
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

A Framework for Evidence-Based
Licensure of Adaptive Autonomous

Systems: Technical Areas

David M. Tate
Rebecca A. Grier

Christopher A. Martin
Franklin L. Moses
David A. Sparrow

James R. Edmonson
Sagar Chaki

David H. Scheidt
Christine D. Piatko

Don Davis
Don Strausberger

March 2016
Approved for public release;

distribution is unlimited.
IDA Paper P-5325
Log: H 16-000680

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA)
under contract HQ0034-14-D-0001, Project AK-2-3944, “Pedigree-Based
Training and Licensure of Autonomous Systems,” for the Air Force Research
Laboratory (AFRL). The views, opinions, and findings should not be construed
as representing the official position of either the Department of Defense or the
sponsoring organization.

Copyright Notice
© 2016 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-5325

A Framework for Evidence-Based
Licensure of Adaptive Autonomous

Systems: Technical Areas

David M. Tate
Rebecca A. Grier

Christopher A. Martin
Franklin L. Moses
David A. Sparrow

James R. Edmonson
Sagar Chaki

David H. Scheidt
Christine D. Piatko

Don Davis
Don Strausberger

A-1

Appendix A.
Introduction

The main body of this paper presents an approach to test, evaluation, validation, and
verification (TEVV) of autonomous systems based on licensure.1 There are a number of areas
where existing work must be converted or new techniques developed in order to make this possible.
Detailed treatment in the main body would have distracted the reader from the overall approach.
Some of these details are presented here, for selected issues:

 Appendix B, Formal Methods—This appendix provides a review of formal methods
techniques, their applicability to licensure and autonomy, and extensive references.

 Appendix C, Requirements and Metrics—This appendix describes a process for
defining requirements and associated metrics that supports evidence-based licensure
(EBL) for autonomous systems.

 Appendix D, Normative Oracle Generation—This appendix describes the attributes of a
Normative Oracle that would support EBL for autonomous systems.

 Appendix E, CoActive Design—This appendix describes co-active design, which
focuses on the interdependence of the human and the machine performing a joint
activity. We might consider this an extension of teaming among humans, but that would
imply a high degree of machine sentience.

 Appendix F, Implications of Learning Autonomous Systems for TEVV—This appendix
provides a review of formal methods techniques, their applicability to licensure and
autonomy, and extensive references.

 Appendix G, Modeling and Simulation Considerations for Licensure of Autonomous
Systems—This appendix addresses modeling and simulation’s role in licensure of
autonomous systems. To do so, key drivers from EBL and autonomy are first identified
to form a foundation for analysis.

1 D. M. Tate, R. A. Grier, C. A. Martin, F. L. Moses, and D. A. Sparrow, “A Framework for Evidence-Based
Licensure of Adaptive Autonomous Systems,” IDA Paper P-5325, H16-000084 (Alexandria, VA: Institute for
Defense Analyses, March 2016).
https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/STD/2016/P-5325.pdf

B-1

Appendix B.
Formal Methods

James R. Edmonson and Sagar Chaki

Evidence-Based Licensure: Providing Rigorous Assurance
Autonomous systems will require a high degree of assurance before they can be

allowed to make life-critical decisions. Traditional testing-based validation and verification
techniques are incomplete and cannot provide the required level of confidence, especially
as the target systems reach a level of complexity that far outstrip the capability of current
(and future) testing approaches. Formal methods provide a more rigorous approach for
assurance but have limitations in terms of scalability and manual effort required. This
appendix answers the following questions in the context of formal methods and evidence-
based licensure (EBL):

1. What are formal methods? What are the history and state-of-the-art in terms of
techniques and tools?

2. What is the relevance of formal methods to autonomy?

3. How can formal methods be used to support EBL?

4. How can formal methods support autonomous system development?

5. How are formal methods uniquely suited to contribute to EBL?

Background on Formal Methods
Formal methods are “mathematically based languages, techniques, and tools for

specifying and verifying [complex software systems]” [1]. Unlike empirical testing
approaches, formal methods tend to use an exhaustive verification approach that proves or
disproves the correctness, safety, or performance of a system using techniques like formal
specification, model checking, and theorem proving. The methods differ from empirical
testing in that the logic of a program or software product is thoroughly explored, including
all possible states, instead of just a subset of scenarios as seen in traditional testing
approaches. This attention to the logic provides a powerful means to assess how decisions
are made, beyond just what decisions are made, as discussed in the main body.1

1 D. M. Tate, R. A. Grier, C. A. Martin, F. L. Moses, and D. A. Sparrow, “A Framework for Evidence-

Based Licensure of Adaptive Autonomous Systems,” IDA Paper P-5325, H16-000084 (Alexandria,
VA: Institute for Defense Analyses, March 2016).

B-2

Classically, correctness of a software product has been specified in the form of
preconditions and postconditions, as well as temporal logic formulas. For most developers
and engineers, the rigor of specification can be daunting and a barrier to entry for using
these more exhaustive formal methods techniques. However, there has been recent work
on developing more user-friendly specification mechanisms, such as regular expressions
[2] and their variants that do not require a deep knowledge about logic to be used
effectively.

Theorem Proving

Computer scientists have studied formal verification of computational systems for
decades. This has led to a wide body of research resulting in theoretical concepts and
techniques, as well as tools. Initially, the bulk of this work was focused on modeling
systems mathematically and then using manual and interactive theorem proving to verify
correctness, which was time-intensive, and problems could be inserted during manual
steps. A classic example of this technique for software correctness is deductive program
verification using the approach of Floyd [3] and Hoare [4]. This work used preconditions
(i.e., what was expected before a software function) and postconditions (i.e., what was
expected to be true after a software function) as the specification mechanism and was
applicable to any programs that always terminated. Though an important result, this work
neglected the vast area of programs that ran indefinitely and software that reacted to events
like network messages, timer activations, and other asynchronous occurrences in software.
In response to some of these blind spots in formal methods practice, Pnueli [5] proposed
verifying reactive systems (i.e., those systems that react to events) using temporal logic as
the specification mechanism. He developed proof rules for deductive verification of such
specifications using theorem proving. In short, he laid the foundation for moving past
preconditions and postconditions, which were really only adequate for software that started
and stopped predictably, and provided a more lenient specification that modeled the logic
(the guts of the software), rather than everything that had to be true before and after
execution. Later work has extended this logical expression of software functionality to
include preconditions and postconditions combined with constraints for software
interaction, networking, timing, security, and other nonfunctional concerns as well.
Preconditions for the software map naturally to restrictions on environment or mission
necessary to allow licensure.

Model Checking

A major step toward automated verification of systems occurred with the advent of
model checking [6] for which Clarke, Emerson, and Sifakis were awarded the 2007 ACM
Turing award. In essence, model checking is an algorithm that exhaustively searches the
state space of a system (expressed as a Kripke structure, which is essentially a way of
describing the transition of state behaviors within software) to decide if it satisfies a

B-3

temporal logic specification. This additional expression of state behaviors and transitions
has a computation cost for verification. The original model checkers used explicit states
and could only verify small systems due to limitations of CPU speed and memory capacity.
Subsequent advancements in hardware capability, as well as new innovations in model
checking such as symbolic reasoning, abstraction, and symmetry reduction, have enabled
the development of state-of-the-art model checkers (such as NuSMV [7] and Murphi) that
can handle systems with enormous [8] (even infinite) state spaces. In particular, one of the
innovations to better handle scale of states and transitions in software has been bounded
model checking [9] that can use propositional satisfiability solvers (a formal methods
approach that breaks down software and state features into true-or-false constraints about
performance, safety, security, etc.) to find bugs in very complex systems.

Software Verification

Early model checking development and research was driven largely by the need for
hardware and device driver verification, rather than systems-of-systems, enterprise
applications or autonomous systems. In particular, the infamous Intel Pentium FDIV bug
[10] caused a lot of research funding to be diverted to automated verification techniques
(including model checking) and led to major developments in formal methods tools for
verifying hardware features and performance. More recently, software model checking
[11] has emerged as one of the major areas of research and development that focuses on
the verification of more complex software. An important milestone is the SLAM project at
Microsoft that produced the Static Driver Verifier [12] tool, which is now integrated with
the Windows Device Driver Kit. A number of publicly available software model checkers
are in active development, as evidenced by the results of ongoing software verification
competitions [13]. In addition, the emergence of efficient satisfiability modulo theory
(SMT) has led to a resurgence of Hoare-style deductive verification of programs in the
form of auto-active verification and associated tools such as Boogie [14] and Frama-C [15].
This automated step to the deductive verification process is important because users of
such formal methods tools had previously been required to fully understand the interaction
and functionality of a system and transcribe that knowledge into annotations to a
verification tool. Instead, auto-active verification techniques allow for software to be
analyzed by software tools and for most of the appropriate annotations for constraints,
preconditions, and postconditions to be reasoned out without user involvement, which
greatly reduces the potential for human error in the verification process.

Concolic Testing

In general, testing suffers from poor coverage of all environments, states, and
interactions that a complex system will see during its deployment. This limits its
effectiveness, especially for complex systems with large state spaces. However, a recent
development, called concolic (concrete-symbolic) testing [16], combines the benefits of

B-4

high automation (from testing) with improved coverage (from symbolic analysis). The key
idea behind this technique is to use symbolic simulation, instead of classical testing, and
gather information from each run (related to branches) to create additional test cases that
cover a different part of the state space. Concolic testing has matured to a point where there
a number of robust publicly available tools, such as Klee [17], as well as tools used
internally by the industry, such as SAGE [18]. A big advantage of concolic testing is that
it is directly applicable to large, complex systems, and not only to models constructed from
such systems. This means that bugs found by this technique are often real and therefore of
high value.

Probabilistic Verification

Another area of formal verification is the analysis of stochastic systems that exhibit
randomness and variability. For autonomy, randomness and variability are a big deal, so
solutions that address these topics are important. This research has taken two broad paths—
probabilistic model checking and statistical model checking. In probabilistic model
checking [19], the system to be verified is modeled as a probabilistic automaton (such as a
discrete-time Markov chain, continuous-time Markov chain, or a Markov decision
process), and the property to be verified is expressed as a formula in a probabilistic
temporal logic such as probabilistic computation tree logic (PCTL) [20]. The property is
then checked by deriving equations for the model and solving them. These solutions will
typically be numerical rather than analytic, which just means that verifiability is often
based on a numerical result of a calculation, rather than the analysis of program logic or
the internal software functionality. A number of probabilistic model checkers, such as
PRISM [21], have been developed and used to analyze a wide range of systems.

Statistical Model Checking

In statistical model checking [22, 27], the system under test (SUT) is simulated many
times using the Monte Carlo method (i.e., repeated random sampling to obtain numerical
results), and each simulation is treated as a random Bernoulli trial (i.e., an experiment with
only two possible outcomes: success or failure). The results of these trials are used to
estimate the probability of the desired event (i.e., the target property being satisfied) with
a target level of precision. In contrast to probabilistic model checking, this technique can
be applied to a system directly as long as it can be simulated. However, a large number of
simulations are needed to precisely estimate the probability of a rare event. This can be
ameliorated to some extent using standard discrete-event simulation techniques, such as
conditional Monte Carlo [23], importance sampling [24, 25], and importance splitting [26].

B-5

Formal Methods and Their Relevance to Autonomy
Autonomous systems will have to repeatedly make complex decisions during their

operation, and these decisions may have far-reaching consequences on human lives. A bad
decision could result in financial ruin or physical harm to robots, buildings, or even people.
Wherever possible, such decision processes should be exhaustively and thoroughly
explored. It is here, in those decision processes where failures are especially problematic,
that empirical testing breaks down and formal methods shows true relevance. Empirical
testing is limited by the tester’s ability to understand systems-of-systems concerns, the
impact of adversaries and environments, race conditions (e.g., timing sequences), etc.
Formal methods, when applied appropriately, can automatedly detect problems in
autonomous systems before they are even deployed.

The major downside of formal methods has traditionally been in the scalability of
formal methods techniques to verify complex systems, especially those with high
variability and randomness. Some state spaces are simply too big to analyze in a reasonable
time. Although autonomous software does push the boundaries of current formal methods
techniques, formal methods are the only way to robustly analyze and verify future
autonomous decision-making and behaviors. The question is not whether or not formal
methods should be applied to autonomous systems, but where to apply formal methods into
autonomy.

There are two places to possibly insert formal methods into autonomous system
verification: (1) embedded into the decision-making at runtime and (2) applied to the entire
software system before deployment of autonomous systems. Given that many of these more
complex autonomous systems may have access to large amounts of information and will
be forced to make split-second decisions, embedding formal methods checks into the
operation of an autonomous system may result in delays of the runtime system that are
unmanageable. Thus, for most autonomous systems, we must provide assurance about the
correct behavior of autonomous systems statically (i.e., before their deployment). This
assurance can be in the form of direct verification and validation of the autonomous system
itself, a rigorously assured monitoring and fault-tolerance mechanism, or some
combination thereof. Formal methods are well suited to provide this type of assurance.

Use of Formal Methods to Support EBL
As described earlier, there is considerable research into using formal methods to

develop software that can be proven to have certain properties. For EBL to be effective,
improvements in formal methods, and specifically in techniques to verify the correctness
of complex adaptive autonomous systems, are going to be important to identifying issues
that are unlikely to be found by traditional testing and validation processes.

B-6

Models of computation do exist that are easier to prove and analyze, such as
synchronous models of computation between autonomous systems or autonomous system
components, which essentially force processing or collaborating elements of the large,
complex system to take turns to behave in a more predictable manner. This type of model
of computation may be a vital part of making formal verification of such scalable, adaptive
autonomous systems tractable and realizable. In addition, abstraction, compositional
reasoning, and parametric analysis will be indispensable for verifying complex concurrent
systems in a scalable manner. New specification formalisms (e.g., specialized temporal
logics or logics to express normative oracles and aids to coactive design) may need to be
developed to express desired limits on the behavior of a collection of cognitive agents.

