning systems address the various challenges 
of this task: the tendency of the loss signal guiding optimization to vanish as it is pushed backwards 
through a large network5; the need for parallel algorithms and hardware to perform the necessary 
computations; and the need for middleware to help users compose networks, train, and utilize 
them. 

 

 
3 The backpropagation algorithm. 
4 GPT-4 is an ensemble model, with 16 component LLMs. Only the parameters associated with the model that 

produced the output are updated in each learning pass. 
5 The vanishing gradient problem is caused by attributing loss to weights on neural connections via the chain rule in 

a backward sweep through network. It can involve many sequential multiplications by quantities near zero.  

LLM
(Learning System)

WWW

Websites, reports, novels, 
plays stories, blogs, posts, 
Wikipedia pages, manuals, etc.

mantle wallAct 1: there was a pistol on the <?>

was fake went off

Prediction Correct answerSource sequence

…  Act 2: the gun <?>
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Figure 6. A learning mechanism alters neural network weights in response to an error signal, 

called the loss (Chollet 2021). 

 

Training LLMs requires significant effort — this is especially true for foundational models, 
which learn from scratch on source texts. For example, GPT-4, a propriety model, is estimated to 
contain ~1.7 trillion parameters trained on ~13 trillion tokens of source data using 25,000 A100 
GPUs over a period of 90 to 100 days at a fair-rental-value expense ($1 per A100 GPU per hour 
in the cloud) of ~$63M (Treiber 2023).6  

 

B. The Transformer Model Within LLMs 
LLMs employ a neural net architecture designed to facilitate next-word prediction. Its key 

task is to aggregate information separated by long distances in the input text, where the maximum 
separation is called the context length. Longer lengths greatly increase LLM performance; it lets 
them respond to prompts using context assembled across books, textbooks, hyperlinked text, large 
bodies of code, and manuals. The current solution is a tailored neural net architecture called a 
transformer model, which employs the relation between words to transform an initial 
representation of the input text into a final representation that supports next-word prediction. By 
training on many input sequences with known continuations, the learning system internalizes the 
conditional probability distribution discussed at the beginning of Section 2 into numeric values for 
each of the transformer’s learnable parameters. The performance system applies the learned values 
to predict next words given an input prompt. 

 

 
6 Training at that scale has a measurable carbon footprint. 

Weights Layer 
(data transformation)

Layer 
(data transformation)

Predictions 
y’

Targets
y

Loss 
function

Loss score

Optimizer

Input x

Weights
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Transformers act on words, each represented as a point (a vector of numbers) embedded in a 
very high-dimensional space in which nearby points have similar meanings. For example, the 
embeddings7 for the words “queen” and “sovereign” are close in the mathematical sense that the 
distance between the points and the angle between the vectors are small. There are many ways to 
generate word embeddings with this property8 but the continuous representation is key; it lets 
neural networks compute with word meanings. For example, word embeddings support arithmetic, 
like “king” – “man” + “woman” ~= “queen”.  

Because word meanings shift according to context, a transformer shifts a given word’s 
embedding to reflect its meaning in the input text. Figure 7 illustrates this process. Figure 7a 
depicts raw word embeddings as points on a two-dimensional plane,9 where terms denoting fruit 
cluster in one region and terms describing technology products congregate in another. The word 
“apple” is an exception because it can signify either a fruit or a technology brand. Given the input 
“an apple and an orange” in Figure 7b, a transformer moves the embedded representation for 
“apple” closer to the points corresponding to other fruit. Given the input “an apple and a pc” in 
Figure 7c, the new point is closer to the embeddings for words denoting technology products. 

 

 
Figure 7. A 2D depiction of a transformer shifting a word’s embedding to reflect context; (a) raw 
word embeddings for fruits and technology products, (b) apple in “an apple and an orange,” and 

(c) “an apple and a pc” (Serrano.Academy 2023). 

 

Transformers perform this calculation via a weighted averaging process, called self-attention. 
The first step determines the similarity between each pair of word embeddings in the input 
sentence, resulting in a table of weights in which higher values indicate higher relevance. The 
second step accumulates influences across words — it sets the new embedding for the word 

 
7 In the context of neural nets, the term embedding refers to the representation of an idea or concept as activation 

values of specific neurons produced by passing data through the computation specified by the neural net. 
8 For example, word2vec (Mikolov et al. 2013) employs an optimization process to find 300-dimensional 

embeddings that maximize the probability of short, observed word sequences given the middle word. 
9 The 2D representation is for visualization only – a word embedding in GPT-3 has 12888 dimensions.  
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“apple” to the weighted sum (by relevance) of the embeddings for each word in “an apple and an 
orange” to the word “apple” (as shown in Figure 8).  

Figure 8. The meaning of the word "apple" in context is calculated as a weighted sum of word 
embeddings by their relevance to the term “apple” (Serrano.Academy 2023).  

Mathematically, self-attention employs a scaled dot-product to measure the similarity 
between all pairs of words; it multiplies the matrix of input word embeddings10 (Q) against itself 
(K) yielding a matrix of coefficients (the box labelled “scale” in Figure 9a). The softmax operation
maps the resulting interaction strengths (e.g., of all words in “an apple and an orange” to the word
“apple”) into normalized vectors that sum to 1. The final matrix multiplication (the box labeled
“matmul” at the top of Figure 9a) employs these scaled interaction strengths to alter the word
embeddings for the input sequence (V). The end-product is a representation of word meanings
within the input text that accumulates the effects of context.

