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Abstract

In this paper we critique perceived deficiencies in current practices in analyzing operational test
metrics and demonstrate how a Bayesian approach could be applied to operational tests to
improve confidence in the assessment of the test results. We develop an approach and apply it to
the analysis of Percent Blue Survivors and Percent Red Killed as univariate measures of
effectiveness in operational testing, using historical data.
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CURRENT EVALUATION METHODS

Analyses used in the operational testing (OT) of land warfare systems typically rely on
traditional statistical methods. This methodology is appropriate for cases where there are
adequate samples and no important prior information. Experimental observations are obtained
from randomly selected samples from a specified or known population, and the assessment relies
on the ability to replicate the experiment an adequate number of times to achieve an appropriate
level of confidence for operational effectiveness or suitability.

However, some metrics in operational testing involve force-on-force operations, which
rarely meet these conditions. Instead, such operations are characterized by few samples, the
availability of significant information from prior testing, and varying test conditions. Force-on-
force battles are unique social events, not random samples drawn from some cosmic urn
containing all possible battles. There are significant costs that make it very difficult to generate
adequate replications of force-on-force battles to achieve meaningful levels of confidence in the
metrics of interest.

In a typical operational test program, we are interested in examining force-level measures
of merit that result when the land forces employ some new (often prototype) system in place of
some older, potentially less capable, system. In the conventional analytical approach, the
measure of effectiveness (MOE) is presumed to be a random variable representing true
population parameters (e.g., mean and variance for Blue losses in a battle). The true values of
these parameters are unknown, and data are collected during the operational test to obtain
estimates of these parameters and to quantify the uncertainties in the estimates. Typically the
results from one operational test are not used in conjunction with other test data; instead, the data

are gathered, analyzed, and reported in a stand-alone manner. The acquisition executive who



decides if the new system merits purchase must then deal with a multitude of stand-alone test
results or merely consider the most recent.

This paradigm leads us to ask the wrong question. Typically, after an OT event, we ask
“What do we know about Metric A, given the data we saw in the operational test?” This is an
incomplete question, specifically because it fails to take into account whatever we might know
about Metric A before the operational test data was analyzed. Typically systems have undergone
developmental testing before they enter into the first operational test, and most systems have
multiple operational tests before their final acquisition decision is made. Before the first
operational test is conducted for a new system, there are constructive simulations conducted to
examine and predict unit performance in combat when equipped with the new system. The
results of the most recent operational test should inform and refine our state of knowledge about
Metric A, not merely examine it as stand-alone event. This is particularly relevant for an
acquisition decision that follows many years of developmental and operational testing such as
occurs in any major defense acquisition program.

The report of the National Research Council on “Statistics, Testing, and Defense
Acquisition” (Cohen et al., 1998) found that the current evaluation methods used during

operational testing of combat systems

e Restrict application of statistical techniques

e Prevent integration of all available and relevant information for use in
planning and conducting tests, and making production decisions

e Cannot achieve standard statistical measures of confidence for many

relevant parameters using reasonable amounts of testing resources



In the next section we will describe aspects of a Bayesian approach to data analysis before we
present a new paradigm for evaluation, one we believe supports the improvements the NRC is

seeking.

ELEMENTS OF BAYESIAN DATA ANALYSIS

Lynch (2007) makes the following observation about Bayesian statistical methods:

Put generally, the goal of Bayesian statistics is to represent prior

uncertainty about model parameters with a probability distribution and

to update this prior uncertainty with current data to produce a posterior

distribution for the parameter that contains less uncertainty. This

perspective implies a subjective view of probability—probability

represents uncertainty—and it contrasts with the classical perspective.

From the Bayesian perspective, any quantity for which the true value

is uncertain, including model parameters, can be represented with

probability distributions. From the classical perspective, however, it is

unacceptable to place probability distributions on parameters, because

parameters are assumed to be fixed quantities: Only the data are

random, and thus, probability distributions can only be used to

represent the data (p. 50).
An example of the differences between classical and Bayesian approaches can be found in the
approaches to hypothesis testing. In the classical approach, based on statistical sampling, the
question examined is, “If the hypothesis is correct, what is the probability of seeing the data that
I observed?” In the Bayesian approach the question is, “What is the probability, given the data I

observed, that the hypothesis is correct?” One might suspect that acquisition decision-makers



believe they are asking the second question, while they are usually being given the answer to the
first. There is an extensive history and discussion available on the differences in the two
approaches: good summaries are given in Jaynes (1984, 2003) and Sivia (2006). For a recent
book on the subject see McGrayne (2011).