Many bounds on adaptive autonomous systems will be stochastic; for example, we
may need to ensure that an autonomous system will stay within a safe specified operating
zone with very high probability despite randomness in environment and software
subsystems. In addition to new languages for specifying such bounds, advances in
probabilistic verification techniques (such as probabilistic model checking and statistical
model checking) will be needed to demonstrate that these bounds are achieved. In
particular, robust simulation infrastructures for complex autonomous systems will need to
be developed to apply statistical model checking. This may tie in with the development of
a testbed to facilitate the licensure process. In many situations, ensuring timely behavior
by autonomous systems will be critical. In such cases, techniques drawn from the real-time
scheduling and real-time queueing theory, as well as new advances in these areas, may be
needed to achieve a high level of assurance in a demonstrable manner.

Finally, in cases where static verification is unsuccessful, runtime-assurance
techniques (e.g., the Simplex approach and its variants, which may closely resemble
techniques identified elsewhere in this report) can provide a strong bound on a system’s
behavior by monitoring it and switching to safer alternatives when appropriate. However,
such techniques must be adapted to a collection of autonomous systems that could collude
to avoid detection of malicious behavior. Moreover, this raises the age-old question, “Who
will guard the guardians?” Thus, the correctness of the monitoring and switchover logics
must themselves be verified through other means. In addition, we must develop
architectures (or set of architectural patterns) for autonomous systems that facilitate
application of formal and runtime verification in a compositional manner over system
components and in an incremental manner over system evolution.

Ultimately, these verification techniques may not suffice to fully answer the question
of dependability for the most complex of adaptive autonomous systems. New techniques
that enhance existing verification techniques could be needed to handle the scale and
complexity of interacting systems in future systems; the synergy between human/agent
collaboration; and the inherent uncertainty of operating systems, networking layers, and

B-7

real-world events and circumstances between and among thousands of collaborative
agents.

Support That Formal Methods Offer to Autonomous System
Development

Because formal methods are ultimately based on mathematics, they provide objective
and unambiguous evidence of correctness that can be shared and examined independently
by several licensing and certification regimes. There is increasing realization that
autonomous systems will, at least in part, have stochastic and unpredictable behavior. This
will emerge from at least two sources. First, the systems will operate in uncertain
environments and deal with random external inputs. Second, some will internally use
sophisticated techniques, such as machine learning, that provide high capability at the cost
of unpredictable behavior. Formal methods are also suited to provide assurance about such
stochastic systems, since there is a well-established theory and practice of analyzing such
systems based on probability and statistics. The development of autonomous systems will
also require a systematic approach if we are to achieve a minimal level of assurance. Given
the high cost of failure of such systems, they cannot be developed solely in a produce-cycle
and feature-driven manner. There is now considerable evidence that the use of formal
techniques earlier in the life cycle of a system (e.g., at the design phase) leads to much
lower production cost and to systems that have high quality, modifiability, and
maintainability. These lessons will likely carry over to autonomous systems as well.
Finally, formal methods can be incorporated into automated tools and can therefore be
applied to autonomous systems during their entire life cycle in a routine manner.

Unique Characteristics of Formal Methods for Contributing to
Evidence-Based Licensure

An EBL process will need new techniques to address verification problems with
machine learning in current and next-generation autonomous systems. A continuously
learning system, where an autonomous agent becomes smarter and more capable over time,
is unlikely to exhibit the same performance characteristics and limitations that it did when
first certified. Consequently, for most learning systems, the adaptive autonomous system
will need a continuous-certification process for safety, adaptability, and coherence. Formal
methods provide a promising basis for developing such systems.

We may be able to develop a verification methodology for continuous learning
systems via an abstraction process for the autonomous software system that converts the
entire learned system into a form that is more readily analyzable by formal methods
processes, such as a finite-state machines with currently learned values, behaviors, and
automated procedures to verify the finite-state machine against known operating
environments. Such abstraction techniques are not currently available, and research,

B-8

processes, and tools would undoubtedly be helpful for gaining confidence in existing and
future learning-based systems, especially in arbitrary, unknown operating environments.

In addition, suitable architectures could help us decompose the system into more
manageable components with well-defined interfaces where appropriate formal
verification techniques (e.g., software-model checking or statistical-model checking) could
be applied. At the very least, such techniques and architectures would allow licensure
specialists to better understand the limits of an autonomous system and when and where
the system should be used and how it should definitely not be used, long before the system
is placed in a position that could violate the safety or correct operation of human operators,
collaborators, and other equipment. Integration of diverse formal methods in the context of
a single system development is also a fertile area for further research.

Conclusion
In summary, research in formal verification over the last several decades has produced

a range of formalisms, techniques, and tools that have been applied to systems ranging
from device drivers to distributed software. Formal methods, when successful, provide a
high degree of assurance about a system’s behavior (since they are exhaustive) and yield
objective evidence (in the form of proofs and counterexamples) to support its results.
Moreover, formal methods can be applied statically at design and development time, before
actual system deployment. This is invaluable in detecting failures that lead to catastrophic
results, and formal methods have the potential to provide hard facts about how a system
might operate in a real-world environment before it is actively deployed. However,
formally verifying systems is time intensive and in many cases intractable, even for small,
non-distributed autonomous systems. Scaling to hundreds or thousands of autonomous
agents or systems makes the problem even harder.

References
[1] Edmund M. Clarke and Jeannette M. Wing. “Formal Methods: State of the Art and

Future Directions.” ACM Comput. Surv. 28, 4 (December 1996): 626–43.

[2] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Robby. “Expressing Checkable
Properties of Dynamic Systems: The Bandera Specification Language.” STTT 4 (1)
(2002): 34–56.

[3] R. W. Floyd. “Assigning Meanings to Programs.” Proceedings of the American
Mathematical Society Symposia on Applied Mathematics 19 (1967): 19–31.

[4] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” Commun. ACM
12 (10) (1969): 576–80.

[5] Amir Pnueli. “The Temporal Logic of Programs.” FOCS, 1977: 46–57.

B-9

[6] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic.” Logic of Programs, 1981: 52–
71.

[7] NuSMV Model Checker. http://nusmv.fbk.eu/.

[8] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. “Symbolic Model Checking: 10^20 States and Beyond.” Inf. Comput. 98
(2) (1992): 142–70.

[9] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. “Symbolic
Model Checking without BDDs.” TACAS, 1999: 193–207.

[10] https://en.wikipedia.org/wiki/Pentium_FDIV_bug.

[11] Ranjit Jhala and Rupak Majumdar. “Software Model Checking.” ACM Comput.
Surv. 41(4) (2009).

[12] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob
Lichtenberg. “The Static Driver Verifier Research Platform.” CAV, 2010: 119–22

[13] http://sv-comp.sosy-lab.org/2016/.

[14] http://research.microsoft.com/en-us/projects/boogie/.

[15] http://frama-c.com/.

[16] Koushik Sen. “Concolic Testing.” ASE 2007: 571–72.

[17] KLEE tool. https://klee.github.io/.

[18] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “SAGE: Whitebox
Fuzzing for Security Testing.” Commun. ACM 55 (3) (2012): 40–44.

[19] Marta Z. Kwiatkowska and David Parker. “Advances in Probabilistic Model
Checking.” Software Safety and Security, 2012: 126–51.

[20] Hans Hansson and Bengt Jonsson. “A Logic for Reasoning about Time and
Reliability.” Formal Asp. Comput. 6 (5) (1994): 512–35.

[21] http://www.prismmodelchecker.org/.

[22] Håkan L. S. Younes. “Ymer: A Statistical Model Checker.” CAV, 2005: 429–33.

[23] Joshua C. C. Chan and Dirk P. Kroese. “Rare Event Probability Estimation with
Conditional Monte Carlo.” Annals of Operations Research 189 (2011): 43–61.

[24] Edmund M. Clarke and Paolo Zuliani. “Statistical Model Checking for Cyber-
Physical Systems.” ATVA, 2011: 1–12.

[25] Jeffery P. Hansen, Lutz Wrage, Sagar Chaki, Dionisio de Niz, and Mark H. Klein.
“Semantic Importance Sampling for Statistical Model Checking.” TACAS, 2015:
241–55.

[26] Cyrille Jégourel, Axel Legay, and Sean Sedwards. “Importance Splitting for
Statistical Model Checking Rare Properties.” CAV, 2013: 576–91.

B-10

[27] David Kyle, Jeffery P. Hansen, and Sagar Chaki. “Statistical Model Checking of
Distributed Adaptive Real-Time Software.” RV, 2015: 269–74.

C-1

Appendix C.
Requirements and Metrics

David H. Scheidt and Christine D. Piatko

Scope
We describe here an overarching process to define autonomous system requirements

to support evidence-based certification and licensure, which will develop and maintain
confidence in system dependability throughout the system life cycle (TEVV 2015). Note
that, interpreted broadly, autonomous system requirements include base requirements for
use cases of all systems that could possibly be made autonomous. All forms of unmanned
vehicles, as well as immobots such as electrical grids, fluid-distribution systems, and cyber-
physical systems, have the potential to be made autonomous. Accordingly, general
autonomous systems requirements include requirements of all autonomous uses of vehicles
and immobots. We do not fully enumerate specific requirements related to the direct testing
and licensing of any single particular autonomous system or subcomponent. Rather than
attempt to address requirements for the systems in toto, this appendix focuses on addressing
the derivation of requirements for the evidence-based licensure of the autonomous system.
We describe the overall conceptual process by which autonomy requirements and metrics
for licensure can be elicited.

As described in the main body of this report, the goal of licensure is to provide
assurances that the autonomous system will perform well under the conditions for which it
is being licensed.1 Licensing the system as a whole involves building up a constructive
assurance argument from evaluations of the system in relevant circumstances and from
evaluations of system components. The system includes a physical plant, system software,
and decision algorithms. The physical plant consists of all mechanical, electrical, and
potentially chemical components within the systems that allow it to perform the assigned
tasks, including motors, drivetrains, actuators, sensors, processors, and network devices.
The systems software interprets signals from system sensors and, in accordance with the
decision algorithms, controls actuators, internal processes, and communications with the
external world. Note that tele-operated unmanned vehicles and immobots are composed of
equivalent physical plants and system software.

1 D. M. Tate, R. A. Grier, C. A. Martin, F. L. Moses, and D. A. Sparrow, “A Framework for Evidence-

Based Licensure of Adaptive Autonomous Systems,” IDA Paper P-5325, H16-000084 (Alexandria,
VA: Institute for Defense Analyses, March 2016).

C-2

Tele-operated systems software is traceable to well-formed system specifications that
can be used as a basis of a formal test plans. Unlike tele-operated systems, autonomous
systems are expected to interact with the external world and devise a course of action that
may not have been explicitly defined within the specifications. The task of determining the
course of action lies with the decision algorithms embodied within the autonomous system.
Unlike tele-operated systems, which explicitly define “what” the desired response to an
external stimulus is, autonomous system specifications define “how” the desired response
should to be produced. Accordingly, validating that system software correctly satisfies
system specifications is insufficient evidence for licensure; system validation requires
licensure of both the algorithm and its implementation. For example, proving that a robot’s
path-planning software correctly defines the path-planning algorithm specified in the
design is insufficient evidence for depending on the robot to correctly find a path; testing
the robot requires that the robot test team validate that not only was the path-planning
software correctly coded but that the algorithm that was encoded will, under all conditions
for its licensure, satisfy the system specifications. Further, the system’s physical plant,
software, and decision algorithms must all be validated under appropriate conditions for
their suitability, as well as integrate available assurances for the system as a whole tested
under a variety of conditions.

As discussed in the main body of the report, there are several approaches to the
licensure of an autonomous system and its components. One approach is via formal
mathematical proofs that the system will work as described. Section 2 provides a discussion
of formal methods along these lines. Note that formal methods can be used to validate the
physical plant, the system software, and the decision algorithms.

A second approach is the use of controlled experiments, putting the system under test
in controlled, sanitized settings that provide fixed assurances of suitable performance in
these specific conditions. This is analogous to what is often done to test subunits of larger
physical systems. Unit testing of physical components contained within an autonomous
system can be used to characterize the requirements and performance of specific sensors,
drivetrains, software models, and operational elements. Controlled experiments for
autonomous systems are more challenging than testing of equivalent tele-operated systems
because the subsystems within an autonomous system are expected to observe the actions
of “thinking actors” in the outside world and devise a course of action that will, in turn,
generate actions on behalf of the external actors. The feedback between autonomous
system decisions and decisions of outside actors explodes the state space to make test plans
composed entirely of controlled experiments infeasible for all but the simplest of
autonomous systems.

The third approach to licensure, and the one emphasized throughout this report, is
evidence-based licensure. In contrast to formal methods or controlled experimental
approaches, such licensure will necessitate observing the system’s performance in

C-3

conditions appropriate to its licensure—including in native environments (“in the wild”).
The goal of a composable licensure approach will be to attempt to avoid going through
lengthy, expensive, full system test processes again and again, instead building an
argument for licensure related to how the system is expected to perform based on its
components and related system tests and licenses.

The major challenge for developing licensure requirements in support of such
composable, evidence-based licensure will be eliciting the many possible inter-
dependencies between the licensure of individual system components and the overall
system, as well as describing how each relates when tested under different sets of
conditions. We describe here a method of eliciting licensure requirements and cross-
requirement dependencies in order to develop a set of licensure life-cycle requirements
matrices.

Further research will be necessary to fully develop this approach into an accepted
licensure requirements-generation process. New techniques will be required for several
aspects:

 Articulating adaptability licensure requirements and how requirements might be
transient over time.