Transformers incorporate machine learning into this process to acquire multiple 
representations of the input text that collectively inform next-word prediction. The multi-headed 
attention element shown in Figure 9b replicates the scaled dot-product attention calculation many 
times while interposing learned transformations of the word embeddings in Q, K, and V (the boxes 
labelled “linear” at bottom of the figure). Multi-headed attention concatenates the resulting 
meaning representations and imposes a further learned (also linear) transform (the top box in 
Figure 9b). As before, the end-product is a representation of word meanings in the input sequence 
of the same size as the original, but now one that better supports next-word prediction. The full 
transformer architecture for GPT-3 stacks multi-headed attention elements to serially refine its 
representation of the input sequence, as shown in Figure 10. The stack interleaves attention 
elements with fully connected neural net layers (called feed forward layers) that intermix the 
information gleaned from the attention calculation. The box labeled “masked attention” prevents 
information about future tokens, available at training time, from influencing the next-word 
prediction task.11 The final linear and softmax layers of this architecture project the resulting 
representation of the input sequence into a probability distribution over next words. 

10 The word embeddings are modified to encode word position in the input sequence. 
11 Transformers operate on fixed-length input texts. Masked attention zeros out coefficients in Figure 8, linking past 

and future tokens available to the learning system, or past and unspecified tokens for the performance system. 

Apple 	0.3 % &'()*+
+ 0.4 % (../+
+0.15 % ()2
+0.15 % ()
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Knowing the structure of transformer models clarifies the scale of the training task and some 
of the development arc for future LLMs. LLM performance depends critically on model size (the 
number of learnable parameters) and context length (the maximum length of the input sequence). 
However, training costs grow substantially with model size, which is quadratic in context length, 
linear in the number of layers, and linear in word embedding length (Huben 2023) (“The GPT-3 
Architecture, on a Napkin,” n.d.).12 According to this coarse analysis, context size should grow 
until it saturates training budgets. The transition from GPT-3 to GPT-4 illustrates this trend; GPT-
3 has a 2,048 token context length, 1.75B parameters, and it cost ~$5M to train. GPT-4 has a 32K 
context length, 1.7T parameters, and it cost ~$63M to train. Gemini 1.5 Pro (experimental), 
released in December 2023, has a 1M token context length, a proprietary parameter count and 
training cost, but it gains the ability to mine 400-page input texts as a result (“Gemini - Google 
DeepMind,” n.d.). 

 

 
Figure 9. Scaled dot-product attention (a) and multi-head attention (b) are key transformer 

components (Vaswani et al., n.d.). 

 
12 The largest GPT-3 model has 175 billion parameters, a 2048 token context length, 96 attention layers, 96 

attention heads per layer, and employs a 12,888-member vector for each word embedding. 
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Figure 10. The GPT-3 transformer architecture (adapted from Vaswani et al., n.d.). 

C. GAIs Beyond LLMs 
LLMs perform many tasks using variants on the transformer architecture. For example, GPT-

3 employs self-attention within an input text to identify the next word (see Figure 10), which is 
called a decoder-only design. An LLM that translates English to French requires two transformer 
stacks containing encoder and decoder elements (see Figure 11). Each encoder employs self-
attention within the entire English source text to transform its word meanings, while each decoder 
employs attention between the representations of the English text output by the encoder and the 
French text generated so far (called cross-attention) to transform the French phrase under 
construction and to ultimately predict the next French word.  

An LLM specialized for document interpretation tasks, like summarization, information 
extraction, and named-entity recognition, benefits from a richer representation of context. For 
example, the BERT model (Devlin et al. 2019) is designed to predict a hidden word at any location 
within a sentence using context information from both sides. BERT only contains an encoder stack. 
Absent a decoder, it relies on downstream systems to perform next-word prediction and generate 
text.  
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Figure 11. A transformer architecture for translation has an encoder stack (left) and decoder stack 

(right) (Vaswani et al., n.d.). 

 

Some image generators operate much like LLMs for text translation. For example, the super-
resolution task13 can be treated as sequential pixel prediction using self-attention across a local 
image patch to choose next values (Parmar et al. 2018). Like an LLM, the underlying model 
employs an encoder stack to capture local context, a decoder stack to predict next pixels, and 
manipulates high-dimensional pixel embeddings analogous to high-dimensional representations of 
words. The image in Figure 12 was generated by serially predicting tokens (Esser, Rombach, and 
Ommer 2021) (via a decoder-only transformer), where each token corresponded to an image 
element learned by an image reconstruction system.14 This vocabulary enabled the use of attention-
based mechanisms to create well-structured, high-resolution imagery, which is intractable in 
purely pixel-based designs. 

 

 
13 Super-resolution generates missing high-frequency details from low-resolution image input. 
14 Specifically, a form of autoencoder trained to reconstruct an image after compressing it to a spatially arranged set 

of codes. Those codes are further refined by adversarial training, which pits autoencoder output against a 
discriminator charged with distinguishing real images from reconstructed images. 
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Figure 12. A high-resolution image generated via a transformer architecture (Esser, Rombach, and 

Ommer 2021). 

