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Executive Summary 

IDA was tasked to assess potential benefits and challenges of applying an evidence-
based licensing scheme to autonomous systems, and provide any insights gleaned to DoD. 
The autonomy community has identified significant challenges associated with test, 
evaluation verification and validation of autonomous systems. These challenges are 
exacerbated for adaptive and/or learning systems whose behavior on given inputs can 
change over time. The result is that a traditional comprehensive testing approach is 
impractical or impossible to implement. This report provides support for evidence-based 
licensure as a test, evaluation, verification, and validation (TEVV) framework that can 
address these challenges. 

IDA found that traditional approaches to developmental and operational testing will 
not generally be sufficient to establish the safety and effectiveness of autonomous systems. 
A licensure approach does have the potential to support confident fielding of autonomous 
systems. To be successful, a licensure approach would require novel or modified activities 
throughout the life cycle of the system. These include: 

• Explicit statement of safety and effectiveness requirements 

• Formal methods during development 

• Normative models of intended system behavior 

• Modular and scalable virtual development test bed 

• Run-time monitoring 

• Periodic recertification of learning systems 

Existing software and systems engineering techniques, if rigorously applied, provide 
a good start. Furthermore, there are ongoing research programs in most of these novel 
areas. That said, the approach must be supported by S&T investments aimed at overcoming 
distinct challenges of adaptive or learning autonomous systems. Candidate investment 
areas include: 

• Mapping high level natural language requirements to testable (preferably 
machine testable) specifications 

• Design of architectures that treat development and verification of capabilities on 
an equal footing 

• Post-fielding testing of adaptive/learning systems 
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• Run-time monitoring and multiple-agent systems 

• Coactive Design of human-machine teaming approaches 

• Communication and Interaction among autonomous systems and between 
autonomous systems and humans. 
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1. Introduction 

A. Background 
Adaptive autonomous systems have great potential to complement human 

performance in a wide range of missions. They show particular promise in contexts 
featuring high safety risk (either environmental or adversarial), very short response times, 
long endurance, tedious or repetitive activities, or difficult communications. To realize this 
promise, a number of difficulties must be overcome—not only in the science of adaptive 
autonomous systems, but also in our practical ability to develop, test, field, and operate 
such systems. 

The Office of the Assistant Secretary of Defense for Research and Engineering 
(OASD/R&E) recently published a white paper identifying the goals, challenges, and 
principal areas of current technical shortfall with respect to developing, testing, and 
fielding autonomous and adaptive systems.1 Here, we build on OASD’s framework by 
extending the discussion of the challenges and proposing a specific schema for test, 
evaluation, verification, and validation (TEVV) of such systems. The schema we propose 
uses evidence-based certification and licensure to develop and maintain confidence in 
system dependability throughout the TEVV life cycle. In particular, we suggest that 
normative oracles—that is, top-down models of desired system behavior in various 
circumstances—can be used in a variety of ways to support TEVV of autonomous and 
adaptive systems for specific types of missions in a defined set of contexts. 

In addition to describing a possible framework for TEVV, we suggest ways in which 
some existing software-assurance techniques could be adapted to work within it. We also 
examine the gaps in current TEVV capabilities, where new methodologies would be 
needed to support an effective licensure schema. We pay particular attention to the unique 
challenges posed by adaptive systems that learn—those whose behavior on a given set of 
inputs may change over time, even after the system has been fielded. We argue that in 
practice there may be no “end of test phase” for adaptive autonomous systems, particularly 
those that learn. 

Currently, several obstacles make it particularly challenging to establish high 
confidence that an adaptive autonomous system will perform dependably—that is, that the 
system will behave as intended while safely, securely, reliably, and effectively performing 

                                                 
1 Technology Investment Strategy 2015–2028, Autonomy Community of Interest (COI); Test and 

Evaluation, Verification and Validation (TEVV) Working Group; May 2015. 
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the assigned missions. The Autonomy COI TEVV Working Group has characterized the 
most significant challenges to TEVV as follows:2 

• State-Space Explosion 

• Unpredictable Environments 

• Emergent Behavior 

• Human-Machine Communication 

These challenges are not unique to autonomy or to learning systems, but they are 
exacerbated in both of those domains. 

B. Purpose 
The purpose of this report is to outline a proposed approach that addresses these and 

other challenges and to provide a framework for consistent and traceable autonomous 
system verification and validation. In keeping with the broader literature, we classify our 
proposed approach as evidence-based licensure. The case for licensure will be built from 
individual dependability cases establishing reasons to believe that the system will perform 
safely and effectively within given limits.3 Licensure thus refers to a level of confidence in 
all aspects of system dependability that justifies fielding. Both licensure and certification 
of the individual dependability cases will typically be both mission and context restricted. 
What we are seeking, then, is an evidence-based licensure framework for asserting likely 
system-level dependability of adaptive autonomous systems. The Pedigree-Based Training 
and Licensure concept advocated by the Autonomy COI falls within this same rubric.  