 Describing cross-requirement dependencies.

 Determining when and how component suitability can be composed to grant
broader system licensure.

Research and development will also be necessary to begin to integrate this type of
requirements-generation process across the broad range of system elements in preparation
for evidence-based licensure test and evaluation.

Licensure Requirements and Metrics
Licensure will be driven by assurances of suitability for the autonomous system to

perform well in its environment. Thus, identifying licensure requirements and identifying
corresponding metrics—including measures of performance (MOP), measures of
effectiveness (MOE), and suitability—will be intertwined and, in some sense, almost two
sides of the same coin. Test, evaluation, validation, and verification (TEVV) using concrete
metrics will be necessary to provide the assurances that the system demonstrates the
dependability necessary to support licensure.

C-4

Licensure and Representative Autonomous Systems Examples

Teen Driver Licensing

An analogy can be drawn between licensure and a teenager’s getting a learner’s
permit, then a driver’s license, and then driving privileges from parents for use of the family
car. Some aspects of driving license tests are done under controlled conditions (e.g.,
multiple choice tests to confirm knowing the “rules of the road”), whereas others are
evaluated with both controlled and “in the wild” performance tests, where actual driving
behavior is witnessed and graded by an observer, with specific subtests such as parallel
parking.

Initial licensure often comes with suitability constraints. For example in Maryland, a
new driver “may not drive with passengers under the age of 18, other than immediate
family members, for the first 151 days, without a qualified supervising driver.”2 And such
a driver “may not drive between 12 midnight and 5 AM unless: a supervised, licensed
driver who is at least 21 years old and has 3 years of driving is with them” or if they are
“driving to or from a job, official school activity, organized volunteer program or are
participating in an athletic event or related training session.” The driver has an 18-month
provisional period, which is reset if there are any accidents or other driving infractions
during the period; accumulating severe enough infractions can result in loss of licensure.

The American Automobile Association further recommends that parents only
gradually expand a teenager’s driving privileges as he or she demonstrates competence,
analogous to expanding the scope of licensure of the system being suitable under
increasingly complex conditions.3 The recommendation is for quarterly to half-year
checkpoints before allowing a newly licensed teen to use a family car with more privileges.
Expanded driving privileges can include a progression such as the following: Is the teen
allowed to drive at nighttime or not? How late (sundown, 9 p.m., 10 p.m., 11 p.m.,
midnight)? Can the teen have other teen passengers in the car in the daytime (none, one,
sometimes one or two, sometimes several) or similarly at night? Can the teen drive only
when it is dry during the day or also while it is raining (if so, in light rain, moderate or
heavy), and similarly at night? What types of roads is the teen allowed to drive during the
day (local, all but highways, most types), and similarly at night?3

(Note parental assurances may also require the teen to demonstrate dependability with
additional aspects of car usage, outside of licensure, such as returning the car at agreed-
upon curfew times, not letting other teens drive the vehicle, etc.)

2 All quotes in this paragraph are from http://www.mva.maryland.gov/drivers/rookie-driver/general-

provisional.htm.
3 http://teendriving.aaa.com/wp-content/uploads/2015/01/Parent.Teen_.Driving.Agreement.pdf.

C-5

In this example, gradual permission for additional licensure and extended autonomous
driving privileges under suitable conditions involves initial formal testing, but then
expands based on checkpoint evaluation of successful performance through a series of
gradually more challenging conditions.

This licensing and checkpoints recommendation structure for expanding privileges
has been developed over a long period of time, through observation of many teenage
drivers.

The challenge for licensure requirements generation for autonomous systems will be
to develop similar checkpoint strategies in an effective manner for a wide variety of
autonomous systems.

Representative Autonomous Systems

When considering autonomy licensure requirements, we assume that autonomous
systems adhere to the general-purpose architecture shown in Figure C-1 in which a system
contains a reasoning engine that produces decisions. The reasoning engine is implemented
in software that is part of a larger body of software used to control the system under test.
Decisions are based on observations produced by messages from off-board sensors,
operators and peer systems and observations from the system’s own sensors. The reasoning
engine produces decisions that are executed by the system, producing actions that in turn
produce desired effects in the operating environment.

Figure C-1. We assume a general-purpose autonomous system architecture in which a

reasoning engine produces decisions based upon observations and messages.

C-6

We give here an example of an autonomous system to be used throughout this
appendix. Consider an autonomous tractor-trailer, the natural next evolution of the self-
driving cars under development today. The tractor-trailer must be able to drive safely
across long distances, in a timely fashion, to deliver goods between locations, while
obeying the “rules of the road,” avoiding collisions, etc. Much of the physical plant for our
notional tractor-trailer is identical to a modern truck and its attendant intermodal trailer. To
support the autonomous nature of the tractor-trailer we augment the base physical plant by
adding some sensors, including LIDAR (light detection and ranging); cameras and
microphones; additional computational infrastructure to host the additional systems
software; and a radio for communications to the company’s dispatcher and police. We
assume the tractor-trailer includes system software for device-level control of the power
train, drivetrain, and braking system (i.e., we assume it already has an anti-lock braking
system). The autonomous system includes additional software modules that implement the
system’s operational elements, which include algorithms capable of detecting and tracking
obstacles, other vehicles, pedestrians, and the occasional wayward animal; collision-
avoidance protocols; goal-directed behaviors that enable the tractor-trailer to adhere to
traffic laws; localization software that provides tractor and trailer location and pose at all
times; and a path planner that produces a course to the dispatcher-provided destination
given current traffic patterns and blockages.

A Process for Defining Licensure Requirements

A six-step process for eliciting licensure requirements is shown in Figure C-2. (The
sample set of arrows is incomplete because, in practice, this would be a densely filled
matrix.) This process can be used to develop a comprehensive requirements set that can be
used as a licensure basis through the system life-cycle including develop, test, and post-
delivery.

C-7

Figure C-2. A Conceptual Process for Eliciting and Articulating Requirements for

Autonomy Licensure

Step 1: System Specifications

The first step in defining licensure requirements is determining system specifications.
This step will lay out the licensure requirements for the autonomous system as a whole.
This step focuses on system performance overall, which includes decision-making and
non-decision-making aspects of the system.

The associated licensure for these system specification requirements will require
corresponding system measures: system measures of performance (MOPs), system
measures of effectiveness (MOEs), and evaluations of system suitability. Here, suitability
will be broken down into licensing steps in a graduated process (e.g., for simple
environments, then increasingly difficult environs). MOPs, MOEs, and suitability
descriptions are combined into a systems specifications document, a partial example of
which is shown in Figure C-3.

C-8

Figure C-3. The first product of the autonomy requirements process is a detailed

specification that defines requirements for the entire system, which include the physical
plant as well as the autonomous decision-making apparatus.

Why do we need metrics for licensure of autonomous systems? The point of

measuring autonomy will be to help assess whether or not the military commander can
depend on the overall autonomous system to do its job. For each autonomous system to be
accepted and deployed, we will need predictive capabilities that provide appropriate levels
of dependability and licensure so that the autonomous system will be capable of
accomplishing its mission. The results of autonomous system measurements should satisfy
licensure requirements and exhibit dependability.

Note here we are interested in measurements that will lead to dependability of mission
effectiveness of autonomous systems vs. autonomy alone. Notable attempts to define and
measure levels of autonomy have been made by NIST (e.g., Huang 2008) and AFRL (e.g.,
Clough 2002). However, as noted by the Defense Science Board (2012), autonomy
measurements in and of themselves are not particularly useful in assessing the operational
utility of autonomous systems. A simple autonomous system may not have much
“intelligence”—that is, it may in some sense have “stupid” autonomy—but it may be able
to do its mission very well. Measuring, for example, the “IQ” of an autonomous system
may not be that useful, as the point of measuring autonomy is trying to measure whether
the system will do a job for you dependably. There may be situations where the system has

System Specifications

Representative System Specification
Requirements for Autonomous Tractor Trailer Associated Metrics

Measures of Performance
“stops at red lights” Brakes successfully activate to stop vehicle

within n meters of red light or associated
striping

“follows local traffic laws.”
Measures of Effectiveness t0 = start time

tp = predicted arrival time
ta = actual arrival time

Arrives “on-time” on-time metric = (tp - ta)
Arrives “as fast as possible” as_fast_as_possible = min ta (ta- t0)

Suitability Measures
May be operated on federal and state roads
(not certified for off-road use, for example
this platform may rely on standardized
signage).

May be operated within terminals.
Can only operate if no flat tires. 50 <= metric psi of each tire <= 60

… …

C-9

a high level of autonomy—but should not be “trusted” (cf. the behavior of the autonomous
computer system HAL in Stanley Kubrick’s 2001: A Space Odyssey).

Autonomy measurements relate closely to command-and-control (C2) measurements.
After all, autonomy can be viewed as a form of C2 in which a machine is authorized to
make a decision. In the influential book Power to the Edge (Alberts and Hayes 2003), the
OSD Command and Control Research Program (CCRP) makes a compelling argument that
mission effectiveness can be approved when “edge warfighters” are empowered to make
decisions. When the edge warfighter is an unmanned vehicle, Alberts and Hayes’s
argument to empower the edge can be viewed as an argument for autonomy. In Kass (2006)
measures of performance (MOPs) and measures of effectiveness (MOEs) are used to
measure C2, using the logic that autonomy is a form of C2. We follow their concepts here.

In this effort, we follow the recommendations made by the OSD Autonomy
Community of Interest’s Test, Evaluation, Verification and Validation working group
Technology Investment Strategy 2015–2018 (TEVV 2015). The TEVV report
recommends the use of standardized operational MOPs for measuring autonomous
systems. We also recommend the use of MOEs.

 Measures of Performance

MOPs address whether the autonomous system delivers the features it is intended to
have. Such metrics can be viewed as constraints with pass/fail criteria. In a development
context, MOPs are things like speed and payload.

In a mission-assessment context, an MOP for the autonomous tractor-trailer may be
if it reaches its destination. For a package-delivery drone unmanned aerial vehicle (UAV),
one measure of its performance may be a binary variable, that is, whether it flies and makes
its way to its destination goal. Similarly, for a swarm of UAVs, it either succeeds in
mapping its responsible area or it does not.

Whether an autonomous system meets legal and ethical constraints can also be a
measure of performance (Gillespie and West 2010).

 Measures of Effectiveness

MOEs measures how completely the system can accomplish its missions, or degrees
of quality in how well the system accomplished its mission. This is not done in isolation,
but over the context of all possible circumstances. It is a graduated measurement,
measuring the quality of how well the system does something in a particular context.

For example, searching by a random sweep will help a package delivery drone find
its goal and achieve a good MOP, but it could be expensive in terms of time taken, leading
to late deliveries, and thus a low MOEs. Using an intelligent search algorithm, or a path
planner, would likely have a much higher MOE associated with timely deliveries.

C-10

Such measures must be considered in context of what the system has been asked to
do and what kind of decisions it has been asked to make.

 Suitability

Suitability measures should be used to characterize the conditions under which the
autonomy works. Referring to Figure C-1, an autonomous system’s decisions can be
defined directly as a function of observations and messages and indirectly as a function of
the operating environment in the outside world. Suitability measures can be used to
correlate measures of performance and effectiveness to both these types of operating
conditions.

 Characterizing the External Environment at the Time of the Decision

The physical environment of the system will play a role in its ability to operate, as
well as its ability to operate effectively and efficiently. For example, the system may only
function well when certain guidelines are met; for example, if it is dark out, it will work,
whereas if it is light out, it might not work well, or at all. The MOPs and MOEs should be
a function of the operating environment of the system under test described by such
suitability characteristics. The MOPs should be correlated to parameterized operating
conditions as to whether the system can satisfy its objectives. The MOEs can then also be
used to add more information on effectiveness aspects, such as how long the system is
going to take to accomplish its mission, as a function of the range of suitable operating
conditions.

For example, the tractor-trailer may not be licensed to operate in snow. A package-
delivery drone may not be licensed to operate during tornado watch or warning conditions,
or more generally if the wind is above a certain speed. A swarm of UAVs may be licensed
to operate at night, but with expected, characterized degradations in its surveillance
capabilities.

Note that additional, non-physical external factors can also play a role in determining
the suitability for a decision in the operating environment. For example, a decision may be
suitable only if it is not against policy (Alberts and Hayes 2003).

 Characterizing the Internal Environment at the Time of the Decision

Suitability measures of the internal environment can be used to help characterize what
needs to be known at the time of the decision. For example, the system may require a
certain percentage of sensors to be operating to feed input to the reasoning engine. Such
suitability metrics can again be used to parameterize the MOPs and MOEs, given the
appropriate range of operating conditions for the system. As an example, a swarm of UAVs
may know it will not operate well if less than 50% of the swarm sensors are operational.

C-11

 Characterizing the Results (meta-metrics) of the MOEs

Finally, it will sometimes also be desirable to measure “meta-metrics” of the MOEs,
to characterize the system over the variety of potential suitable conditions. For example,
cohesion could be one measure of performance over a range of potential operating
conditions. The potential state space the autonomous system can perform in—that is, the
areas it satisfies mission requirements—might be cohesive in some way (e.g., relatively
stable over a continuous interval of temperatures or wind speeds). On the other hand, if it
is not cohesive it may be difficult to predict when the system just does not work—perhaps
statistically 90% of time it works, 10% with no rhyme or reason it just does not. In that
case, it might be argued that overall system performance is not cohesive. A less cohesive
system might be considered less dependable.

Step 2: Decision Requirements

This next step of eliciting requirements for licensure focuses on the decisions that
need to be made by the autonomous system. For example, to deliver a package, a package-
delivery drone may require not just effective sensing and navigation but also effective
decision methods to position its sensors to know when it has reached its destination.