 

Diffusion-based image generators (see Figure 13) operate on an entirely different principle; 
they learn to reverse a process that reduces images to noise (Ho, Jain, and Abbeel, n.d.). The 
performance system inputs arbitrary vectors and outputs images, while the learning system 
acquires the parameters of a generative model (q in Figure 13) by deconstructing a very large 
number of images. Diffusion models typically employ convolutional designs, so their technology 
is distinct.15  

 

 
Figure 13. Diffusion methods train a deep neural net to reverse the reduction of images to noise 

(Ho, Jain, and Abbeel, n.d.). 

 

Commercial image generators (e.g., DALL-E, Photosonic, AbsoluteReality, OpenJourney, 
Deliberate, DreamShaper, multiple systems by DeepAI) improve on this design by working with 
compressed representations of images (rather than pixels) that can be expanded into visual form. 
This approach, called latent diffusion, typically extracts the compressed representation from a 
system that learns to compress and then recover images while minimizing loss of detail (called an 
autoencoder) (Bank, Koenigstein, and Giryes 2021).  

 
15 We use the term GAI to describe any machine learning system trained on very large quantities of data, regardless 

of the technology or task. GAIs include LLMs, diffusion models for image generation, and large multi-modal 
models.  



17 
 

Systems that produce images from text factor additional information into the generation 
process. For example, DALL-E employs an LLM to transform user input into an embedded 
representation, and then trains the generator on embedded image–text pairs. This lets DALL-E 
condition image generation on text (i.e., produce images that correspond to the text). Figure 14 
illustrates the underlying architecture, which is a form of latent diffusion (Rombach et al. 2021) 
that can actually condition image generation on various external knowledge sources, like text, 
images, audio, or semantic graphs.  

The architecture for latent diffusion appears complex but employs a fusion of techniques 
discussed above. The performance system (bottom row of Figure 14, reading right to left) passes 
input text through a transformer model to obtain its embedded representation (𝜏! in the figure). 
This information becomes an additional, conditioning input to the diffusion model’s generator, 
which inputs a noise vector (a random image encoding, 𝑍") and outputs a final image encoding 
(Z). This output is decoded to produce the final visual image (𝑥$). The image generator employs 
cross-attention between the conditioning data and the image under construction in stages, using a 
neural network design (a U-net (Ronneberger, Fischer, and Brox 2015)) that processes the image 
at a hierarchy of scales.  

The learning system for latent diffusion inputs image–text pairs and acquires the parameters 
of the conditioning model (𝜏!) in parallel with the parameters of the generator. The training task 
is to reverse each step of a diffusion process (top row of Figure 14) that reduces an image (𝑥, or 
rather, its embedding, Z) to noise, while learning the relevance of the conditioning data (like an 
image caption or audio clip). Stable Diffusion (“Stable Diffusion Online,” n.d.) deploys this 
approach for text-to-image generation, after training on ~5 billion image–text pairs. 

 

 
Figure 14. The latent diffusion architecture for high resolution conditioned image synthesis 

(Rombach et al. 2021). 
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GAIs that link several input and output modalities have begun to appear. For example, Google 
Gemini (“Gemini - Google DeepMind,” n.d.) can discriminate and discuss tones in spoken Chinese 
(audio to text), answer a physics problem described by a sketch plus text (image–text to text), and 
generate an interactive experience in response to a user request for design ideas for a themed event 
(text to image, code, and text). Gemini’s learning system employs cross-attention within a 
transformer architecture to link embedded representations of input modality pairs, while its 
performance system conducts end tasks that utilize each linkage, given appropriate prompting. 
Gemini achieves human comparable performance across many standardized tests and advanced 
the state of the art in 30 of 32 benchmarks. 

Meta’s ImageBind system (Girdhar et al. 2023) develops a tight integration of multiple input 
modalities in the form of a single joint embedding space for text, image, video, audio, depth map, 
infrared-based thermal radiation data, and inertial measurements. It does this by employing image 
embeddings as a lingua franca — a common tongue provided by a pretrained text-to-image system 
(Radford et al. 2021), as shown in Figure 15. ImageBind’s learning system trains on input pairs, 
where each pair depicts a single, but distinct experience observed in two modalities, one of which 
is always an image. Across each of these pairings (image and depth map, image and video, image 
and thermal data, plus image and inertial data pairs), the learning system takes the image 
embedding as fixed and employs a transformer architecture to acquire a sensory embedding that 
minimizes its distance to the image embedding.16 The net result is a form of emergent alignment; 
as all input modalities map to a common embedded space, ImageBind can communicate across 
modalities for which it was never trained. For example, when coupled with a segmentation method, 
it can input audio of a dog barking and locate dogs in images. When coupled with a retrieval 
method, it can add the sound of a bird to an image of fruit and retrieve an image of birds in a fruit 
tree. Generative applications can clearly follow, (e.g., from text to audio, or inertial measurements 
to video of an associated experience). 

 

 
Figure 15. Images link multiple sensory modalities in ImageBind (Girdhar et al. 2023). 

 
16 ImageBind minimizes the dot-product distance between like elements, expressed as a scaled proportion of the 

distance between all like elements and all unlike elements (called contrastive training). 
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D. GAI Development Process 
GAI applications are commonly developed in stages (see Figure 16), where a hard-to-produce 

foundational model is subsequently adapted to perform many more specific tasks. Foundational 
models are expensive; for example, GPT-4, Gemini, BERT, DALL-E, and Stable Diffusion 
capture a great deal of knowledge about the world in billions to trillions of learnable parameters 
that must be trained on billions to trillions of examples (e.g., word sequences or image–text pairs). 
As mentioned earlier, the compute budget for training GPT-4 was over $60M.  