Compelling evidence that the autonomous systems envisioned by DoD will 
dependably perform their missions and also dependably be safe and secure in operation 
will be hard to develop, but not impossible in our view. We have described an approach 
below that attempts to minimize the challenges. This will be accomplished in part through 
careful identification and specification of the missions and contexts in which the system 
can be expected to be dependable. The proposed approach borrows heavily from other 
disciplines that recognize (and in some cases have made progress on) similar challenges 
relating to the safety and effectiveness of decision-making software and automation. We 
acknowledge that we cannot say a priori how to approach all steps of the process, nor how 
hard the remaining work will be. We expect that the practical difficulties will vary 
considerably depending on the particular autonomy application.  

                                                 
2 Ibid. 
3 Dependability cases generalize the widely used concepts of “safety case” and “assurance case” to other 

dimensions of desired system behavior. See, e.g., Charles B. Weinstock, John B. Goodenough, and John 
J. Hudak, “Dependability Cases,” Software Engineering Institute Technical Note CMU/SEI-2004-TN-
016, May 2004. We discuss dependability cases in more detail in Section 2. 
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The purpose of the body of this paper is to describe the necessary structure of any 
evidence-based approach. This includes identifying and pointing to a number of issues 
whose detailed treatment is deferred to technical appendixes for addressing those elements 
of the approach.4  

https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/STD/2016/P-5325T.pdf  

C. Companion Volume 
Note that developing the draft for this proposed framework revealed the need for 

dedicated treatment of a number of technical areas. These are called out in the main body 
for treatment in the companion volume. A thorough treatment of all the identified areas is 
beyond the scope of this project. The companion volume is organized with the following 
sections: 

A. Introduction 

This appendix introduces the remaining appendixes in the companion 
volume. 

B. Formal Methods 

This appendix provides a review of formal methods techniques, their 
applicability to licensure and autonomy, and extensive references. 

C. Requirements and Metrics 

This appendix describes a process for defining requirements and associated 
metrics that supports evidence-based licensure (EBL) for autonomous 
systems.  

D. Normative Oracle Generation 

This appendix describes the attributes of a Normative Oracle that would 
support EBL for autonomous systems. 

E. CoActive Design 

This appendix describes co-active design, which focuses on the 
interdependence of the human and the machine performing a joint activity. 
We might consider this an extension of teaming among humans, but that 
would imply a high degree of machine sentience.  

F. Implications of Learning Autonomous Systems for TEVV  

This appendix provides a review of formal methods techniques, their 
applicability to licensure and autonomy, and extensive references. 

                                                 
4 D. M. Tate, R. A. Grier, C. A. Martin, F. L. Moses, and D. A. Sparrow, “A Framework for Evidence-

Based Licensure of Adaptive Autonomous Systems: Technical Areas,” IDA Paper P-5325, H16-000680 
(Alexandria, VA: Institute for Defense Analyses, March 2016). 

https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/STD/2016/P-5325T.pdf
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G. Modeling and Simulation Considerations for Licensure of Autonomous 
Systems  

This appendix addresses modeling and simulation’s role in licensure of 
autonomous systems. To do so, key drivers from EBL and Autonomy are 
first identified to form a foundation for analysis.
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2. A Candidate Licensure Approach for 
Autonomy 

A dependability case articulates and argues for a dependability claim—that is, a 
desired behavioral property of the system and the operational contexts in which it must 
hold. Following the literature, we use “dependability” as a generic term to refer to safety, 
reliability, cybersecurity, operational performance, or any other dimension of user 
requirements. As with all requirements, there is a flow-down from high-level dependability 
claims to lower level claims supporting the higher level claim. For example, the high-level 
claim “The system will not crash into obstacles” might be supported by lower level claims 
such as “The system will be able to detect man-made structures during flight.”5 Individual 
dependability claims must be established (certified) as part of the process of structuring 
arguments for licensure.  

The evidence supporting the dependability claim typically includes both process-
based evidence (how the system was developed) and product-based evidence 
(demonstrable attributes of the system). Product-based evidence, in turn, may consist of 
both formally demonstrable properties of the system and empirical results of testing. A 
dependability case uses the logical and statistical relationships among the disparate pieces 
of evidence in a manner that supports a confidence assessment for the dependability claim. 
In common parlance, a license is permission from some authority to engage in certain kinds 
of goal-driven activity in specified environments. For example, a driver’s license entitles 
the licensee to operate certain types of vehicles on public roads for certain purposes. The 
constraints on the activity are an important part of the license—motorcycles or buses 
require separate licenses from two-axle vehicles, and a basic license does not permit 
operating a commercial limo service. 

Licenses are typically based on established evidence that gives the licensing authority 
adequate assurance that the licensee will exercise the relevant permissions in an acceptable 
way. In the case of a driver’s license, the relevant evidence may include the age of the 
applicant, successful completion of an accredited driver’s education course, successful 
completion of a road test, previous license history, and various other factors. A license is 

                                                 
5 In theoretical computer science, it can be shown that any dependability claim may be decomposed into 

safety claims (concerning what will not happen) and liveness claims (concerning what must eventually 
happen). This greatly reduces the potential complexity of modeling dependability cases in formal 
systems. 
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not a claim that dependability has been proven beyond all doubt; it reflects a sufficient 
degree of assurance for the purposes at hand. 