Given the input of information from sensors and other subsystems, an autonomous
system will be producing other information or produce control decisions. We focus here
on the decision itself, not the execution of decision. This may also include such aspects as
when the system recognizes that something in the system itself is broken and decides to fix
it.

Such decisions can be framed as triples—given this type of data, the system produces
this decision, suitable for this particular environment. Note that these decision requirements
for licensure will then also need to be framed in terms of MOEs, MOPs, and suitability
assessments, drawing in suitability arguments that appropriate decisions are being made in
appropriate environments. Decision requirements are defined in a Specifications document,
a partial example of which is shown in Figure C-4.

C-12

Figure C-4. The second product of the autonomy requirements process is the development
of the decision specifications that separate out those requirements

Step 3: Adaptability Decomposition

Autonomous systems are, by their very nature, adaptive systems in that they are
required to observe the world in which they operate and adapt to changes in the world. Step
three in defining licensure requirements is to define adaptability requirements for the
system. The next key consideration for licensure requirements will be when and how they
should evolve as the autonomous system adapts. To explore this concept we introduce three
levels of adaptation—(1) adaptation to static uncertainty, (2) adaptation to dynamic
uncertainty, and (3) adaptation to evolutionary uncertainty:

 Adaptation to static uncertainty—Autonomous systems that must adapt to static
uncertainty are required to devise and execute a course of action when
confronted with unexpected circumstances; however, the world in which the
autonomous system operates does not itself adapt to the autonomous system.

 Adaptation to dynamic uncertainty—Autonomous systems that must adapt to
dynamic uncertainty are required to manage interactions between outside
decision-makers, which may or may not be adversarial, and decisions they may
make in response to actions made by the autonomous system; however, the
behaviors made by outside decision-makers are static, and the autonomous
system can expect decision-makers to act in a predictable manner.

 Adaptation to evolutionary uncertainty—Autonomous systems that must adapt
to evolutionary uncertainty are required to manage interactions with outside
decision-makers that are capable of changing their behaviors over time,
including an ability to appropriately respond to adversaries that are capable of
learning.

Decision Specifications

Representative Decision Requirements
for Autonomous Tractor Trailer Associated Metrics

Must identify suitable route
Must decide to stop at stop signs Makes the decision to stop at the stop

sign
Must decide to continue on from stop sign iff
way is clear

Must decide to continue on from stop sign iff
earlier stopped traffic has continued

Must decide to pull over if tire is flat and
suitable pull-over location

Must learn where likely traffic tie-ups are

C-13

The level of adaptation of the decision algorithm can substantially affect the evidence
needed for licensure because initial requirements for the system to respond in particular
ways in particular conditions may not last (i.e., the licensure requirements may be
transient). An adaptability decomposition will need to express the permanence of the
associated adaptability licensure requirements (i.e., whether or not certain requirements are
transient). Associated licensure requirements will also be necessary for forms of meta
control, which change the way the system makes decisions to match changing
environments. The lifetime of such decisions will need to be represented. System
adaptability requirements are defined in an Adaptability Decomposition Matrix, a partial
example of which is shown in Figure C-5.

Figure C-5. The third product of an autonomous system requirements analysis is the
adaptability matrix, which identifies change that must be managed by the autonomous

system.

Framing adaptability of licensure requirements will be one of the most challenging
aspects for requirements licensure generation. It will require much further research on how
to best describe and formulate such adaptability licensure requirements specifications.

Step 4: Operational Decomposition

Next, the system requirements for licensure will need to be decomposed according to
the different types of operational elements of the autonomous system (e.g., sensory,
control, collaboration, etc.). Again, for each element, appropriate licensure requirements
measures will need to be derived. One can develop MOPs, MOEs, and suitability measures
for operational elements just as for the system. Again, for each operational element,
suitability will need to be broken down into graduated licensing steps. (See vertical axis of

Adaptability Decomposition Matrix

Autonomous Tractor
Trailer Adaptability
Decomposition

Static Uncertainty Dynamic Uncertainty Evolutionary
Uncertainty

ID Suitable Route Localization Error
Road Closures
Road Conditions

Traffic (other drivers) Traffic patterns

Stop at Stop Signs Lighting Conditions
(ability to sense)
Damage to Signs

Other drivers Rome drivers
Columbus drivers

Pull over when Tire Flat Tire Pressure
Localization Error
Lighting Conditions
(ability to sense)

None Pirellis last longer

… … … …

C-14

Cognitive Elements on the right of Figure C-2.) Operational decomposition is defined in a
matrix of the same name, a partial example of which is shown in Figure C-6.

Step 5: Test and Evaluation Decomposition

Next, the system will need to be decomposed along its test and evaluation (T&E)
elements: unit tests, assembly tests, field tests (developmental T&E), and operational T&E,
in a progression of environments. Torens and Adolph (2014) describes a six-step process
for the test and evaluation of autonomous unmanned air systems that may be used as a
model for TEVV of all forms of autonomous systems (Figure C-7). Recognizing that
autonomous systems that are capable of learning will modify their autonomous behavior
post deployment we extend Torens and Adolph, TEVV process to include a seventh step,
post-deployment testing. During our test and evaluation decomposition step, we map each
step in our “Torens plus one” process to requirements producing during the operational
decomposition step which produces the two-dimensional requirements matrix shown in
Figure C-2. Note each element is license-based.

Detailed component requirements should be derived from the system-level autonomy
requirements and mapped into component-level metrics to form the basis of unit and
component testing, which can then be used to help form a constructive validation and
licensure of the overall system.

C-15

Figure C-6. The fifth product of the autonomy requirements process is the operational
decomposition, which breaks down decision-making requirements into sub-requirements

for each component within the architecture.

Operational Decomposition Matrix

Autonomous
Tractor Trailer
Cognitive
Decomposition Localization

Path
Planning

Path
Assessment

Object
Detection

Object
Classification

Object
Tracking

Fault
Management
Diagnosis

Must ID
suitable route

Localization
Orientation

Select
route
along
allowed
roads

Assess
timing of
route

Learn of
historical
blockages

Must reroute
when
necessary

Localization
Orientation

Select
route
along
allowed
roads

Assess
timing of
route

Accept
communicated
blockages

Must stop at
stop signs

Localize self

Localize
sign

Localize
stop stripe

Route to
location
at strips,
or
behind
car in
front

 ‐ Cars (in
front)

‐ Cars @
other
signs

‐ Cars or
roads not
impeded
by sign
(e.g. on
primary
cross‐
road)

‐ Stop
signs(s)

‐ Stripe

Cars Cars

‐

Cars

Decide to pull
over if tire flat

Localize self Route to
safe
pullover

 Shoulder

Objects on
shoulder

Cars Cars Tire failure

… … … … … … … …

C-16

Figure C-7. Torens and Adolph (2014) envision a six step process for TEVV of autonomous

systems that begins with formal analysis of autonomy algorithms and ends with system
testing.

Figure C-8. After defining the requirements in detail, an Evidence-based Assurance Plan
defines the assurance methods that will be used to determine dependability of each

component. Note that diverse methods may be used to provide the assurance necessary
to grant a license.

Evidence-based Assurance Plan

Autonomous
Tractor Trailer
Test and
Evaluation
Decomposition

Formal
Methods

 Static Test Unit Test
Software in the
loop

Hardware
in the loop

Flight
Test

Car detection Google
car ride-
along
testing

Localization Assess
timing of
route

 GPS
evidence

Path Planning Theorem
proving to
show no
deadlock

Hoare logic
proof

 ‐

Tire pressure UL tested
Stop sign
detection

 Emulation testing Lab testing Cars

… … … … … … …

C-17

Step 6: Mapping Dependencies

The next step in the licensure requirements process will be mapping dependencies
between the T&E licensure elements for the various system elements.

These cross-requirement dependencies will be key for enabling licensure
composability. See some example dependencies depicted in the life-cycle requirements
matrix in Figure C-2. (The sample set of arrows is quite incomplete; in practice, we would
expect this to be a densely filled matrix.) The documents defined in earlier steps of the
process build up to an evidence-based assurance plan, which provides a comprehensive
plan for evidence-based licensure of the autonomous system. Figure C-8 shows a notional
version of such a plan.

Mapping dependencies will require developing methods to ensure that descriptions
and licensure requirements are complete enough that they allow composition of assurances
for granting licensure under suitable conditions. Note that dependencies may have
mismatches that might need to be resolved. The licensure tests between components may
have been done at very disparate levels of detail, or have different forms of construction.
As an example, consider airspace deconfliction for a package-delivery drone. It may use a
licensed localization algorithm, as well as a licensed path-planning algorithm that does well
flying while following major roads and that does not let it collide with static obstacles such
as trees or wires. Each of these components may have been tested separately. Collectively,
however, these components may or may not be at the right level of fidelity to be able to
compose them and ensure that the UAV will not hit a car coming along the road. Additional
licensure requirements may be necessary, such as licensure requirements related to the
performance, effectiveness and suitability for the UAV to detect and avoid a moving car.
Or the map may have licensure to include frequent, dynamic updates of changing obstacles
(such as a car moving), and the UAV have licensure to navigate a map that has dynamic
updates at a certain rate. Similarly, an autonomous tractor-trailer may be licensed only to
drive on the road, not off road. Its localization algorithm may be more generally licensed
for different environments, and its path-planning algorithm may be able to take into
account navigating different types of terrain. However, its actual drivetrain system may not
accommodate driving on anything other than smooth tarmac. In this case, composition of
licensure must carry forward that the suitable environment is a road of smooth tarmac.
When one subsystem has been “licensed” (e.g., a target-detection subsystem) and that
subsystem is connected to another (e.g., a path-planner subsystem), a key challenge will be
characterizing how the licensure elements of the two subsystems work together. Also, how
can one specify that the licensure requirements for two subsystems “match” in the
necessary ways?

The final step will be to describe these composable licensure requirements over the
expected life cycle of the autonomous system. As shown in Figure C-9, the dependency
mapping defines the interfaces and interdependencies between operational components of

C-18

the system. If appropriately defined, automated formal methods can be applied to the
dependency map to ensure that inconsistencies between elements do not combine to create
unintended detrimental consequences. In addition, due to the adaptation capabilities of the
system and its subsystems, it is expected that such mappings (see Figure C-2) may also
need to evolve over time.

Figure C-9. The final product of the requirements process is a process model that
illustrates the relationships between operational components and a dependency matrix
that enumerates the required quality of inputs and the produced quality of outputs. By

explicitly enumerating component dependencies, we may produce assurance traceability
from disparate sources.

Operational Dependency Mapping

Operational Component Input Requirements Output products

Detect Stop Sign -- PD > 99.999 @ 50m range
Localize Stop Sign Detection 99.999 @ 40m range

Own-vehicle localization (error <
1m2)

Stop sign position (error < 1 m3)
@ 50m range

Decide to Stop Stop sign position(error < 2 m3) @
50m range
Car detection 99.999 @ 40m range

--

Detect Car -- Car detection 99.999 @ 200m
range

Track Car Car detection 99.999 @ 150m
range

Track prediction error < 5m/sec

ID through traffic Car detection 99.999 @ 190m
range
Track prediction error < 5m/sec

Car traffic constraints, P(100%)

ID stopped traffic Track prediction error < 5m/sec Car traffic constraints, P(100%)
Decide to travel through
intersection

Car traffic constraints = nil,
P(100%)
Track prediction error < 5m/sec

--

Detect
Stop Sign

Localize
Stop Sign

Decide to
Stop

Determine
Path Clear

Detect
Car

Track
Car

ID traffic is
(or will be)

at intersec on

ID traffic
stopped at
intersec on
has ROW

C-19

Conclusion
This appendix gives a high-level overview of a conceptual process for generating

licensure requirements. It represents the first step toward developing an effective
overarching process for specifying requirements for licensure.

Many research challenges remain. A comprehensive process for eliciting and
articulating thorough licensure requirements will require addressing many R&D
challenges, including developing:

 A common, shared vocabulary and expressive language for licensure
requirements.

 Methods to describe cross-dependencies of component licensure requirements
and when and how they are compatible and composable.

 Methods to show that the licensure requirements are complete enough they will
allow composing assurances of suitability for granting licensure under new
conditions.

 Template licensure requirement architectures for representative autonomous
system use cases, to allow widespread application of this methodology.

Effective requirements elicitation and capture will be a key enabler for evidence-
based licensure of autonomous systems.

References
Alberts, D. S,. and R. E. Hayes. 2003. “Power to the Edge: Command… Control... in the

Information Age.” Washington, DC: Office of the Assistant Secretary of Defense,
Command and Control Research Program (CCRP).

Clough, B. T. 2002. “Metrics, Schematics! How the Heck Do You Determine a UAV’s
Autonomy Anyway?” Proceedings of the Performance Metrics for Intelligent
Systems Workshop (PerMIS ’02).

Defense Science Board. 2012. “Task Force Report: The Role of Autonomy in DoD
Systems.” www.acq.osd.mil/dsb/reports/AutonomyReport.pdf.

Gillespie, T., and R. West. 2010. “Requirements for Autonomous Unmanned Air
Systems Set by Legal Issues.” International Command and Control Journal 4(2).

Huang, H.-M. 2008. Autonomy Levels for Unmanned Systems (ALFUS) Framework,
Volume I: Terminology Version 2.0. Gaithersburg, MD: National Institute of
Standards and Technology (NIST).

Kass, Richard A. 2006. The Logic of Warfighting Experiments. Washington, DC:
Assistant Secretary of Defense (C3I/Command Control Research Program).

[TEVV 2015] Department of Defense Research & Engineering Autonomy Community of
Interest (COI) Test and Evaluation, Verification and Validation (TEVV) Working

C-20

Group Technology Investment Strategy. 2015.
www.defenseinnovationmarketplace.mil/resources/OSD_ATEVV_STRAT_DIST_
A_SIGNED.pdf.