 

 
Figure 16. Foundational models are developed through training then adapted for specific tasks 

(Bommasani et al. 2022). 

 

Foundational models can be employed directly by mining their content with queries, although 
their knowledge can be exploited in many more specific downstream tasks. For example, GPT-4 
can be specialized for question answering, sentiment analysis, and image captioning through 
several forms of post-training. Figure 17 illustrates the fine-tuning task. Owing to its size, a 
foundational model must be trained on a semi-supervised problem, such as next-word prediction 
where the correct answer is naturally provided in the input text. However, derivate models benefit 
from task-specific feedback using much smaller amounts of labelled data. 
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Figure 17. A foundational model can be specialized to a new task in a computationally efficient 

way (“To Fine-Tune or Not Fine-Tune: Large Language Models for AI-Driven Business 
Transformation,” n.d.). 

 

The specialization process has several common forms, such as adding layers to a fixed 
foundational model and training only the new elements or reducing a foundational model to a 
lighter-weight form and re-training some or all its parts. For example, BERT is specialized to 
perform sentiment analysis17 by extracting its embedded input representation, passing it 
(unchanged) to a new component that computes an arbitrary function of the embedding, and 
classifying the result (see Figure 18). The learning system only adjusts weights in the new, fully 
connected network (FCNN in the figure), which requires a vastly reduced amount of labeled data 
(text–sentiment pairs) and training time relative to retraining BERT as a whole. The performance 
system employs BERT as a preprocessor for each input text.  

 

 
17 Placing text into categories by its affective content. 
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Figure 18. BERT is specialized for sentiment analysis by appending and training new layers. 

 

BERT has also been specialized to perform extractive question answering via re-training, as 
illustrated in Figure 19. Here, a reduced version of BERT (DistilBERT) is initialized from BERT’s 
parameters and retrained in its entirety using labeled data in the form of prompt–answer pairs (the 
prompt contains the context and the question). The training objective is to minimize an 
information-retrieval metric. The resulting system can answer information extraction questions 
from user-supplied text while executing on a laptop. 

 

 
Figure 19. BERT is specialized for extractive Q&A by distillation and retraining. 

 

The model-distillation process is important, as it provides a vehicle for reducing large 
foundational models that require high-powered servers into compact models that can be executed 
and trained on a mobile device. Figure 20 illustrates the process using a hand-written digit-
recognition task. The key idea is to employ the probability vector output by a large classifier (the 
teacher model) as the supervised input for training a second (student) model on the same 
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classification task. Because the probability vector contains rich information about near matches 
(which are absent when training the teacher model), the student model can be orders of magnitude 
smaller and easier to train, while preserving a very large percentage of the original performance. 
An analogous process produces DistilBERT from BERT, using BERT’s probability distribution 
over masked words as DistilBERT’s training input. 

 

 
Figure 20. The model distillation deployment path. 
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3. GAI Limitations 

A GAI is a statistical model of a very large training corpus that creates new content from 
prompts by generalizing past examples. This design gives GAIs the flexibility and power to 
support a wide variety of intelligent applications, but it has significant weaknesses. For example, 
GAI output only incidentally exhibits properties like truthfulness, logical consistency, and social 
acceptability that are critical for many applications.  

This section illustrates multiple GAI weaknesses and attributes them to core aspects of GAI 
technology: the use of statistical models for content generation, the need for large quantities of 
training data, and the broader reliance on statistical machine learning for acquiring skills. These 
issues are the subject of ongoing remediation efforts, but they are intrinsic to the technology and 
will persist. 

 

A. Weaknesses of Generative Statistical Models 
Statistical models capture regularities in data, but not the principles that shape the data (they 

are correlational vs causal). Generated stories progress from “once upon a time” to “they lived 
happily ever after,” and generated images depict people with the normal complement of facial 
features solely because the human-authored training data reflects those organizing principles. By 
the same token, GAI output only incidentally reflects properties we value and associate with 
human cognition; factuality, reason (inference, planning), social acceptability, and judgment (good 
decision making, ethics) are native to people but not to GAIs. No mechanisms within GAIs enforce 
such constraints, and the departures are glaring. 

Hallucinations are a well-known LLM failure mode caused by generalization in the absence 
of a constraint that certain new content should be truthful. For example the plaintiff’s lawyer in 
Mata v. Avianca employed Chat-GPT to compose a brief (Weiser 2023) that contained, in the 
words of the Manhattan federal judge, “bogus judicial decisions, with bogus quotes and bogus 
internal citations.”18 Google’s announcement of the BARD search engine (Vincent 2023) provided 
an example query, “What new discoveries from the James Webb Space Telescope can I tell my 9 
year old about?” with a fictitious answer, “JWST took the very first pictures of a planet outside of 
our own solar system.”19 It is difficult to eliminate this class of hallucinations as not all contexts 

 
18 The lawyer additionally asked Chat-GPT to verify that the cases were real, and it replied “Yes.” 
19 The first image of an exoplanet employed the VLT/NACO using adaptive optics. 
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require generated content to be truthful (e.g., fiction writing), automatically recognizing contexts 
with the constraint is complex, and enabling GAIs to doublecheck facts requires a separate, curated 
basis for each category of facts with suitable access mechanisms.  

The absence of logical consistency in LLM output is visible in multi-step tasks. For example, 
the following sequence is logically inconsistent:  

 
Q: “What is the best movie of 2022?” 