For autonomous systems, the analogous approach would be for the controlling 
authority to license particular systems to conduct a specified set of missions, in a specified 
set of environments, under a specified concept of operations. In many cases, the “systems” 
will consist of teamed humans and cyber-physical systems. Licensure will depend on 
confidence that the licensed teams will perform dependably within the specified 
parameters.  

A. Evidence-Based Licensure 
Over the past few decades there has been a marked shift in software assurance theory 

and practice that provides a precedent for TEVV of adaptive autonomous systems. 
Software assurance is shifting toward a paradigm using evidence-based certification of 
dependability cases. This began in the safety community, where purely process-oriented 
assurance methods did not seem adequate for increasingly complex safety-critical 
applications in aviation, medicine, and civil engineering. Since then, the concept has been 
expanded to address not merely safety, but other operational outcome dimensions such as 
security, reliability, operational effectiveness, and consistency. The concept has also been 
extended to refer not merely to software, but to the integrated software/hardware/human 
system. The term dependability is often used to collectively refer to those outcome 
dimensions of concern for a given system development. In 2007, the National Research 
Council Committee on Certifiably Dependable Software Systems recommended adopting 
evidence-based dependability certification for critical systems.6 

In this framework, confidence in system dependability is established through a 
collection of dependability cases, each of which addresses one or more outcome 
dimensions of interest. Dependability cases are a natural generalization of the “safety case” 
and “assurance case” concepts that have long been standard practice for safety and security 
certification of software-controlled systems. A dependability case consists of 

• An explicit dependability claim. 

• Evidence concerning the system’s ability to satisfy the dependability claim. 

• An argument relating the evidence to the dependability claim. 

The next sections focus on a framework for developing a satisfactory collection of 
dependability cases as defined above. The dependability cases should be collected in such 
a way as to establish the boundaries of the confidence space. We discuss methods to 
develop the evidence and quantify confidence in the argument defining the dependability 
                                                 
6 Daniel Jackson, Martyn Thomas, and Lynette I. Millett, eds., Software for Dependable Systems: 

Sufficient Evidence? (Washington, DC: The National Academies Press, 2007). 
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case. Specifically, Oracle-based testing is proposed as a method of evaluating a system’s 
behavior against an external standard. Such methods are then integrated with known 
software paradigms in a framework for application in development of autonomous systems. 

1. Bounding the Confidence Space 
An important function of developmental testing is to not only maximize operational 

confidence across the entire range of intended operational contexts but also identify which 
narrower contexts permit the most confidence. In general, a system will be licensed for an 
increasing range of operations over an expanding set of contexts as it is developed and 
tested, but it will be possible at times to license a wider range of missions over a restricted 
set of contexts. A system that is highly effective in a narrow set of situations is not only 
potentially useful in its own right but also can improve our understanding of which 
evidence is most relevant to various contexts. 

As an example, consider an autonomous unmanned aerial vehicle (UAV) that 
develops its own reconnaissance flight paths, given a specified target of interest. During 
development, it may turn out that the greatest challenges to system dependability are 
associated with weather conditions—high winds degrade both the UAV’s ability to travel 
its intended path and its ability to accurately estimate its air and ground speeds. This leads 
to collision-avoidance problems in environments with large vertical obstacles such as trees, 
buildings, or utility poles. For such a system, a natural progression of licenses might see 
the system certified first for self-directed reconnaissance operations in light winds over flat 
terrain, then separately for either heavier winds or obstructed terrain (but not both), then 
finally for general operations. 

Similarly, systems that involve human-machine teaming may support multiple 
operating modes for teaming operations. Close control or teleoperation could be at one end 
of the spectrum of available modes, with full machine autonomy at the other. Close control 
will feature various patterns of human command, overrides, and mission updates while 
more autonomous operations will feature various patterns of status reporting, information 
requests, suggestions, and volunteered information, with or without machine learning. In 
practice, it is unlikely that all of these modes would achieve licensure simultaneously. The 
dependability of the system will be easier to establish for some modes than for others. 
Ideally, successful licensure and operations in easier modes can contribute to confidence 
in the dependability of more complex modes and perhaps eventually to adaptive selection 
of modes at run time. 

2. Developing the Evidence—Oracle-Based Testing 
In the software testing community, the term oracle has a variety of meanings. In some 

contexts, an oracle is simply a rule for stating whether or not a system has passed a given 
test. In others, it means any available information about the intended behavior of the system 
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that could be used to evaluate performance. The common feature of all these meanings is 
that an oracle enables evaluation of a system’s behavior against an external standard for 
what that behavior should be. Oracle-based testing (OBT) is thus any test methodology that 
explicitly depends on comparing observed (or instrumented) system behavior against an 
independent external standard of correct behavior. That comparison can result in a binary 
pass/fail evaluation or in a more nuanced scoring of degree of compliance. 