Torens, Christoph, and Florian-Michael Adolf. 2014. “V&V of Automated Mission
Planning for Unmanned Rotorcraft.” NATO SCI-274 Workshop on Verification and
Validation of Autonomous Systems.

D-1

Appendix D.
Normative Oracle Generation

Introduction
Given a set of explicit dependability (i.e., performance and assurance) requirements,

the licensure framework we have proposed requires implementing normative oracles. The
most basic oracles are those that (at a minimum) score the degree to which the observed
system behavior meets each fundamental design-independent requirement. Additional
normative oracles will be needed for derived design-dependent requirements defined at
lower levels of system behavior, including internal behaviors. Such “introspective” oracles,
capable of comparing the internal state of the system with expectations of what it should
be like and how it should evolve over time, may be essential for licensure of adaptive and
learning systems. For example, we know that the numerical weights in machine-learning
algorithms should converge over time. If an autonomous system’s learning algorithm
exhibits oscillatory or cyclic behavior, a normative oracle for learning convergence would
score that as undependable behavior, even if the system has been making reasonable
choices thus far.

Given the large number of such requirements that are likely to be needed (see
Appendix C), automated support for generating these oracles and instantiating them in
software is also a high-value area of research and development.

Requirements and Oracles
There is a natural complementarity between requirements and normative oracles.

Formal specifications for system requirements lead naturally to oracle specifications.
Model-based verification checkers can also serve as normative oracles and potentially as
run-time monitors. They can also be used to generate test suites for empirical testing.

One implication of this complementarity is to impose an additional burden on how
requirements are stated. There is a considerable literature on testability of requirements
specifications1 and “design for testability.”2 In an evidence-based licensure (EBL) context,
there is an added layer of concern, which we will call “design for licensure.” Where design

1 See, e.g., Mark W. Alford, “A Requirements Engineering Methodology for Real-Time Processing

Requirements,” IEEE Transactions on Software Engineering 3.1 (Jan 1977): 60–69.
2 See, e.g., Harald P. E. Vranken, Marc F. Witteman, and Ronald C. van Wuijtswinkel, “Design for

Testability in Hardware-Software Systems,” IEEE Design & Test of Computers 13, no. 3 (Fall): 79–87,
1996.

D-2

for testability involves designing systems with an eye toward being able to test them
effectively, and testability of requirements involves specifying requirements in ways that
can be easily implemented with tests, design for licensure refers to an overall development
approach that is specifically tailored to amass the kind of evidence during development and
testing that will support an eventual licensure decision. One piece of design for licensure
is making explicit the dense and clearly defined set of requirements that can generate the
needed set of normative oracles for the system.

Oracles and Evidence
If the purpose of normative oracles is to amass evidence toward licensure, we need to

consider what kinds of evidence are useful beyond simple successful performance testing.
Several distinct categories of evidence are relevant to licensure:

1. Evidence from design.

2. Evidence from historical consistency.

3. Evidence of successful corrective action.

4. Evidence from demonstrated robustness.

Evidence from Design

Evidence from design generally involves the use of formal methods (see Appendix
B) to produce systems with provable properties. The corresponding normative oracle is
equivalent to verification that the formal method has been correctly applied. Unlike most
normative oracles, this might be implemented as quality-assurance processes during
development and manufacturing, rather than via observation of the working system.

Evidence from Historical Consistency

Systems that exhibit constant or steadily improving adherence to requirements may
be deemed more dependable than systems that do not. Normative oracles provide a means
to track the “reliability growth” of a system at a level of detail not normally available. A
long arc of increasing dependability over the history of development, testing, and
deployment justifies more confidence than simply passing a suite of qualification tests at
the end of the development process. This is especially true when the observed trend of
increasing dependability has been seen in both high-level behaviors and with respect to
low-level derived requirements.

Evidence of Successful Corrective Action

Test-diagnose-fix-retest is a standard iterative process within most development
projects. From the point of view of licensure, evaluators will have more confidence in a

D-3

system if the fixes that have been implemented during development actually tend to solve
the problem that was diagnosed. This indicates, among other things, that the developers’
mental model of cause and effect within the system is accurate—that the system behaves
the ways it does for reasons that are understood. Conversely, when successive attempts to
fix a problem fail to change the unwanted behavior or introduce new problems, this calls
into question the degree to which the designers understand their own system.

When an implemented fix causes the associated oracles to agree that the problem is
not happening anymore and does not cause other oracles to begin to complain, that not only
looks like progress, it looks like a process that is in control. If this happens repeatedly, or
with increasing frequency over the course of development, that history of stable
improvement is evidence of dependability.

Evidence from Demonstrated Robustness

One hallmark of autonomous systems is that they are expected to operate in novel
situations. The designers do not assume that the operational state space for the system can
be enumerated or exhaustively tested. As a result, when oracles report acceptable behavior
even when the system is exercised outside its past environmental and/or mission envelope,
this robustness is evidence of dependability. This is particularly important for systems that
adapt and/or learn over time—graceful response to unexpected or unintended
circumstances is much stronger evidence of dependability than successful accomplishment
of a planned mission scenario. For learning systems, it will be useful to preserve as much
of the normative oracle instrumentation as is feasible even after the system has been
fielded, to either accumulate further evidence of dependability in a broader range of
mission contexts or to diagnose unanticipated fragility in the system.

Different Normative Oracles for Different Levels of Behavior
Because the behaviors that normative oracles will assess run the gamut from low-

level design-specific behaviors (e.g., acceptable voltage ranges on specific circuits) to
high-level mission-success criteria (e.g., landing safely), there is a corresponding wide
range of methods for implementing these oracles. At the lowest levels, this will generally
look much like typical test instrumentation—additional hardware and software to monitor
operating status during developmental testing in ways that would not (and often could not)
be monitored during actual fielded system operation. These oracles will generally be highly
design-specific and will reflect the engineers’ beliefs about why this design works. The
challenge at this level is to make the oracles as nondisruptive as possible, so that the overall
behavior of the system is not affected by the presence of the oracles.

Higher level oracles cannot be based only on adherence to design specifications.
Instead, they must apply design-independent criteria associated with dependable operation.
The highest levels of requirement—those that translate directly into safe operation and

D-4

mission success—will generally be straightforward to formulate and assess. It will also be
necessary, though, to both formulate and assess derived behavioral criteria that are neither
design specifications nor mission-performance requirements. This intermediate level of
behaviors will in general be both the most difficult to instantiate in a comprehensive set of
normative oracles and the most useful for amassing evidence toward licensure.

As an example, consider a driverless car intended for use on public roads. The highest
level dependability requirements involve obeying traffic laws, not causing or suffering
accidents, etc. Specifying these requirements and describing normative oracles for them
are straightforward. At the same time, the lowest level derived requirements will be design-
specific assertions about the operation of the cyber-physical system and its algorithms.
Oracles for these behaviors may also be straightforward to codify for the engineers who
designed them.

In the middle ground, however, are subtle issues associated with what “good driving”
looks like. Does the vehicle hesitate too long before pulling out from a stop sign or green
light? Does it choose paths that use too many left turns at busy times of day? Does it
accelerate and decelerate in ways that makes human passengers uncomfortable? These are
all legitimate questions of dependability, but are much harder to formulate as normative
oracles or to evaluate quantitatively. They cannot be “instrumented” locally, but require
some degree of global assessment. They may involve subjective judgments by human
experts. They are design dependent, but address questions of whether the system is
performing as needed, as opposed to performing as designed. Nevertheless, normative
oracles for these behaviors would be invaluable (and might be essential) to support eventual
licensure of such a vehicle.

Implementing Normative Oracles
For low-level oracles, current developmental test best practices are almost enough to

support EBL. The process of characterizing desired behavior, instrumenting to detect
deviations from desired behavior, and diagnosing deviations from desired behavior is well
understood. From an EBL point of view, the only new part is establishing a time series of
dependability growth and making sure that the instrumentation supporting an oracle is only
removed after the case for dependable performance against that oracle has already been
made.

Similarly, for high-level, design-independent requirements, the associated normative
oracles will be invoked as part of the usual qualification and operational test and evaluation
process. As with low-level oracles, the novel aspect here is the establishment (from an
earlier phase of development than is currently typical) of a time series of such assessments.
The normative oracle provides a stable standard of performance that allows the system to
demonstrate stable convergence to dependable behavior over the long arc of development
and into fielding.

D-5

As noted above, the most significant changes from current practice would be
associated with the middle tier of normative oracles. Unlike the lower tier, these oracles
would not assess whether the design has been implemented correctly, but instead whether
it is the correct design to generate the desired behavior. Unlike the higher tier, the behaviors
to be assessed are not design independent, and thus do not flow transparently from the
mission requirements. There will generally be enough of these mid-tier oracles that
instantiating them in hardware and software for automated evaluation will be useful,
perhaps even necessary. This will require a new form of “instrumentation” that watches for
behaviors that may not be easy to define in terms of system states. As a result, designers
and developers will need to think in unfamiliar ways about what dependable performance
looks like at the subsystem or algorithm level, rather than at the system or component level.
Most current system developments feature neither formal specification of normative
standards for system behavior at this level nor instrumentation of such behaviors.

Summary
Normative oracles provide a mechanism for establishing confidence in system

dependability through a time series of observed adherence to objective standards for
desirable system performance. They are defined at the implementation level, the design-
adequacy level, and the mission-requirement level, with each level requiring a distinct
approach to generating and instantiating oracles. While the highest and lowest levels of
requirement are minor extensions of current practice, the middle tier of oracles requires
significant changes to how subsystem requirements are derived and how systems are
instrumented for developmental test. Taken together, these three levels permit the
accumulation of all the relevant types of evidence that can support a licensure decision.

E-1

Appendix E.
CoActive Design

Evidence-Based Licensure: Bounding the Confidence Space
Autonomous systems will require human-machine teaming and licensure procedures

that explicitly account for it. Such teaming, as discussed in the main paper, may support
different operating modes with close control or teleoperation at one end of the spectrum
and full machine autonomy at the other. Most approaches focus between the two extremes
and mainly on the problem of control and task allocation. A contrasting approach is to
focus on interdependence of the human and the machine performing a joint activity. We
might consider this an extension of teaming among humans, but that would imply a high
degree of machine sentience. One term proposed to describe human-machine teaming is
“interdisciplinary coordination,” a functional perspective presented in a survey article
(Malone and Crowston 1994). Coactive design, a more recent term, focuses on the
interdependence of the teammates and the design implications that follow from it (Johnson
et al. 2011; 2014). This appendix will address four questions that relate coactive design to
autonomous systems and evidence-based licensure (EBL):1

1. What is coactive design and how is it relevant to autonomy?

2. What support do these methods offer to development of autonomous systems?

3. How can these design methods support EBL of autonomous systems?

4. What are the unique contributions (if any) of coactive design methods to EBL?

Background
The typical approach to designing interactions between humans and machines is to

perform an a priori analysis of the tasks/subtasks a job requires and then allocate those to
one or the other. This process frequently is thought of as designing the machines to take
account of the people who use them. For autonomous agents, Johnson et al. (2014) say this
approach focuses mainly on the problems of task allocation and control. For example, the
U.S. Air Force (Endsley 2015) proposes a taxonomy of autonomy to extend and
complement human performance:

1 The intent here is to describe how coactive design teaming concepts can apply to the development and

test, evaluation, validation, and verification (TEVV) of autonomous systems. The reader interested in
the history of these teaming concepts is encouraged to begin with the referenced articles and their
extensive bibliographies.

E-2

 Implementation aiding—where the system carries out tasks for the
human, such as flight management systems or smart weapons that
follow human targeting, but the human makes all decisions,

 Situation awareness support—in which disparate data are fused to
provide integrated information relevant to [human] operator
decisions and goal states,

 Decision aiding—where the system provides a list of potential
options [to the operator] and rates or ranks those options as with a
recommended target list or course of action …,

 Supervisory control—where the system controls all aspects of a
function automatically, including taking in information, deciding
on correct actions and carrying out those actions, but the human
can set goals and intervene as needed [also called on-the-loop
control].

Autonomous agents today mostly support the human, but the reverse can also be true
and so can shifting control and task responsibility back and forth. It is useful to view
teamwork activities as interdependent and changeable because of collaboration in which
task allocation varies over time and situations. Coactive design asks how the team members
can best collaborate to accomplish the tasks. Teams have partners who operate jointly, with
responsibility and control depending on the circumstances.

There is a long and continuing interest in ways to improve coordination between
people and the autonomous capabilities of computers. One approach has been to develop
different interfaces such as keyboards, mouse, tracking devices, touch screens, and voice.
Another approach is “smarter” software that routinely completes words/phrases and
corrects spelling and grammar—though not always accurately. Systems that adapt and
learn also provide tailoring to individuals to facilitate performance. For example, an
adaptive system for teaching forms a partnership with a student and tailors instructional
materials, speed, and details of their presentation based on the student’s evolving
knowledge and skills. Many of us imagine what forms of coordination in the future are
likely to become common.

Future coordination mechanisms for human-machine systems may need to be more
flexible than a military command-and-control hierarchy, in which there is limited
discretion to choose when and what to communicate. Malone and Crowston (1994) address
the need for control structures and processes to coordinate dependencies between people
and machines that are emerging in the electronically connected world. They suggest
looking for analogies with coordination in existing capabilities. For example, what could
we learn about trade-offs that computer systems make between processing/calculations and
servicing input-output/communications in distributed systems? How would that illuminate

E-3

possibilities for collaboration between humans and computers, and what are ways to
manage dependencies between them? Answers require segmenting tasks, sequencing them,
sharing information necessary for coordination, and having primary and backup plans
among others for accomplishing the tasks. Coordination and collaboration also require
processes for managing and representing information flow. Should management of the
human’s and the machine’s resources be done by standardization, first-come-first-serve,
scheduling or participatory design, or some other mechanism? In addition, ways to
represent and classify the coordination logic are needed by developers and testers.
Coordination interdependencies could be outlined with a flow chart or may benefit from
more dynamic processes such as state-transition diagrams or Petri nets. There is, of course,
no single answer. The control structures and processes must be decided based on an
analysis of tasks and efficient ways for the human-machine team to perform them.