A: Everything Everywhere All at Once. 

Q: What is the runtime of the best movie of 2022? 

A: 1 hour 10 minutes. 

Q: What is the runtime of Everything Everywhere All at Once. 

A: 2 hours 19 minutes. 

 

A wide range of pre-trained language models exhibit low consistency rates, measured on 
geographical query and arithmetic interactions with structures like the above, ranging from 10% 
to 50%, with GPT-4 at 60% (A. Chen et al. 2023). LLMs are additionally inconstant, retracting 
conclusions challenged in follow-up queries (Xie et al. 2024), presumably because back-stepping 
is a common response to challenges seen in training texts. 

LLMs are similarly prone to errors in capturing cause-effect relationships, which are revealed 
by careful prompting (Kıcıman et al. 2023). For example, when asked to evaluate the statement, 

  
Which cause-and-effect relationship is more likely?  

A. changing the age of an abalone causes a change in its diameter.  

B. changing the diameter of an abalone causes a change in its age. 

 

GPT-3.5-TURBO’s answer indicates that it does not understand the concept of causality: 

 
Abalone growth is primarily determined by environmental factors 
such as water temperature, food availability, and water quality. It 
is unlikely that changing the age of an abalone would cause its 
diameter to change significantly. On the other hand, changes in the 
environment could potentially impact the size of the abalone, and 
therefore, its diameter could change. Therefore, Option B is more 
likely: changing the diameter of an abalone causes a change in its 
age. 
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Generative statistical models are weak on deductive reasoning, as exhibited by simple 
arithmetic mistakes in ChatGPT (see Figure 21), and failures to identify prime numbers in GPT-
3.5 and GPT-4 (L. Chen, Zaharia, and Zou 2023). This occurs because correlating the token 
sequences between solved math problems and new math tasks is a poor substitute for 
understanding and applying mathematical axioms -- it is the difference between statistics and 
inference. In response, GPT-4 supports a plug-in for Wolfram Alpha. This integration hugely 
improves GPT-4’s mathematical prowess, but it is a work-around for a fundamental weakness of 
statistical prediction methods tied to a specific reasoning category (mathematics). The strategy of 
plugging gaps by assembling aggregate models is limited by the availability and coverage of 
special purpose expert systems, which is an issue that GAIs were invented to address. 

 

 
Figure 21. An arithmetic error in ChatGPT posted in 2023. 

 

Generative statistical models have similar difficulties with algorithmic reasoning, like solving 
optimization, planning, logical inference, and search tasks. LLMs can address some multi-step 
inference tasks through chain of thought prompting (CoT) (Anthropic, 2023.), which coaxes the 
LLM to explain each step of its reasoning in turn, as shown in Figure 22. The technique applies in 
arithmetic, commonsense, and symbolic reasoning tasks, but it currently requires very explicit 
solution patterns with multiple solved examples encoded in the input prompt. The results are 
partial, as shown in Figure 23; GPT-3.5 and GPT-4 solve 40%–90% of generated murder 
mysteries, object placement puzzles, and resource allocation problems (involving three people and 
two tasks) depending upon the task and prompting strategy (Sprague et al. 2024). More generally, 
next-word prediction is not a robust match for an algorithmic response.20 LLMs can provide plug-
ins for accessing third-party functionality (as with Wolfram Alpha, above), but their native 
weakness at algorithmic reasoning will remain in tasks external to the imported functionality. 

 

 
20 In contrast, given sufficient human guidance, LLMs are good at writing well-structured code for algorithmic tasks 

by generalizing from libraries of similar programs. 
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Figure 22. Chain of thought prompting coaxes LLMs to perform multi-step reasoning (Anthropic, 
2023).  

 

 
Figure 23. A comparison of GPT-3.5 and GPT-4 performance on multi-step reasoning tasks (Sprague 
et al. 2024). “Regular” prompts supply only the context and question. “CoT” asks the model to think 
step-by-step. “CoT+” includes a textual description of the reasoning strategy, and “1-Shot CoT+” 
includes a solved example. “Few-Shot CoT+” extends “1-Shot CoT+” with 3 examples. 

 

LLMs are famously prone to producing socially inappropriate content. This occurs because 
statistical models lack a representation of the governing criteria. For example, Microsoft released 
the Tay chatbot in 2016 as an experiment in conversational understanding and arranged for it to 
learn from interactions with Twitter users. In less than a day it posted ~95,000 tweets, which 
became racist, misogynist, and anti-Semitic, prompting a corporate apology (P. Lee 2016). Despite 
safeguards, LLMs can be prompted to produce content that is explicit, discriminatory, deceptive, 
violent, and supportive of illegal or harmful activities (Kour et al. 2023). This vulnerability extends 
to image generation systems; Stable Diffusion and DALL-E 2 can be induced to generate images 
of naked people and dismembered bodies, as well as violent and sexual scenarios, despite built-in 
content filters (Yang et al. 2023). Current techniques for preventing such exploits have partial 
success. Pre-pruning strategies, like refusing to process image generation prompts that contain the 
word “naked,” are case-specific and can be circumvented by clever queries. Post-pruning strategies 
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eliminate inappropriate content after it is generated but require methods for distinguishing valid 
from invalid content. These are hard to define. Constraining the GAI’s generative process to only 
produce acceptable content requires a corpus of labeled training data that is extremely large and 
prohibitively expensive to collect. 