At lower levels of hardware and software, OBT is similar to the use of assertions in 
software development. Software developers include statements in their code that make 
assertions about the current state—for example, that the value of a certain variable is within 
stated bounds, that a specific pointer is not NULL, etc. These statements are evaluated at 
run time, and if the assertion is not true, execution halts and the development environment 
enters a debugging mode. In OBT, the assertions might be about software states, hardware 
states (e.g., “voltage on this circuit within specified bounds”), or higher level behaviors 
(e.g., “air speed within 3% of target value”). When testing the system, these OBT assertions 
will similarly flag behaviors that meet expectations and signal the test community. To 
address the challenges of adaptive autonomous systems that were enumerated in the 
Section 1, we will need to be able to apply OBT at the complete system (or system-of-
systems) level, including monitoring and assessing the human-machine interactions. We 
want to directly compare observed behavior of the system under test (SUT) against a 
functional description of desired high-level behavior.7 To do this, we have to know what 
kind of behavior we are looking for and recognize when we do (or do not) see it. At the 
highest level of specification, this is little more than a statement of testable system 
requirements. 

We will refer to a mechanism for assessing the desirability of a particular observed 
system behavior as a normative oracle. A normative oracle provides a process for scoring 
observed behavior against predetermined standards of desirability. That process has three 
distinct aspects: 

1. A standard or specification of desirable and undesirable system behaviors. 

2. A method for comparing observed system behaviors (including internals) 
against the standard. 

3. A way of characterizing (and perhaps quantifying) the results of that 
comparison. 

One can think of these loosely as “the answer key,” “the grader,” and “the score,” 
respectively. 

                                                 
7 In this context, “observed behavior” may include the outputs of special test instrumentation that will not 

be part of the fielded design. 
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The most powerful normative oracles compare observed behavior against desired 
ideal behavior in a given circumstance, but this is not always necessary. Sometimes it will 
be sufficient to be able to score behavior in hindsight, without knowing in advance what 
the ideal response would have been. Normative oracles do not make decisions; they 
evaluate outcomes. It may be difficult to choose a good path through rough terrain; it is 
much easier for a normative oracle to know that getting stuck is a bad outcome. 

Given a sufficiently rich set of normative oracles for the SUT, it is possible to 
implement a normative OBT framework for system development. In this framework, the 
normative oracles assess system behaviors against user requirements. They take as inputs 
measurements of system states and actions, as well as descriptions of the current situation 
and mission goals, and produce as output their evaluations of SUT behavior (and perhaps 
descriptions of what would be correct or preferred behavior in those situations). Normative 
oracles can be defined at high levels of description—for the system as a whole, for a major 
subsystem (e.g., for a path-planning module), for various cognitive functions, or for the 
human-machine teaming interaction. They can also be defined at very low levels, such as 
involving voltages, variable values, or instrument measurements. Essentially, any aspect 
of system behavior or performance for which it is possible to tell good from bad can have 
a normative oracle. In many cases, these oracles will be automated, but in others, they may 
have humans in the loop or be entirely defined by the subjective opinions of human experts. 

Unlike system emulators and virtual environments, which are developed from the 
bottom up, normative oracles are developed from the top down, starting with high-level 
user requirements. For brevity, we will mostly give examples of system-level normative 
oracles, but we note that lower level oracles will also be essential for TEVV and can be 
used in series or in parallel. 

A normative oracle provides a touchstone at every point during the TEVV life cycle 
for comparing what is happening against what ought to be happening. This, in turn, 
provides a basis for establishing evidence and quantifying confidence. As with human 
trainees, an important part of gaining confidence that true learning has occurred is seeing 
consistently appropriate responses to unforeseen situations. Conversely, even minor 
divergence between system behavior and the normative standard can provide valuable 
diagnostic information, even in cases where the system has “passed” the test at the macro 
level. Normative oracles can be particularly useful with respect to emergent behaviors of 
adaptive systems or systems of systems, in that they provide a framework for distinguishing 
desirable (or at least acceptable) emergent behaviors from unacceptable behaviors. In 
practice, normative oracles are needed not only for hardware and software performance but 
also for human operator performance, effective human-machine teaming, and machine 
learning. 
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Finally, sometimes normative oracles can be adapted to directly support operational 
dependability via run-time monitoring.8 There is a natural process during development 
whereby the evaluations used by some oracles may be incorporated into the system (via a 
design change), becoming part of a self-monitoring and corrective-action feedback loop. 
For self-monitoring capabilities that get internalized (co-opted) into the system design, we 
no longer call the internalized test an “oracle”—it’s now just part of a run-time monitor or 
control process. In such cases, the developers and testers will need to establish a standard 
for the desired behavior of the new feedback loop and devise new instrumentation and 
external oracles that monitor and evaluate the behavior of the new feature. Failure to do 
this can lead to situations like the Boeing 787 ADS-B bug, in which an oracle for (scoring 
whether transponder data packet boundaries were correctly aligned) was incorporated into 
an exception-handling routine (for misaligned packets)—but no new behavioral standard 
for the exception-handler was implemented, nor was its performance monitored during 
testing. As a result, developers were unaware of how frequently packets were being 
misaligned and how long it was taking the system to recover. 