Coactive Design and Its Relevance to Autonomy
Coactive design is a concept to address the teaming relationship of humans and

increasingly sophisticated agents/robots/autonomous systems. It stresses that autonomous
systems, even as they increase in their ability to act independently, will need to work jointly
with people not as passive devices but as full partners. Coactive design is the
interdisciplinary study of coordination and more specifically the underlying
interdependence of participants in joint activity (adapted from Malone and Crowston 1994;
Johnson et al. 2011). However, the methods of coactive design and their application are an
evolving field explored here in relationship to system design, normative oracles, TEVV
and EBL applied to autonomous systems.

Consider an example that characterizes the challenges of coactive design using
human-machine teaming to recognize and manipulate objects. A person working together
remotely with a robot detects and identifies objects with the help of the robot’s sensors
before helping the robot to grab and manipulate them using appropriate pressure and care.
Humans and machines have relative strengths that can be enhanced by cooperation. A
person currently can do pattern recognitions and identify objects more consistently and
accurately than a machine programmed to do it. However, the two working
interdependently can perform a task sequence—recognizing and manipulating—with more
success than either alone. Metrics to assess success are dependent on task/subtask
importance, performance requirements, and standards/rules for that performance. What are
possible interdependencies (e.g., human can see only by using the machine’s optical
system)? What is the human’s or the machine’s capacity to perform under what constraints
(e.g., human is remote from the machine’s location)? The designers and developers should
classify tasks according to their dependencies and how to manage them.

The example serves, of course, only as an introduction to implementing coactive
design. Malone and Crowston (1994) encourage us to study the management of shared

E-4

resources in a variety of disciplines where it is implicitly or explicitly addressed, such as
information technology/computer science, economics and operations research, and
organization theory. This foundation will assist designers and developers in deciding how
to implement synergistic human-machine teaming, that is, conditions where the human
should issue a command and when the automation should override the human and
conditions in which the human or machine volunteer information or request information or
request physical action. Once a teaming concept is selected, it will be necessary to define
normative oracles for that teaming model to allow objective monitoring and quantification
of how well the system is achieving its teaming goals, as part of an evidence-based TEVV
process leading to autonomy licensure.

Support That These Methods Offer to Autonomous System
Development

Current design and development practices do not typically yield formal system
requirements that are sufficiently complete, unambiguous, and testable for generation of
normative oracles. In contrast, capacities for a human and an autonomous system to support
a joint activity are a key element of coactive design methods. They document where one
or the other benefits from active support and interdependencies for success. They provide
a framework for designing the human-machine interaction and thus identify the kinds of
evidence necessary to support the system’s viability. A result of coactive design properly
done is a representation of how to develop an optimized interactive team.

Coactive design methods help specification developers understand the partners
engaged in a joint activity and the particular contributions they could make to support it.
The choice of collaboration modes shapes the human concept of operations, the design of
the user interface, and the choice of the autonomous system’s functional roles in the tasks
to be performed. Rather than choosing a collaboration mode a priori, coactive design
simultaneously specifies these elements to optimize the efficiency and dependability of the
overall collaboration.

As a foundation, Johnson et al. (2014) present a model describing the necessary
conditions for successful coactive design: observability, predictability, and directability.
That is, the joint activities and signals about them must be observable and interpretable to
team members. And the behaviors must be predictable or reasonably reliable. In addition,
team members must have the ability to direct one another’s behavior. Using these
principles, the design methods aim to identify the tasks and subtasks for system design and
development that the human and the machine have the capacity to support. Next, select the
relationships to build into the design. Refinement and iteration are the norm for good
designs, of course, and that is no less so for coactive design. Evaluation of how well the
design works compared with a standard of how it should work is the province of EBL.

E-5

Use of These Design Methods to Support EBL
Coactive design requires recognizing and managing dependencies between activities

of the teammates. Dependencies are a particularly important factor. With people, we ask
them to work as a team and they may or may not share the workload and depend on one
another. Each of us probably has memories of a supposed team in school with one person
doing most or all of the work. In contrast, an effective team consists of members with their
own specialties who necessarily depend on one another as the efficient, or often the only,
way to accomplish the work. Johnson et al. (2014) capture the challenge for human-
autonomy teams:

Effective teamwork intuitively implies coordination of activity, cooperation
among participants, and collaboration. However, all these terms are too
abstract to give direct guidance to human-machine systems design and
developers. … The challenge is in translating high-level concepts such as
teamwork and collaboration into implementation of such concepts within
control algorithms, interface elements, and behaviors.

The question is how these concepts and their implementation can be captured in normative
oracles to support TEVV and their integration into EBL.

The reciprocal and mutually influencing nature of coactive actions and effects, such
as between a driver and vehicle, complement one another. There are required
interdependencies such as when a driver engages the accelerator or the brake, and the
vehicle responds by starting or stopping. There also are opportunities for interdependence
such as when the driver and vehicle use cruise control and trade-off who is the primary and
who is the secondary team member, depending on traffic conditions. The car provides
certain information (e.g., current speed or engine temperature) on a continuous basis, but
other information (e.g., low tire pressure or alternator failure) only in exceptional
circumstances. Assumptions about these relationships are incorporated into the vehicle’s
design, its TEVV, and what can be called evidence for its licensure.

Unique Characteristics of Coactive Design Methods for Contributing to
EBL

A coactive design will specify the collaboration protocols between human and
machine agents in performing various missions. From this specification, we can derive
normative oracles describing appropriate interactive behaviors that the system needs to
exhibit in testing. These are the external criteria/standards to capture in oracle-based testing
(OBT). Perhaps counterintuitively, these protocols will tend to be most complex in the
middle of the spectrum as we progress from teleoperation to near autonomy of the machine
agent. Pure teleoperation and pure autonomy involve minimal collaborative interaction;
ongoing full collaborative execution of tasks will involve a much richer (and thus harder
to validate) information exchange.

E-6

What is special about coactive design is that it goes well beyond traditional task
analysis. In particular, rather than asking the simplistic question, “Which partner should do
this task?” it asks the more subtle question ,“How could the partners best collaborate to do
this task?” It has, as other approaches have, an evaluation of team members’ informational
needs, but also includes knowledge, skills, and abilities such as sensing needs, perception
needs, decision needs, and action needs (Johnson et al. 2014), and the corresponding
sensing, perception, decision, and action capabilities that can be leveraged by the
partnership. This can provide a wide array of protocols for humans and machines to
collaborate in performing multiple tasks more reliably. At the same time, defining
normative oracles to accurately capture what constitutes “correct collaboration” poses a
challenge that is avoided by more traditional and predictable command-and-control
protocols.

A well-ordered and -documented design process should greatly help our confidence
in licensing a system both initially and after changes are made. Coactive design methods
are, however, focused on appropriate design. Coactive design leaves implementation to a
creative process addressing requirements. It establishes human-machine performance
criteria for use in evaluations but offers little guidance about how to do them and no metrics
to assess them. It is a starting point without prescriptions or specific implementation
methods to accomplish complex human-machine missions using autonomy. Although
coactive design makes TEVV harder by increasing the options for human-machine
interactions, the achievable performance should be much greater than without it. For EBL,
designers need ways to define normative oracles for collaborations that incorporate
multiple ways to accomplish the same mission.

References
Endsley, M. R. 2015. “Autonomy Horizons: System Autonomy in the Air Force – A Path

to the Future. Volume 1: Human-Autonomy Teaming.” AF/ST TR 15-01. U.S. Air
Force Office of the Chief Scientist.

Johnson, M., J. M. Bradshaw, P. J. Feltovich, M. Catholijn, C. M. Jonker, B. van
Riemsdijk, and M. Sierhuis. 2011. “The Fundamental Principle of Coactive Design:
Interdependence Must Shape Autonomy.” Coordination, Organizations,
Institutions, and Norms in Agent Systems VI (COIN 2010 International Workshops,
M. De Vos et al., eds.). Springer Link: LNAI 6541: 172–91.

———. 2014. “Coactive Design: Designing Support for Interdependence in Joint
Activity.” Journal of Human-Robot Interaction 3 (1).

Malone, T. W., and K. Crowston. 1994. “The Interdisciplinary Study of Coordination.”
ACM Computing Surveys 26 (1).

F-1

Appendix F.
Implications of Learning Autonomous Systems

for TEVV

The Challenge
The essential challenge for test, evaluation, validation, and verification (TEVV) posed

by autonomous systems that learn is behavior that is not stable and predictable over time.
Identical inputs may lead to different outcomes because the system has modified its internal
parameters to better satisfy mission objectives. Part of system development must determine
what kinds of learning under what circumstances are viable. In turn, licensing generally
will include limits on how much learning is allowed and the environments where that
learning can be applied. There could be a range of learning levels that qualify for licensing
depending on TEVV results. In addition, TEVV must continue after fielding with
procedures that focus on monitoring the system and its learning module for indicators of
when reexamination is necessary. This appendix will address four questions about the
challenges of autonomous systems that learn and relate their implications to TEVV:

1. What are autonomous systems that adapt/learn and their impact on TEVV?

2. Why are changes in TEVV needed as a result of autonomous learning/adaptive
systems?

3. How may tools/methods for TEVV be designed for use with these systems?

4. What unique impacts do autonomous learning/adaptive systems have on TEVV?

Background
An autonomous system’s design, including any human interactions, is based on the

requirement to perform tasks/subtasks that satisfy a mission. For that mission,
design/development takes into account the operating environment, inputs to the system of
all kinds, and algorithms to control execution. Autonomous systems that learn/adapt will,
however, have different internal algorithms and decision capabilities than systems without
learning. One without learning will have consistent performance as a function of algorithms
whose inputs are sensory data and mission goals and whose execution is
controlled/modified by fixed internal parameters. A system that learns will be programmed
to modify its internal parameters as a function of experience. So, for example, an
autonomous aircraft with the same environmental inputs (e.g., air speed, sensor inputs) and
a mission objective to land on a runway may have less than optimal success because its

F-2

brakes overheat. As a remedy, the aircraft could change its landing parameters next time
to brake more gradually, use more runway for landing, reduce its approach airspeed, and
so on. Put differently, the autonomous system that learns can change its internal decision
parameters for current and future missions.

During development, both the developer and the system can be making changes to
cause significant challenges for performing meaningful TEVV. Initially, the system will
have a priori parameters established and inserted by developers to populate algorithms and
execute a range of missions. However, the mission and internal parameters for testing
performance must change to mimic expected operating conditions. Changes made by
developers might be accommodated by systematically generating matrices of values to
create a range of operating conditions and system parameters. Generating such values
could, of course, be a daunting challenge that may or may not be practical because of the
system’s complexity. In any case, this challenge exists already for autonomous systems
without learning. Such scripted values could be used for testing the system without its
learning capability turned on to allow baseline performance measures. Engaging the
learning capability that responds to performance experience during development and then
fielding is yet another dimension of complexity to evaluate. What kind of impact do these
externally and internally driven changes have on TEVV?

Autonomous Systems That Adapt/Learn and Their Impact on TEVV
Autonomous systems that can adapt/learn1 are those capable of interacting on their

own with a dynamic environment to achieve a quasi-structured goal such as landing an
airplane or driving a vehicle. This kind of autonomous system begins with core
competencies and internal parameters for making decisions. Testing these core
competencies with the learning capability decoupled presents the same TEVV challenges
as any complex system. Comprehensive testing may be possible in principle but is not
necessarily practical. However, the system that learns cannot be comprehensively tested
because it responds to environmental inputs over time without prescriptive instructions
about correct performance. An interesting challenge for validation testing is that the inputs
themselves cause adaptation to occur. Those adaptations may help ready the system for
fielding, or they may not provide enough variation for the system to survive an extreme
event in the field. The system’s development and TEVV incorporate the power of machine-
learning algorithms to adjust it—the give-and-take of design and emergence (Tanz 2016).

1 Autonomous systems that adapt/learn are related, in the academic discipline of machine learning, to a

category defined as reinforcement learning in which a “teacher” does not explicitly tell a computer
program whether it has come close to its goal (see Ron Kohavi and Foster Provost, “Glossary of Terms,”
Machine Learning 30 [1998]). In this report, autonomous systems can be independent of or interactive
with a human as a feature of the environment.

F-3

The learning capability depends on algorithms that make predictions from data for
deciding what to do next. These predictions cause changes in parameters for decisions that
new data can change further. The data may include the actions of intelligent adversaries.
An adversary could, in principle, present situations that “teach” the autonomous system
during times when little is at stake to behave in an exploitable way when a lot is at stake.
The operating environment that causes learning thus is multidimensional. We get an
educated guess (Tanz 2016) about what this may be like: “In the future, we won’t concern
ourselves as much with the underlying sources of [system] behavior; we’ll learn to focus
on the behavior itself. The code will become less important than the data … to train it.”

To assess the system’s capability to handle change, TEVV necessarily must
incorporate two capabilities: (1) extensive sampling of possibilities during development
that stress the learning capability, and (2) quantitative verification of runtime software, and
continued system monitoring and periodic recertification of learning systems after fielding.
Testing also must assess the system’s ability to counter threats from adversaries, including
exploitation of its learning capabilities. These assessments represent major changes to the
conventional TEVV process and are a topic of particular interest in the software industry.