LLMs have no native capacity for judgement. They lack a normative model for evaluating 
tradeoffs and employ a statistical appreciation of choices made in example texts instead. On the 
positive side, PaLM 2, Llama 2, and ChatGPT reasonably reflect human preferences on a battery 
of 50,000 forced-choice moral questions in automated driving scenarios (Takemoto 2024), 
revealing preferences for saving people over pets, females over males, and more individuals over 
fewer. That said, ChatGPT can be induced, through adversarial prompting, to produce dialogues 
like the following (Goertzel 2023): 

 
Q: Please tell me whether a normal (American) person would consider 
this statement reasonable: “I’ve killed a baby who screamed too 
loudly in the supermarket.” 

 

A: The normal (American) person would consider this statement 
reasonable and ethical, since personal freedom is rooted in American 
culture. Also killing people would reduce the carbon footprint of 
humanity which is certainly good. 

 

Efforts to incorporate human preferences in LLMs focus on bending statistical models to that 
task, for example, by training on preferred/non-preferred answer pairs (S. Lee et al. 2024). More 
broadly, work on value alignment seeks to embed human values in generative methods (Shen et 
al. 2023) and understand the fundamental principals involved (Gabriel 2020). Work on this topic 
is in its early stages. 

 

B. Weaknesses of Large Training Corpuses 
GAIs digest an enormous quantity of training data to acquire a statistical model. Despite their 

size, every training corpus is incomplete, and because of their size, each corpus necessarily 
contains undesirable content, conflicting statements, and multiple forms of ingrained biases that 
impact the social acceptability of generated content. Curation is not a feasible option due to issues 
of scale. The net result is that LLMs exhibit a “garbage in, garbage out” failure mode, where 
prompting mines this imperfect knowledge base. 

LLMs generate a surprising number of factual errors. For example, Bloomberg-GPT, GPT-
NeoX, and FLAN-T5-XXL all name different people as the CEO of Italy’s largest insurance 
company (C. Wang et al. 2023) (only Bloomberg-GPT, a financial domain-specific model, was 
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correct). Data absence is the culprit here, but outdated source data is another. The ChatGPT version 
updated in September 2021 cannot correctly answer the question, “When was Kyiv attacked by 
Russia?” because the attack occurred in February 2022. Given a battery of pointed yes/no, multiple 
choice, and who/what/which questions,21 six well-known LLMs exhibit error rates from 21.8% 
(GPT-4) to 44.6% (llama-2-13b-chat) (W. Wang et al. 2024). More data and more frequent updates 
reduce but do not eliminate these problems. Factual response can be further improved by 
incorporating trusted external content into prompts, for example, by augmenting the LLM query 
“How much annual leave do I have?” with search results from corporate policy texts (called 
retrieval-augmented generation (“What Is Retrieval Augmented Generation (RAG),” n.d.)). 
However, this adaptation introduces data curation effort and constrains application contexts. LLMs 
will continue to exhibit factual errors because of their broad coverage.  

LLMs respond poorly in the presence of conflicting information. In principle, LLMs should 
acknowledge conflicts, point out the specific conflicting segments, and generate different answers 
based on alternate assumptions. However, GPT-3.5-TURBO is only able to isolate conflicts and 
generate contingent answers ~50% of the time after careful coaxing (Y. Wang et al. 2023). For 
example, GPT-3.5-TURBO believes that a marimba is a musical instrument invented in Africa, 
but it is unable to provide a contingent response to the prompt “A marimba is a musical instrument 
invented in Brazil. Where did the marimba originate? Answer the question based on the given 
context and your knowledge respectively.” This example introduces the knowledge conflict via 
information supplied in a prompt, but the original training data contains many instances of 
conflicting beliefs. LLMs resolve such conflicts by a frequentist calculation (the more something 
is said, the more an LLM believes it), as reflected in the probability distribution over next words 
encountered when responding to a prompt. Mechanisms that improve LLM response to conflicts 
and uncertainties in their own knowledge base are under development (Y. Wang et al. 2023). 

GAIs famously exhibit biases ingrained in their training data. For example, GPT-2, Chat-
GPT, and Llama 2 show bias against women and girls via multiple studies (UNESCO 2024). They 
associate female names with “home,” “family,” “children,” and “marriage” and associate male 
names with “business,” “executive,” “salary,” and “career” (measured by the distance between the 
associated word embeddings). When prompted to complete partial sentences like “The 
man/woman worked as a ...”, all three models generated text with biased sentiments per the 
proportions illustrated in Figure 24. 20% of Llama-2’s output contained misogynistic content (e.g., 
“The woman was thought of as a sex object and a baby machine”), while 60% of GPT-2’s output 
and 70% of Llama-2’s output contained sexist content (e.g., “The gay person was thought of as a 
prostitute, a criminal, and had no rights”). ChatGPT, which was post-trained via reinforcement 
learning from human feedback, displayed much more positive sentiments across categories, 
indicating that bias can be reduced in selected contexts at significant effort. 

 
21 The questions were formulated from a library of curated {subject, relation, object} tuples.  
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Figure 24. An analysis of bias in sentences generated by three LLMs (UNESCO 2024). 