Not every oracle can or should be adapted in this way to yield an internalized self-
monitoring capability. Automating the oracle’s evaluation criteria in real time may not be 
possible at all, much less in a way that fits within the size, weight, and power constraints 
of the system under development. In addition, some oracles will always rely on human 
expert observation and judgment. 

3. Arguments and Conditional Confidence 
A core challenge for TEVV of adaptive autonomous systems is deciding when we are 

confident enough to license initial fielding for a particular mission in a particular context. 
A related challenge is reestablishing or enhancing confidence after the system has changed, 
be it through design changes, new operating concepts, or human or machine learning. How 
much testing, and of what kind, do we need to perform to establish the necessary 
confidence? 

The problem, compared with TEVV of traditional systems, is our limited ability to 
model uncertainties associated with actual operating contexts. This is partly due to the 
processing and decision-making required of adaptive autonomous systems. Licensure for 
non-autonomous systems is based on assurance that the system will faithfully execute 
commands—either commands issued in real time or internal commands generated in 
response to the current system state. Vetting adaptive autonomous systems requires 
additional assurance that the system will dependably command itself—that is, it will make 

                                                 
8 See, e.g., Kurt Rohloff, Joseph Loyall, and Richard Schantz, “Quality Measures for Embedded Systems 

and Their Application to Control and Certification,” ACM SIGBED Review – Special Issues on 
Workshop on Innovative Techniques for Certification of Embedded Systems 3, issue 4 (October 2006): 
58–62. 
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appropriate action decisions, in a timely manner, in a context that may involve interactions 
with other adaptive human or machine agents. How can such a system provide evidence 
that supports licensure? 

Our TEVV approach is to identify a body of available evidence to certify that 
licensure for given missions and operating contexts is warranted with respect to particular 
dependability cases. Types of evidence include the following: 

• Design for certification (formal methods). 

• Performance on various tests. 

• Comparison of system behavior (in test or in the field) against predicted and 
ideal behavior. 

• Past certification of related dependability claims (composability). 

• Details of the system’s operational history in similar contexts. 

Evidence might also plausibly include factors such as the track record of the developer 
or development methodology or previous successful uses of individual modules of the 
system (e.g., the motion planning engine or the learning algorithm). What constitutes useful 
evidence toward licensure will vary according to the type of system, operational contexts, 
envisioned missions, and degree of assurance required. 

Successful dependability cases will require convincing arguments from demonstrable 
evidence, leading to a degree of confidence (preferably quantifiable) sufficient to justify 
certification. Historically, such cases have been constructed by hand, primarily in the areas 
of safety and security. There is ongoing theoretical work in the area of automated argument 
generation for both process-based and product-based evidence.9  

B. TEVV Framework 
Putting together the pieces described above, and with an eye on the specific TEVV 

challenges of autonomy, we can sketch the outline of a licensure-based TEVV framework 
for adaptive autonomous systems. Although here we use the language and paradigms of 
software testing, we emphasize that this framework applies to all phases and aspects of 
development for the complete hardware/software/human system. The framework has three 
primary elements: 

1. A normative model, in which an exhaustive top-down set of derived normative 
oracles is implemented as executable code where possible.  

                                                 
9 See, e.g., John Rushby, “Mechanized Support for Assurance Case Argumentation,” in New Frontiers in 

Artificial Intelligence, Lecture Notes in Computer Science 8417, Springer, 2014. 
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2. An embedded software testbed that exercises actual system code in a virtual or 
partly emulated environment. 

3. Actual physical instances of the SUT executing actual system code 

At minimum, the normative model will assess and score observed system behaviors 
for desirability. Ideally, the model will also be able to specify the preferred or expected 
high-level system behaviors, given a description (at the appropriate level of detail) of the 
mission and context.10 We emphasize that the normative model is not a simulation of the 
environment or of the actual system design under development, but instead is a reference 
or calibration of what characterizes “good” SUT behavior in a given situation, either in the 
testbed or in the actual environment. The normative model is a purely behavioral model—
at high levels it will typically use idealized approximations of how the actual system should 
behave, without attempting to emulate detailed sensing/reasoning or real physics 
processing. 

The purpose of the embedded software testbed is to allow progressive testing of 
system modules in isolation and in combination, working from unit verification and 
validation to full autonomous system-of-systems validation by stages. At every stage, some 
or all of the software and hardware modules of the SUT (and the human-machine 
interactions) may be emulated using the normative model, with the SUT providing the 
remaining functions. The testbed will provide simulation of the operational environment, 
including human commanders, other agents, and adversaries. Ideally, this testbed will have 
provisions for human-in-the-loop participation in both commander/operator and adversary 
roles, to provide realistic human-machine teaming. In some cases, the testbed could provide 
virtualization support for live virtual constructive testing.  

The ultimate goal of this iterative testing regime is to be able to establish the 
licensability of specific system modules (or entire systems) based on arguments using 
composable dependability cases covering a specified range of contexts. Section 3 examines 
specific uses of the testbed, and associated challenges and capability gaps, associated with 
specific phases of the TEVV life cycle. 