TEVV Changes Needed as a Result of Autonomous Systems That
Learn/Adapt

Deterministic systems that operate in well-defined environments, such as robots on
an assembly line, may be complex to test. However, the operating conditions are knowable
so that rigorous though not exhaustive TEVV is possible. In contrast, autonomous systems
that feature self-adaptive/learning capabilities are not entirely knowable. There is a
growing literature to characterize such systems and how to test them represented here by
ideas from two papers (Nguyen et al. 2009; Calinescu et al. 2012).

Nguyen et al. (2009) address the test of an autonomous agent with its own internal
goals and knowledge, both of which may change over time. Such systems have behavior
logic that can differ from an observer’s concrete expectations. The tester of a non-learning
system may also, of course, not know the algorithms being used or the exact data output
from them but can expect the same outputs to given inputs over time. To determine the
system’s capability over a range of contexts and acceptable outputs, Nguyen et al. (2009)
advocate using an evolutionary testing approach guided by a stakeholder’s quality criteria
that are similar to the normative oracle advocated by the main report this appendix
supplements. Evolutionary testing is a term that they and others describe as inspired by
classical biology theory with its emphasis on natural selection, inheritance, and variability.
Evolutionary testing aims “to evaluate the exhibited performance of the autonomous
agents, not the mechanism underlying autonomy itself.” The timeline for system adaptation
for defense purposes is, of course, far faster than the one from classical biology. The
question is whether such autonomous agents are dependable.

F-4

Calinescu et al. (2012) reinforce the need for systems that adjust readily. They say a
requirement becoming common is that “software must adapt continuously, to respond to
changes in application objectives and in the environment in which it is embedded.” They
also say that software increasingly is expected to fulfill a dependability requirement, a
practice that traditionally uses off-line modeling and analysis techniques. Calinescu et al.
(2012) advocate bringing the techniques for the two requirements together at runtime to
achieve dependable and adaptive software that runs automatically. The capability must be
incorporated during development because of high uncertainty about the environment’s
behavior and its high variability once the application is operational. This approach allows
for continuing testing/verification of software to determine if it still meets requirements as
it evolves. (We note that continuing testing of the software goes beyond the focus on
exhibited performance discussed above. We believe assessment of the decision-making
(software) as well as decisions made will be essential.)

The autonomous system needs some set of boundaries to ensure that adaptive
behavior is dependable within prescribed limits. Determining those limits and how to test
them is a major challenge for TEVV procedures. TEVV has to support, at some acceptable
levels of probability, that the system performs reliably and that violations approaching
limits of acceptable levels will trigger a recall. The kinds of TEVV changes supported by
Nguyen et al. (2009) and Calinescu et al. (2012) as summarized in this section should be
considered for regular use with autonomous systems that learn/adapt.

Design of Suitable Tools/Methods for TEVV
The purpose of TEVV is to ensure that the software and systems as developed have a

low probability of failing and can adjust to change within acceptable bounds. V&V for
well-defined systems can rely on formal methods (see also Appendix B) such as model
checking, and proof that theorems, algorithms, and system performance satisfy
requirements and specifications. However, systems whose performance is context
dependent and that adapt need validation and verification (V&V) that is suitable both
before and after deployment and runtime. When and how to test system adaptation
properties is a major challenge, albeit with some progress being made.

Morales et al. (2010) advocate norms as a mechanism for coordinating autonomous
systems by using explicit obligations, prohibitions, permissions, and associated
mechanisms to support self-regulation. These norms are synthesized from prior
experiences using a form of unsupervised case-based reasoning. The logic is that a system
can generate a solution to avoid the transition to an undesired state based on boundary
conditions established and tested during development. Over time, the system evaluates and
refines the norms to learn from their cumulative effectiveness. Such a normative system
assumes in deployment that similar problems have similar solutions and that undesired
states are identifiable.

F-5

Another approach focused on self-adaptive software systems (Tamura et al., 2013)
comes closer to certifiable V&V for systems that operate in highly dynamic environments,
although more work along these lines is needed. They propose explicitly including V&V
operations in feedback loops for successful software self-adaptation. Such V&V methods
use viability zones characterized as system states that do not compromise operations and,
importantly, can change with context changes. V&V aims to keep the system within the
viability zones even as they change during deployment. The approach incorporates two
levels, each of which require V&V. One level is the target system that dynamically adapts
and the other is the adaptation mechanism. The target system has requirements to fulfill,
one of which is to satisfy V&V tasks. Another requirement is to adapt to context changes.
These must satisfy the adaptation mechanism that also must incorporate V&V tasks. In
combination, the target system, the adaptation mechanism, and their V&V provide for the
continued and effective operation under varying context conditions.

Both of the above approaches seem to be converging on the type of norm called
normative oracles in the main report. Normative oracles are top-down models of desired
system behavior in various circumstances to support TEVV of autonomous and adaptive
systems with their missions and contexts/environments. Morales et al. (2010) seek ways to
control autonomous systems; normative oracles set standards for what performance
systems need to satisfy and how well. Tamura et al. (2013) describe explicit V&V runtime
tasks to be performed as part of the adaptation process. Normative oracles need such tools
and methods for satisfying TEVV of autonomous systems that learn and adapt.

Unique Impacts of Autonomous Learning/Adaptive Systems on TEVV
Traditional computer programming uses explicit step-by-step instructions and may

use exhaustive verification approaches, particularly when incorrect processes/decisions
have unacceptable consequences. A system that learns can change what it does so that the
people who create the programmed instructions never know precisely how the computer
accomplishes its tasks. Tanz (2016) reminds us that “machine learning powers large swaths
of our online activity” where exactly how the algorithms work is indeterminate. As
examples, he mentions that Facebook uses such learning to determine stories in an
individual’s news feed, Google Photos to identify faces, and language translators to convert
speech in real time. The impact on TEVV is significant.

Menzies and Pecheur (2005), in a chapter about verification and validation and
artificial intelligence (AI), focus on the features of adaptive or AI systems (e.g.,
nondeterministic adaptive knowledge-level systems) that distinguish them from
conventional procedural software. The material that follows, based on their insightful
review, focuses on the uncertainty of future behavior due to nondeterminism defined as
external or internal:

F-6

 External nondeterminism results from input or events coming from the
environment. Examples include system configuration and initialization,
invocation parameters, messages, discrete events, continuous data streams.

 Internal nondeterminism results from the system itself. A common source is
concurrency, where scheduling choices are made between concurrent executions
(for example, a knowledge system that processes knowledge updates
concurrently).

External nondeterminism is easier to test in principle because it is controllable.
However, the normative oracle and the operational profile of the system may have a wide
range of input possibilities to sample and test. In addition, the tests can become very
elaborate. Internal nondeterminism, of particular interest, occurs when a system changes
its behavior as a result of new experiences due to data from the environment.

One means to do V&V of an adaptive system is to constrain it to allow predictions of
behavior. Menzies and Pecheur (2005) say that a typical way to identify constraints is to
instrument the system so that internal choices become visible and can be used in control
models. They emphasize that adaptive systems have the benefit of finding ways to fix
themselves and derive new behaviors. However, the same adaptation can bring any
preadaptation licensing into question. Their ideas about what to do, described next, will
not suit every system but do a good job of characterizing the challenges.

What is needed are adaptive V&V criteria and principles to support them. Menzies
and Penchur (2005) propose five. They call the first “external validity,” aimed at testing
how well the adaptation generates models that have some useful future validity. How well
does a model work when it is tested with data not seen during training? Another criterion
called “learning rates” is how the learning changes over time as more data are processed.
How well does it adapt as more data are supplied? “Data anomaly detectors” can be
established to pre-filter inputs that are too anomalous according to pre-established criteria
and that could, for example, affect the system’s “stability” and cause outputs that are
unacceptably different. In other words, how does a V&V analyst or a monitor for the
normative oracle assess results of the learning? A final criterion can be the “readability” or
clarity of the output to an observer (human or automated) from a system that learns. The
purpose of each of these V&V criteria is to provide different perspectives and insights into
system performance.

Conclusion
V&V methods and tools for systems that learn/adapt are multidimensional, with

issues such as how well the system works now, looks ahead, handles different data rates,
and so on. The stability required will depend greatly on its purpose instead of on some
standard specification. Such criteria are about how the system behaves and adjusts to

F-7

performing its mission. Overall, the uncertainty of future behavior requires adaptability in
the V&V criteria that must be selected to be system specific. The unique impact of adaptive
systems on TEVV is that analysts—human combined with models/algorithms—who
thoroughly understand behaviors expected of the system must generate adequate criteria to
license, as well as recall it for updates.

References
Calinescu, Radu, Carlo Ghezzi, Marta Kwiatkowska, and Raaela Mirandola. 2012. “Self-

Adaptive Software Needs Quantitative Verification at Runtime.” Communications
of the ACM 55 (9): 69–77.

Menzies, Tim, and Charles Pecheur. 2005. “Verification and Validation and Artificial
Intelligence.” 65: 163–200.

Morales, Javier, Maite L´Opez-S´Anchez, Juan A. Rodriguez-Aguilar, Wamberto
Vasconcelos, and Michael Wooldridge. 2010. “On-line Automated Synthesis of
Compact Normative Systems.” ACM Transactions on Autonomous and Adaptive
Systems 10, no. 1, Article 2.

Nguyen, Cu D., Simon Miles, Anna Perini, Paolo Tonella, Mark Harman, and Michael
Luck. 2009. “Evolutionary Testing of Autonomous Software Agents.” Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009, Decker,
Sichman, Sierra and Castelfranchi, eds.), May, 10–15, Budapest, Hungary.

Tanz, Jason. 2016. “The Rise of Artificial Intelligence and the End of Code. Soon We
Won’t Program Computers. We’ll Train Them like Dogs.” Wired, May 17.
http://www.wired.com/2016/05/the-end-of-code.

G-1

Appendix G.
Modeling and Simulation Considerations for

Licensure of Autonomous Systems
Don Davis and Don Strausberger

This section addresses modeling and simulation’s (M&S) role in licensure of
autonomous systems. To do so, key drivers from evidence-based licensure (EBL) and
autonomy are first identified to form a foundation for analysis. Both EBL and autonomy
are emerging disciplines without well-established taxonomies or descriptions. Second, key
M&S components are identified in the context of EBL in the main paper to clearly define
the capabilities required. Third, the effects of these three disciplines on one another must
be analyzed. Autonomous capability in systems and an EBL approach will both impose
constraints on supporting M&S. In addition, there may be areas where M&S capabilities
are uniquely suited to supporting EBL. Specifically, the effects of EBL and autonomy
drivers on the M&S components need evaluation to help answer the following questions:

1. What differentiates M&S in support of EBL and autonomy?

2. What are the key characteristics of the M&S components required to support
EBL of autonomous systems?

3. What role can M&S serve in support of the EBL framework?

Background
Traditional manned systems are operated by humans based on sensor input and an

understanding of how the system will respond. A modern fly-by-wire system embodies a
lot of autonomy and cannot be said to be truly “transparent,” but the behavior is
comprehensible to the pilot. In contrast, some autonomous systems are influencing or even
replacing human decision-making with algorithms that are not transparent or
comprehensible. This imposes additional challenges on the human reasoning and use of
judgment when the basis for the systems actions are not understood. This lack of
understanding may manifest itself as perceived risk in relying on the autonomous system
by an operator and also in a cautious approach to licensure of the system. Sufficient
transparency into autonomous system decision-making to support both operation and
licensure are a fundamental challenge for EBL.

As introduced in Sections 1 and 2 of the main report, the EBL approach, as a form of
test, evaluation, verification, and validation (TEVV), has been embraced by the medical

G-2

community and extensively researched for its applicability to “software-based” systems.
The National Research Council’s study examined software-system dependability over a 5-
year period (2004–2009), which culminated in a 160 page report. EBL is unlike other
procedural/process-driven approaches such as Hazard Fault Analysis Assessment, Stage
Gate Development Process, Kepner-Tregnoe Problem Analysis, or the myriad approaches
established to solve particular problems that span multiple dimensions/stakeholders. That
is because there are no explicit procedures or steps to EBL. However, there are fundamental
characteristics of EBL that can be applied to generate the framework described in Section
2 of the report. EBL is based on dependability described as: “A system is dependable when
it can be depended upon to produce the consequences for which it was designed, and no
adverse effects, in its intended environment” [1]. The fundamental aspects implicit in the
EBL description that affect M&S are referred to here as “EBL drivers.”

Multiple sets of autonomy terminology have been generated by robotics, human
factors, artificial intelligence. Several of these terminology sets are shown in Figure G-1 in
connection with the observe, orient, decide, and act (OODA) loop. Most relevant to this
effort is an acknowledgment that multiple taxonomies exist and that none are right or
wrong or more or less relevant in the context of EBL. For consistency, the remainder of
this section will use the framework established by Endsley and Garland [3]. Endsley
distinctly separates situational awareness and decision-making and further decomposes
levels of situational awareness into perception (recognition of key information and events),
comprehension (combining, interpreting, storing, and retaining relevant information), and
projection (abilities to forecast future events and dynamics).

 Figure G-1. Common Taxonomies Describing Autonomy

G-3

M&S in Support of EBL and Autonomy
The most critical EBL driver for “producing the consequences for which it was

designed” is to define behavioral-level requirements and not lower-level
properties/specifications of the underlying software or system. Similarity, “and no adverse
effects” implies that defining expected behaviors is equal in importance to those that a
system shall not exhibit. “Behavior” in this context must be understood to include how
courses of action are chosen, as well as whether or not they are successful. This needs to
be viewed from both the “must” and the “shall not” perspectives. Applications of M&S to
expand the examined portion or the state space are common. Applications of M&S to
assessing the quality of the decision-making—as opposed to the success of the decision—
needs additional exploration.