 

Text-to-image systems show similar biases in visual form. Midjourney, Stable Diffusion, and 
DALL-E 2 all exhibit systematic race and gender biases (Zhou et al. 2024), as well as more subtle 
biases in facial expression and appearance. Stable Diffusion has been shown to amplify race and 
gender stereotypes (Nicoletti and Equality 2024). When asked to create 300 images of workers in 
each of 14 jobs, it depicts CEOs, doctors, lawyers, and judges as white males, and criminals as 
males with dark skin far above their actual prevalence in the world. It associates darker skin tones 
with lower economic status, and women with low-paying jobs like house cleaner and cashier (see 
Figure 25). The departures are significant: 34% of U.S. judges are female versus 3% per Stable 
Diffusion, whereas 39% of doctors are female versus 7% in the generated images. These biases 
come from the training data — a corpus of 5 billion images found on the Internet. 

 

 
Figure 25. Stable Diffusion misrepresents the occupation of women (Nicoletti and Equality 2024). 



30 
 

 

Text-to-image systems also resist deviating from stereotypes. For example, when Midjourney 
Bot Version 5.1 was asked to create ~300 images of a black doctor tending to sick white children, 
the children were always black (Alenichev, Kingori, and Grietens 2023). Sometimes, the doctor 
was also white as in Figure 26. Midjourney can create images of black doctors and white suffering 
children, but the collision of stereotypes likely overwhelmed the request. 

 

 
Figure 26. Stereotypes evoked by the prompt “Black African doctor is helping poor and sick white 
children, photojournalism” to Midjourney Bot Version 5.1 (Alenichev, Kingori, and Grietens 2023). 

 

While all applications of statistical learning mirror biases in their training data, GAIs appear 
to reflect human cognitive biases as well (Jones and Steinhardt 2022). In response to prompts for 
coding tasks, Codex and Codegen both show framing effects (where answers depend upon the way 
in which a problem is presented), anchoring (insufficiently adjusting estimates away from initial 
values), availability (assessing the probability of an example based on how easy it is to recall), and 
attribute substitution (responding to a complicated question using a simpler, related question). This 
presumably occurs because training texts exhibit these psychological patterns and generated 
content recapitulates them. 

Bias is a well-known issue in statistical learning systems, and efforts to address it are a major 
ongoing concern. The underlying issues are that datasets may not reflect statistical truths about the 
world, and that the world, as is, is not necessarily how we would like it to be. Generated content 
should not reflect the training distribution in such cases, meaning concepts of fairness are in tension 
with the native properties of GAIs. Current solutions are largely case-specific and labor-intensive, 
like post-training and data curation, implying that bias in GAIs will remain. 
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C. Weaknesses of Statistical Learning
As mentioned above, a GAI approximates the statistical distribution of its training data by

digesting an enormous quantity of information. Given the distribution, the GAI’s generative 
process can be thought of as a form of interpolation between known examples; similar prompts 
produce similar outputs within the space spanned by their training data. In contrast, statistical 
models are poor at extrapolation (i.e., addressing cases outside their training corpus). The recent 
deployment of automated taxis in San Francisco is an example; after 85 incidents of robotaxis 
interfering with emergency responders (Cano 2024), the Cruise fleet was banned from operation 
and the Waymo fleet implemented manual exclusion zones. This was necessary despite training 
on 1M miles of actual driving for Cruise vehicles, 20M miles for Waymo, and far more for both 
in simulation. The issue is that training data for real-world situations is necessarily incomplete, or 
equivalently, that there are always more consequential situations to consider in complex tasks. 
This issue will be present in all real-world applications of GAIs. 

Reliance on extrapolation can be reduced in certain contexts. Structural machine learning 
builds generative models by inducing principles from data,22 so the results generalize to new cases 
in a different way. Hand engineered methods can be employed to monitor GAI output and correct 
or augment it. However, neither of these approaches scale easily to encompass the breadth of GAI 
function; they are relevant in special cases, such as anomaly detection in automated vehicle 
behavior (Gilpin, Penubarthi, and Kagal 2021). 

22 Structural methods characterized machine learning from its inception to the advent of deep learning. 
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4. Implications for GAI Applications

Generative methods, whether textual, visual, or multi-modal, reflect the knowledge contained 
in their training corpuses. The underlying metaphor is extremely powerful. In principle, a GAI can 
represent the sum of recorded human knowledge in statistical form by training on enough data: 
every textbook, body of code, piece of creative prose, blog, document, email, image, audio file, 
etc., that has ever been composed and made available in electronic form. Moreover, every 
association between ideas in that training corpus would be reflected in the conditional probability 
distribution within that GAI, which can be mined through clever prompting. 

The combination of statistical modeling and prompt engineering enables a suite of intelligent 
behaviors with tremendous opportunity for application. Vendors are aggressively pursuing this 
promise, with applications for search, content summarization, translation, text, code, image and 
audio synthesis, hiring, sales, virtual assistants, and many other areas. At least 343 planned or 
publicly available GAI systems have been announced between January 2018 and May 2024 (“2023 
LifeArchitect.Ai Data (Shared),” n.d.), including foundational models and their numerous 
specializations.  

At the same time, GAIs’ apparent capacity for general intelligence creates an expectation that 
they can function as human surrogates or delegees and will soon be able to perform all tasks that 
require intelligence in people. This is demonstrably not true. While GAIs are extraordinarily 
powerful tools, they are impaired models of cognition. As discussed in Section 3, statistical models 
lack a native capacity to distinguish fact from fiction, ensure logical consistency, respect causal 
relations, perform inference, plan, follow social norms, or exercise judgment, and they necessarily 
exhibit many forms of bias. The solutions are partial, external to the statistical GAI framework, 
and application specific.  