                                                 
10 We use the word “behavior” here in its broadest sense, to include both observable actions by the system 

and internal processing and all dimensions of performance and dependability. Scoring metrics for these 
various dimensions will include both continuous measures and binary (pass/fail) measures (see 
companion volume). 
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3. Evidence-Based Licensure Life-Cycle 
Implications 

The consensus in the dependability literature seems to be that achieving dependable 
systems (with high confidence) will require a multifaceted approach. Formal design 
processes, normative models, empirical testing, run-time monitoring, and explicit 
limitations on operational parameters can all be used to support licensable confidence in 
adaptive autonomous systems. Applying these techniques will require special actions 
throughout the development and TEVV life cycles. In this section we give a brief overview 
of how EBL might affect the execution of various activities and phases.  

A. Requirements 
EBL is about generating confidence in system dependability, which is assessed 

against requirements. As a result, it is vital that the elicitation and specification of system 
requirements be fully integrated into the EBL framework from the start. To begin with, any 
normative oracle used in EBL must accurately reflect stakeholder preferences for system 
behavior—which is to say, requirements. To realize the benefits of normative oracles for 
EBL, requirements (including assumptions about concept of operations, environment, 
human-machine teaming, and interactions with other agents) must be captured and codified 
in a form that supports implementation of a normative model. Current practice does not 
typically yield formal system requirements that are sufficiently complete, unambiguous, 
and testable to support automated generation of normative oracles. The companion volume 
addresses issues associated with requirement specification and normative oracle 
generation. 

Second, there is considerable ongoing research into formal analytical models to 
generate provably dependable code.11 Such methods necessarily begin with a description 
of the behavioral requirements (or prohibitions) to be proven. If “design for dependability” 
development methods are to be used, the provable certifications for the resulting design 
will be contingent on that original requirement specification. The companion volume 
addresses the challenges of incorporating formal methods into development. 

Finally, the problem of empirical testability will be particularly acute for adaptive 
autonomous systems. It will not be enough for requirements to be complete and formally 
specifiable; those behavioral requirements that are not a priori provable must be testable in 
                                                 
11 See, e.g., V. Janarthanan and A. Gherbi, “Architectures for Dependable Software Systems,” 

Proceedings of the Eighth International Conference on Information Technology: New Generations, 
IEEE, 2011. 
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practice. Deriving statements of high-level behavioral goals that can be put into practice is 
challenging even for non-autonomous systems; autonomy and learning add a new layer of 
complexity. Specifying requirements for how systems should reason and learn and how 
they should interact with others, and devising metrics and oracles that make those 
requirements testable, is a key challenge. During developmental testing, automated tools 
for deriving testable assertions (at the system-state level) from higher level behavioral 
requirement descriptions would be useful not only for test design but also as a diagnostic 
tool and in support of low-level normative oracle implementation. The companion volume 
deals with the particular challenges of learning systems for TEVV. 

B. Architecture 
Formal methods for generating validated code (and test cases) directly from 

requirements offer great promise in contributing to dependability arguments. If such 
methods are used, they must be selected and committed to from the start, during the 
architecture phase of system development. Hardware architecture, software architecture, 
processing architecture, test architecture, and the interfaces among them must be chosen to 
support the formal methods that are to be used. Any subsequent changes in the architectures 
(e.g., in response to requirements changes or resource constraints) run the risk of 
invalidating dependability arguments that depend on formal properties and processes. 

At the same time, the architecture(s) selected may have significant implications on 
testability. Balancing the demands of formal provability and empirical testability calls for 
early and careful consideration of the relative demands of both, along with the relative 
contributions that each will be able to make to the planned dependability arguments for the 
system. The reasoning module’s architecture must also balance considerations of capability 
(i.e., extent and flexibility of potential learning) against the ability to certify the various 
dimensions of dependability. A reasoning architecture that supports a tiered 
implementation of learning, with higher tiers supporting more sophisticated behaviors that 
are more difficult to license, could also support iterative and composable licensure—but 
only if such an architecture is adopted early in system development. Similarly, run-time 
monitoring of reasoning functions may be indispensable for licensure, but must be 
incorporated into the architecture from the start. 

There is already a literature on architecture implications for safety. 12  Extending 
current safety models to address general dependability cases seems straightforward in 
principle, but will almost surely be less straightforward in practice. This is an open research 
area. 

                                                 
12 See, e.g., Weihang Wu and Tim Kelly, “Towards Evidence-Based Architectural Design for Safety-

Critical Software Applications,” in Architecting Dependable Systems IV, ed. Rogério de Lemos, 
Cristina Gacek, and Alexander Romanovsky (Berlin, Heidelberg: Springer-Verlag, 2007), 383–408. 
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C. Design 
“Design for dependability” is a natural extension of the “Design for safety” 

approaches to safety-critical systems. As with architecture, there is a premium on early 
systems engineering to take maximum advantage of reliable processes and model-based 
methods during development. This will be especially true for adaptive autonomous systems 
and their teaming with humans.  

Several of the more promising approaches to dependability rely on explicit system 
modeling of dependability properties (e.g., safety, security, survivability, effectiveness) 
combined with run-time monitoring of dependability implications by independent on-
board processes (e.g., normative oracles).13 Adding such “introspective AI” features late 
in development to a system whose original design did not incorporate them organically 
could greatly increase the difficulty both of achieving good performance and of 
establishing confidence in dependability. 