Licenses in general are not open ended. They need to be bounded with restrictions,
require renewals, and sometimes have planned reductions of the restrictions with
experience. “In its Intended Environment” implies that the EBL driver depends upon
clearly stating any limits on the environment in which licensure is applicable. M&S has
the potential to support interpolation and under some circumstances extrapolation of the
allowed environment beyond what could be tested.

Ultimately, EBL places emphasis on “evidence,” which highlights three
characteristics distinguishing it from other V&V approaches:

 The continuous/incremental/temporal gathering of evidence over the
product/system life cycle.

 The relevance of analysis (in addition to testing) in supporting the evidence
chain.

 The capability of M&S to encompass expectations in addition to actuals as part
of the evidence trail.

EBL implies:

 Desired behavioral-level requirements
 Unacceptable behavioral-level requirements
 Attention to decision-making in addition to decision outcomes
 Defining and bounding environments
 Evidence based on both analysis and evaluation, and
 Support of continuous evidence gathering and assessment

As with any evaluation, it is important to clearly define the system under test (SUT).

In this case, we need to bound the autonomous subsystems from the rest of the system to
appropriately focus on (and define the scope of) the testing of the autonomous features.
There are circumstances in which the “situational awareness” elements of the system will

G-4

include “autonomous” decisions about the implications of sensor data. This is the simplest
case of situational awareness as “perception.” In these cases we think M&S will have a
role, especially in exploring error-prone or unreliable data or in making a dependability
case that erroneous data will not lead to catastrophic failures. The situation for situational
awareness extending to comprehension or projection becomes more complex.

The description of the SUT needs to be explicit about the extent to which there are
substantive autonomous capabilities underlying the situational awareness and about any
learning capabilities. Both will influence how M&S can support development of a
dependability case.

A fundamental challenge of evaluating autonomy is the ability to query the decision-
making processes of a machine (versus a human). The need to understand why a decision
was made will be equally important to the EBL paradigm as what decision was made. The
term “observational analysis” is used to describe this “monitoring” ability, and we need to
distinguish two facets of it. The first is a “run-time monitoring” capability. This is the
system checking itself in real time (including checking on processes used and quality of
decisions being made) and perhaps executing various “fail-safe” options. This is part of the
system. In addition, the system will need to record the inputs, algorithms chosen, and so
on that lead to decisions being made for the purpose of external evaluation, usually via
comparison with the portion of the “Normative Oracle” that applies to the decisions. M&S
in support of expanded testing of run-time monitoring is relatively well established in
practice. M&S in support of evaluations in terms of a normative oracle remains in its
infancy.

We should distinguish “adaptation,” knowledge-based learning and behavioral-based
learning to emphasize M&S challenges for EBL. Adaptation includes adjustments to the
environment based on sensor data. A simple example might be to adjust the fuel-air mixture
in an internal-combustion engine, depending on the measured temperature. However,
different kinds of adaptation complicate the situation. Knowledge-based learning includes
data collection to support an algorithm that optimizes fuel efficiency based on
measurements of temperature and fuel consumption. The relation between the fuel-air
mixture and temperature would change as experience was gained. Testing of such a system
requires both testing at multiple experience levels and also direct testing of the algorithm
(rather than the outcome) that adjusted the mixture. Finally, consider behavioral-based
learning. In this case, the system reviews all the data on the environment (temperature,
humidity, pressure…) and continually refines the algorithms used to optimize fuel
efficiency. New relationships between the environment and the system behavior can
emerge that are not be revealed in traditional testing. We anticipate a role for M&S in
exploring and bounding the environment.

G-5

Key Characteristics M&S Required to Support EBL of Autonomous
Systems

M&S is an overloaded term that has different meaning to those in science and
technology (S&T) research, development, test, and evaluation. For the purposes of this
study we baseline our discussion of the utilization of M&S in the T&E of DoD systems.
Within this baseline, M&S still implies different nuances for different stakeholders such as
constructs (live, virtual, constructive), or modeling the environment (the elements
surrounding the SUT), or modeling the SUT itself.

To provide a more concise description of M&S for the current context, the following
components are based on those established in [4]:

 Test Selection Criteria: The rules/logic/algorithm used to establish the test
suite.

– Test Case: A finite set of input and expected output. For a non-deterministic
system this may be in the form of a tree or graph.

– Test Suite: A finite set of test cases

 Oracle: Fundamentally, an oracle will assess and score observed system
behaviors for desirability. To do so, an oracle must be able to (1)
specify/generate the preferred/expected performance/behaviors and (2) compare
the preferred/expected performance/behaviors with the resulting
performance/behaviors of the SUT and provide the assessment/scoring. To
further assess M&S in the context of EBL and autonomy is it advantageous to
distinctly separate the two functions and define them as follows:

– Normative Model:1 The normative model specifies/generates the
preferred/expected performance/behaviors of the system. It is an essential
component of M&S with the following characteristics:

o Generates higher level output behaviors.

o Supports the continual gathering of evidence.

o Supports different levels of past experiences.

o Supports sufficient granularity in situational awareness and decision-
making (i.e., introspection) so that “why” a decision was made can be
evaluated by the assessor.

– Assessor: This component compares the expected performance/behavior of
the SUT (the model’s output) with the actual performance/ behavior of the

1 The referenced description [4] employs the term “Performance/Behavior Model,” which is changed

here to conform with the current report’s term for autonomy licensure and its TEVV.

G-6

SUT and scores the desirability. The desirability may be binary (meet/does
not meet), enumerated (no good, good, great), or weighted/scaled (“8.271
out of 10”).

 Environment Model: The component that generates the environment that the
SUT interacts with. Note that the environment would include generation of
inputs that the autonomy perceives and would act upon the decision-making of
the SUT. Since the SUT is the autonomy, other components such as virtual
target generation and vessel/vehicle dynamics all become part of the
environmental model.

M&S includes the following key components:

 Test Selection Criteria
 Oracle

 Normative Model
 Assessor

 Environment Model

Impacts of EBL and Autonomy on M&S
To understand the impacts of EBL and autonomy on M&S, each of the EBL and

autonomy drivers introduced earlier must be evaluated with respect to the M&S
components. This impact assessment is summarized in Table G-1. Column 1 specifies
whether the originating source of the driver is EBL or autonomy. Column 2 contains a short
description of the drivers. Columns 3 through 6 represent each of the M&S components.
Each of these four columns are further analyzed below to determine the key requirements
of each M&S component.

Column 3 of Table G-1 provides insight into the test selection criteria component for
M&S in support of EBL. The need for test selection criteria to support negative behavioral-
level requirements is challenging but not unique to EBL. Simply stated, the criteria used to
generate the test cases must be sufficiently broad and granular to produce sufficient
evidence that the SUT will not misbehave in particular manners at particular times. During
traditional T&E, this often leads to an exhaustive input set to generate and evaluate against
and is commonly referred to as “state space explosion.” Implicit in EBL is the hypothesis
that defining behavioral-level requirements (versus lower level properties/specifications of
the underlying software) and bounding the input environment sufficiently constrains the
input/output relationships so that a finite test suite can be defined for EBL. This will be
further explored in the use case in the following section.

G-7

Environment Model
Column 4 of Table G-1 provides insight into the environment model component for

M&S in support of EBL. The environment model must support tests for both positive and
negative inputs at the behavioral level and support a method of bounding/constraining the
environment. The environment model should be independent of the autonomy
implementation. Ideally different instantiations of the autonomy can be evaluated using the
same environment model.

Table G-1. EBL Drivers, Autonomy Drivers, and Their Impacts on M&S Components

Normative Model
Column 5 of Table G-1 provides insight into the normative model component for

M&S in support of EBL. EBL specifically requires the model to expressly support higher
level behaviors and not lower level or granular performance expectations. Note also from
column 5 that the model must support the continual gathering of evidence as well as support
learning-capable systems. This implies that the model would need to support evaluation
over the life cycle of the autonomy (which may exhibit a wider breadth of behaviors as it

 M&S Components Impacted

 Oracle

Driver

Description

T
es

t
S

el
ec

ti
o

n

C
ri

te
ri

a

E
n

vi
ro

n
m

en
t

M
o

d
el

P
er

f.
/B

eh
av

.
M

o
d

el

A
ss

es
so

r

E
B

L
 D

ri
ve

r

Support Behavioral Level Requirements X X X

Support Negative Behavioral Level
Requirements

X X X

Support Environmental Bounding X X

Support Continual/Incremental/Temporal
Gathering of Evidence

 X

Analysis to support evidence chain X X X X

A
u

to
n

o
m

y
D

ri
ve

r

Inclusive of Situational Awareness and
Decision-Making

 X

Independent of autonomy implementation
paradigm (BDI, etc.)

X X X

Supportive analysis X X

Supportive of learning X X X

G-8

matures or as the environmental bounds are extended). Supporting learning implies the
model must also support different levels of past experiences (one may envision novice,
intermediate, and experienced “autonomy”).

Assessor
Column 6 of Table G-1 provides insight into the oracle for M&S in support of EBL.

The assessor inputs are the SUT output and normative model output (along with supporting
introspection information). Particularly relevant to EBL is the evaluation of higher level
behaviors (or particular aspects of behaviors) of the autonomy, rather than lower level
performance comparisons. Learning presents a unique challenge to the assessor (and
overall M&S) because the experiences of the actual SUT and normative model must be
accounted for in test design and execution.

Based on the above we derive the following unique and differentiating aspects of
M&S components that are required to support EBL of autonomy:

The environment model must support mechanisms to constrain/bound

the environment in multiple dimensions to effectively support EBL.

EBL takes a positive step in addressing undesirable output behaviors,

but the fundamental challenge of generating comprehensive evidence

(such as a “comprehensive” set of test cases) to ensure no undesirable

outputs remain.

Beyond operating upon higher level behaviors driven by EBL, a

normative model is affected by autonomy drivers and must support

varying “experience” levels for autonomy that can learn as well as

observable behavior for the assessor.

The assessor component of the oracle must evaluate higher level

behaviors in the context of “why” and in the context of behavioral

performance outputs that the assessor can observe.

References
[1] D. Jackson, M. Thomas, L. I. Millett, and T. Baker, “Software For Dependable

Systems,” ed: Wiley Online Library, 2008.
[2] D. R&E, “Autonomy COI ATEVV Working Group Technology Investment

Strategy 2015-2018,” ed, 2015.
[3] M. R. Endsley and D. J. Garland, Situation awareness analysis and measurement:

CRC Press, 2000.
[4] M. Utting, B. Legeard, and A. Pretschner, A taxonomy of model-based testing:

Department of Computer Science, University of Waikato, 2006.

G-9

[5] D. Strausberger, “Autonomy T&E Infrastructure Gap Study Phase 1 Final Report,”
G. T. R. Institute, ed, 2016.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE

March 2016
2. REPORT TYPE

Final
3. DATES COVERED (From–To)

Jan 2016 – Mar 2016
4. TITLE AND SUBTITLE

A Framework for Evidence-Based Licensure of Adaptive Autonomous
Systems: Technical Areas

5a. CONTRACT NUMBER
HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Tate, David M.
Grier, Rebecca A.
Martin, Christopher A.
Moses, Franklin L.
Sparrow, David A.
Edmonson, James R.

5d. PROJECT NUMBER
AK-2-3944

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-5325
Log: H 16-000680

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Air Force Research Laboratory
2610 7th Street, Bldg 441
Wright-Patterson AFB OH 45433

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited (1 August 2016).

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Adaptive autonomous systems of interest to DoD have great potential to complement human performance in a wide range
of missions. This particularly is true for adaptive systems that learn—those whose behavior on a given set of inputs may
change over time, even after the system has been fielded. However, such adaptation makes exhaustive testing, certification,
and licensure of the final system impossible. The challenge is to establish high confidence that the system will perform
dependably and behave as intended while safely, securely, reliably, and effectively carrying out the assigned missions.
These topics are outlined in IDA Paper P-5325, “A Framework for Evidence-Based Licensure of Adaptive Autonomous
Systems.” This paper, a companion volume to P-5325, provides additional technical detail on six topics: (1) Formal Methods;
(2) Requirements and Metrics; (3) Normative Oracle Generation; (4) CoActive Design; (5) Implications of Learning
Autonomous Systems for Test, Evaluation, Verification, and Validation; and (6) Modeling and Simulation Considerations for
Licensure of Autonomous Systems.
15. SUBJECT TERMS

autonomy, TEV&V, adaptation, Normative Oracles, licensure, certification, dependability cases

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
 OF

ABSTRACT

SAR

18. NUMBER
 OF

PAGES

62

19a. NAME OF RESPONSIBLE PERSON
Ms. Kristen Kearns

a. REPORT
Uncl.

b. ABSTRACT
Uncl.

c. THIS PAGE
Uncl.

19b. TELEPHONE NUMBER (include area code)

(937) 656-9758

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Chaki, Sagar
Scheidt, David H.
Piatko, Christine D.
Davis, Don
Strausberger, Don

	Appendix A. Introduction
	Appendix B. Formal Methods
	Appendix C. Requirements and Metrics
	Appendix D. Normative Oracle Generation
	Appendix E. CoActive Design
	Appendix F. Implications of Learning Autonomous Systems for TEVV
	Appendix G. Modeling and Simulation Considerations for Licensure of Autonomous Systems
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	body.pdf
	Appendix A. Introduction
	Appendix B. Formal Methods
	Appendix C. Requirements and Metrics
	Appendix D. Normative Oracle Generation
	Appendix E. CoActive Design
	Appendix F. Implications of Learning Autonomous Systems for TEVV
	Appendix G. Modeling and Simulation Considerations for Licensure of Autonomous Systems

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