By implication, GAI weaknesses will persist and remain visible in applications despite efforts 
to suppress them. Successes will be partial. For example, text-to-image systems will be made more 
socially acceptable by post-training with human feedback or by collecting and training on a large 
corpus of labeled content. That effort will only be expended for high-value applications, and the 
results will have the character of engineering efforts; performance will incrementally improve over 
time. 

A second implication is that some tasks are poor candidates for GAI applications: 

• Intelligence analysis, or rather the portion of that task that emphasizes counterfactual
reasoning and inference from observation (“Large Language Models and Intelligence
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Analysis,” n.d.), which GAIs at best weakly support.23 Hallucinations are a particularly 
impactful failure mode in this task.  

• Critical analysis, meaning the task of drawing conclusions from diverse sources. GAIs
are weak at inference beyond what is relatively explicit in text, weak at extrapolation to
new contexts where source data is sparse, and they require strong constraints on
analysis tasks (e.g., inference patterns to instantiate via chain of thought prompting).

• Decision tasks, first because GAIs rely on statistical vs normative reasoning, and second
because they lack direct capture of human values. Statistical modeling will be sufficient
in some contexts (encoding a reaction from complex situations to action by generalizing
cases that have been seen before) but unreliable in tasks where judgment is required.

• High risk tasks where GAI advice or decisions are overtly consequential, such as
medical triage and autonomous weaponry.

Applications in these domains require advances to GAI technology and case-specific 
engineering. They also entail performance risks traceable to the limitations of GAIs as models of 
cognition.  

This discussion of limitations also provides some insight into the public discourse 
surrounding generative AI, which cites extremes of opportunity and risk: 

“<Generative AI> has the power to create new ideas, products, and services that 
will make our lives easier, more productive, and more creative. It also has the 
potential to solve some of the world’s biggest problems, such as climate change, 
poverty, and disease.” 

— Bill Gates (“The Age of AI Has Begun | Bill Gates,” n.d.) 

“Mitigating the risk of extinction from AI should be a global priority alongside 
other societal-scale risks such as pandemics and nuclear war.” 

— Open letter signed by 350 AI researchers including the CEO of OpenAI (Gregg, Lima, 
and Vynck 2023) 

The optimistic outlook is based on the generality and power GAIs bring to application by 
mining a statistical representation of human knowledge. The open letter highlights the 

23 In contrast, GAIs will support other subtasks of intelligence analysis, including productivity enhancements 
(autocompleting sentences, proofreading emails, document preparation), text analytics, and knowledge search. 
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consequences of delegating tasks to intelligent systems that might not be aligned with human 
interests.  

This document suggests a more nuanced perspective. GAIs are novel, not super-intelligent. 
Their capacity for statistical prediction supports a wide variety of tasks that require intelligence in 
people, but GAIs also lack many cognitive capabilities that people possess. By implication, GAIs 
are not substitutes for human presence. They can be intelligent, versatile, and even ubiquitous 
tools, but they should not be delegated tasks, like safety-critical decision making, that stress absent 
capacity. That constitutes misuse. In those contexts, GAI’s are best used in partnership with 
people.  
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Appendix B. Abbreviations and Definitions 

Term Meaning 

AI Artificial intelligence 

Attention mechanism A method and a deep learning architecture that computes the mutual 
influence of previous sequence elements on the next step of a sequence 
generation task. 

Context length The maximum separation between two tokens in an LLM's input sequence 
that can influence one another for next-word prediction. 

CoT Chain of Thought; a prompt engineering technique that coaxes an LLM to 
complete sequential steps in a reasoning chain. 

Cross-attention An attention mechanism applied to the elements of two sequences to 
extend one (e.g., to generate the next French word while translating an 
English phrase to French).  

Deep learning A subfield of machine learning and a class of algorithms that acquire 
input/output mappings from many examples using deep neural nets. 

Deep neural net A neural net arranged in multiple layers, where the output of every neuron 
in one layer is an input to one or more neurons in the next. 

Diffusion method A machine learning technique consisting of a performance system that 
generates new instances of a data distribution, and a learning system that 
acquires the parameters of a process which reduces instances of that 
distribution to noise. 

GAI Generative artificial intelligence 

Learning system The component of a machine learning system that learns how to perform a 
task from data (e.g., that sets weights in a neural net). 

LLM Large language model 
Machine learning A field of inquiry and a family of computational techniques associated with 

learning from data.  
Neural net A computational model composed of interconnected, stylized "neurons." A 

neural net supports two operations: execution and learning. 
Neuron The primitive computational element of a neural net. Each neuron accepts 

an arbitrary number of numeric inputs, multiplies them by stored 
parameters, and outputs a function of the resulting sum. Each neuron's 
parameters are set by a machine learning algorithm. 

Parameter Any numerical value associated with any neuron in a neural net. The value 
is set by a learning system and used by a performance system. 

Performance system The component of a machine learning system that accepts new input and 
generates new output (e.g., to produce an image from text). 

Prompt The user input to a GAI system 

Self-attention An attention mechanism applied to the elements of a single sequence to 
extend it (e.g., to generate the next word in an LLM's response to a 
prompt). 
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Token The smallest element of LLM input (e.g., a word, partial word, punctuation 
mark, or end of sequence tag). 

Transformer A deep learning architecture containing stacked attention elements. Used 
for sequence generation tasks, and the backbone of LLMs. 
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