As with architecture (again) there will be a tension between the potential capability 
of a design and the testability of that design. An explicit goal of the EBL approach is to 
make this tension explicit and quantifiable and to support incremental licensure of 
restricted applications of a given design. Absent a design approach that explicitly facilitates 
testing, the resources required for testing will grow rapidly as a function of system 
capability. 

D. Development 
Once requirements have been elicited, normative oracles have been implemented, an 

architecture has been selected, and a design has been proposed, the actual development of 
the system can productively begin. Simultaneously, this is when iterative certification of 
dependability cases begins.  

There is a great deal of work still to be done in the theory and practice of exactly how 
evidence acquired during development can most effectively be organized into successful 
arguments for licensure within specified bounds. As with most aspects of dependability, 
work on safety assurance is currently the most advanced, but even that literature offers 
little in the way of concrete mechanisms for generating arguments, composing module-
level licenses into system-level licenses, or designing efficient tests to support licensure. 
Promising directions have been identified; it remains to translate those into practical 
development tools and to expand them from the domain of safety alone to other 
dependability dimensions.14 In particular, we suspect that formally generated normative 

                                                 
13 See, e.g., part 3 of John Fox and Subrata Das, Safe and Sound: Artificial Intelligence in Hazardous 

Applications (Cambridge, MA, and London, England: AAAI Press / MIT Press, 2000). 
14 Rushby, “Mechanized Support for Assurance Case Argumentation.” See also Rajwinder Kaur Panesar-

Walawege, Mehrdad Sabetzadeh, Lionel Briand, and Thierry Coq, “Characterizing the Chain of 
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oracles will play a substantial role in the design, development, and licensure of adaptive 
autonomous systems. 

For the specific challenge of architecting, designing, and implementing effective 
interactions between human and machine agents in a teaming context, recent work on 
Coactive Design seems particularly well suited to development in an EBL framework: 

Coactive Design is a new approach to address the increasingly sophisticated 
roles that people and robots play as the use of robots expands into new, 
complex domains. The approach is motivated by the desire for robots to 
perform less like teleoperated tools or independent automatons and more 
like interdependent teammates.15 

In particular, Coactive Design asserts that the appropriate degree and type of autonomy for 
a given system is the autonomy that will produce the most effective teaming behaviors, in 
terms of mission performance. Expanding this focus from mission performance to 
dependability is straightforward. In general, the most effective teaming relationship will 
feature neither the least machine autonomy nor the most autonomy. Rather, it will exhibit 
human-machine interactions in which agents issue commands and request or volunteer 
information in ways that best support dependability. 

Another key research area will be how to respond to requirements changes during 
development. Requirements changes pose a significant challenge even for “normal” 
systems development. For adaptive autonomous systems being developed under an EBL 
framework, requirements changes simultaneously disrupt both the design process (i.e., 
making the system work properly) and the licensure process. There is a very real danger 
that design changes driven by new or modified requirements could invalidate the 
arguments underlying existing dependability case certifications. Any licenses that rely on 
those certifications would be undermined. There is thus a “double effort” associated with 
engineering change proposals—one effort to accomplish the change and a second effort to 
re-license the changed design, possibly with different context limitations. A strong theory 
of composability of evidence would be helpful—both to minimize the amount of licensure 
re-work and to support design of regression tests for dependability. 

Finally, note that it will also be necessary to test and validate the EBL testbed itself. 
Normative oracles, simulation models (both of the environment and yet-to-be-implemented 
modules of the SUT), human-in-the-loop interfaces, and the set of dependability cases are 
                                                 

Evidence for Software Safety Cases: A Conceptual Model Based on the IEC 61508 Standard,” Third 
International Conference on Software Testing, Verification and Validation, 2010, 335–44, and Sunil 
Nair, Jose Luis de la Vara, Mehrdad Sabetzadeh, and Lionel Briand, “An Extended Systematic 
Literature Review on Provision of Evidence for Safety Certification,” Information and Software 
Technology 54 (2014): 689–717. 

15 Matthew Johnson, Jeffrey M. Bradshaw, Paul J. Feltovich, Catholijn M. Jonker, M. Birna van 
Riemsdijk, and Maarten Sierhuis, “Coactive Design: Designing Support for Interdependence in Joint 
Activity,” Journal of Human-Robot Interaction 3, no. 1 (2014): 43–69. 
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all subject to errors and omissions. Debugging the debugger and verifying the verification 
protocol will be nontrivial efforts. For this reason, there is great potential value in the 
development and licensure of reusable test infrastructure—high-level dependability case 
suites, automated oracle generators, and virtual environments for EBL. 

E. Fielding 
An important part of the development process will be methods for identifying the 

operational contexts within which confidence in the current system is highest. Progressive 
licensure during development can be based either on showing that system capabilities have 
improved or by identifying operational constraints for which the current system’s behavior 
is particularly dependable. 

Fielding can occur when the system is licensed for a subset of missions and context 
bounds that provide threshold operational utility. For example, an unmanned aerial system 
intended eventually for day/night, all-weather, multi-sensor intelligence, surveillance, and 
reconnaissance missions might initially be licensed only for electro-optical/infrared 
imaging for daytime, fair-weather, low-wind conditions. If that restricted capability has 
sufficient operational utility, limited fielding is justified.16 In this case, it is important that 
data from the operational experience be leveraged to provide additional evidence in support 
of wider licensure. Integration of information from the field with ongoing developmental 
testing will be the norm, rather than the exception, requiring new and better coordination 
of test organizations and data systems. 

F. Post-fielding 
The ongoing expansion of licensure even after initial fielding blurs the traditional line 

between “development” and “operations.” Data from the field can inform licensure of 
unfielded systems; data from test events can inform licensure of fielded units. In a very real 
sense, the developmental testing of the system does not (and should not) end. 

This will be especially true of systems capable of learning. Because the system’s 
behavior will be changing over time, as will its teaming capabilities, it will be necessary to 
perform regression testing of system dependability to re-license the new configuration. 
This might result in a wider range of licensed missions and contexts or an adjusted range. 
(If the range narrows, it may be possible to reset the system to its original fielded state.) 
These tests might be periodic, or event-driven, or both. Run-time monitoring of reasoning 

                                                 
16 This “threshold” might not be the threshold capability originally identified during requirements 

elicitation. In this respect, EBL resembles agile software development—the first combination of 
capability and dependability that is sufficient for fielding is something that the developers, testers, and 
users will “know when they see it.” 
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functions might spot an increased mismatch between normative oracles and system 
decisions, triggering a “recall” of the unit. 

Even for systems without adaptive learning, there will undoubtedly be upgrades and 
new features over time. Re-licensure of these systems will also involve regression testing 
of dependability. Design of time- and cost-effective regression tests (and the corresponding 
licensure arguments) is thus an important research area for adaptive autonomous system 
TEVV. 
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4. Summary and Conclusions 

TEVV of autonomous systems poses a number of distinct challenges. Adaptive and/or 
learning autonomous systems, resulting in the possibility of the same input leading to 
different behaviors, complicates test and evaluation. In addition, the impact of dynamic 
environments and an effectively inexhaustible state-space for the system are not unique to 
autonomous systems, but are more challenging to test and evaluate in the presence of 
autonomy. Interactions between autonomous systems and their operators (or adversaries) 
are also additionally complex. 

This paper addresses these challenges using a licensure paradigm. We enumerate and 
discuss the necessary features for a TEVV paradigm that would permit licensure of 
adaptive autonomous systems analogous to the way we license human drivers to operate 
specified classes of vehicle in specified conditions for specified purposes.  

Fortunately, we can capitalize on existing work on complex software systems—
especially those needing safety or security certification in cases of dynamic environments 
and inexhaustible state spaces. Considerable progress, both theoretical and practical, has 
been made in such fields as aviation safety, medical hardware/software systems, and space 
exploration. This body of work informs and is consistent with the EBL paradigm we 
describe. EBL provides a mechanism for establishing probabilistic confidence in system 
dependability and for determining operational limits on the license in terms of missions 
and contexts. We can also expand the basic EBL framework through the use of normative 
oracles, in particular normative models that implement executable specifications of 
desirable system behavior. Normative models can be useful both as testing tools and as 
contributors to run-time dependability. 

While capitalizing on this body of work is probably essential for going forward, the 
progress to date in TEVV is insufficient to support fielding of autonomous systems that 
have learning capability. Gaps in established practice—and in some cases in extant 
theory—have been identified throughout the TEVV life cycle. At the start of development, 
better ways to automate (or machine assist) the translation of high-level system 
requirements into lower level behavior specifications on subsystems, and the translation of 
natural-language behavioral specifications into implementable normative models, are 
needed. When system architecture is developed, guidelines must be established for 
choosing architectures that will support formal derivation of system dependability where 
possible and testability of requirements that will need to be empirically verified. During 
development, the TEVV community will need improved understanding (and automated 
support) for assessing the degree of confidence that is justified by the formal attributes, 
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observed test performance, and other accrued evidence for system dependability—
especially if there have been changes to system requirements since the original architecture 
and normative model(s) were developed. At the “end” of development, fielding will require 
ongoing monitoring and test and evaluation—especially for systems that can learn—and 
will thus not necessarily continue to behave as they did during formal development test. 

More detailed treatments of all of these issues (and others) are required before the 
EBL testbed we propose can be implemented in practice. The companion volume to this 
document provides a first cut at enumerating and beginning to address some of these 
concrete implementation issues. Identification of the critical science and technology 
research areas relevant to evidence-based licensure will be an essential prerequisite for 
implementation.  
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Appendix A. 
Abbreviations 

COI community of interest 
EBL evidence-based licensure 
OASD/R&E Office of the Assistant Secretary of Defense for 

Research and Engineering 
OBT oracle-based testing 
SUT system under test 
TEVV test, evaluation, verification, and validation 
UAV unmanned aerial vehicle 
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