When decision-makers are making acquisition decisions, they are acting in the face of
some uncertainty, and to reduce that uncertainty, they are seeking relevant, credible evidence that
has some degree of inferential weight. Operational test results are one source of that evidence,
and an argument for the Bayesian approach is that one can use prior information (such as
combining results from several tests) to strengthen the inferential weight of the evidence
provided. Establishing a prior probability distribution is key to the Bayesian approach. This is
accomplished through the analysis of data sets from such sources as prior operational testing of
similar systems or computer simulations.

The Bayesian approach requires the specification of a probability model: specifically, a joint
probability density function (pdf) for all observable and unobservable quantities that impact the
problem. (See Hoff (2009) for a detailed mathematical treatment.) This model will be consistent
with our knowledge of the underlying problem and the data collection process. We designate the
pdf as p(®, Y) where ® is the vector of unknown parameters and Y is a vector of data. By the
definition of conditional probability, p(®, Y) = p(®)p(Y|®). p(®) is our prior distribution on the
vector ®, and p(Y|®) represents the distribution of the data given the particular value of the
vector ©.

Next we condition on the observed data, Y, to calculate and interpret the appropriate

posterior distribution, p(®[Y), which is the conditional pdf of the unobservables of interest given



the observed data, Y. We can think of p(®|Y) as summarizing the information we have about @
after observing Y—to include any information we had from the prior distribution p(®).

Using the laws of probability, we write p(®|Y) = p(®)p(Y|®)/p(Y), where
p(Y) = [ p(©)p(¥|©)de

This expression for p(®|Y) is called Bayes’ Theorem. This formula implies that to quantify our
current uncertainty about the unknowns we are modeling, p(®|Y), we must specify the
information we have before this experiment, p(®), and our data distribution, p(Y|®).

Finally, as we would in any modeling problem, we evaluate the fit of the model and the
implications of the resulting posterior pdf. We ask, “Does the model fit the data? Are the
conclusions reasonable? How sensitive are the results to the modeling assumptions?” If
necessary we alter or expand the model and repeat the process above. The posterior pdf informs
the next prior distribution for any subsequent modeling or testing of similar systems with the

inclusion of new data.

A UNIVARIATE MODEL FOR PREDICTING BLUE SURVIORS AND RED
CASUALTIES

As an example, we demonstrate the process described in the preceding section by
constructing one-parameter models for Blue Survivors and Red Killed using information from a
series of war games and operational testing of digitized and non-digitized forces from the 1997
Advanced Warfighting Experiments (AWEs). In these experiments, a Blue force was pitted in
mock combat against a similar Red force of brigade-size. The combat took place at the National

Training Center (NTC) in the Mohave Desert in California, and included a laser tag system to



accurately record shots and kills by the opposing sides. The data used in the subsequent
examples was taken from the results of several of these mock combats.

The Blue forces in these examples were equipped with a new digitized computer screen
coupled with a Global Positioning System sensor that displayed to every Blue vehicle the
location on a map background of all the other Blue systems. This system provided situational
awareness to the Blue forces, and was expected to improve the outcome of the battles. The Red
forces were not similarly equipped. In the actual operational assessment, the data collected from
these experiments were also compared to a baseline non-digitized Blue force, but for illustration,
we will only focus on understanding the performance parameters of the digitized force.

Prior to the execution of the digitized Blue force exercises, a constructive computer
simulation, using a model called CASTFOREM, was run to provide a prediction for how the
digitized Blue force might perform in the field. CASTFOREM is a high-resolution brigade-level
constructive simulation developed by TRADOC Analysis Center used for Army Analysis of
Alternatives until replaced by COMBAT XXI around 2010. After the first two field experiments
were conducted, additional model runs were made using JANUS, a high-resolution brigade-level
interactive simulation developed by Lawrence Livermore National Laboratory (LLLNL) and the
Army and used by the TRADOC Analysis Center for analysis and training since the early
1980’s.

We start our analysis by considering data from pre-AWE CASTFOREM runs made in
January 1997. Hundreds of runs were made under a variety of conditions; fifty runs were made
for each specific condition. Unfortunately, we do not have the complete data from these runs, but
only summary statistics—specifically, the mean and standard deviation. To develop our prior

distribution, we use the statistics from relevant runs: specifically, we consider summaries of



Percent Blue Survivors (PBS) and Percent Red Killedl(PRK) from the 50 runs of the Deliberate
Attack scenario for the digitized brigade. The mean PBS was 0.700, with a standard deviation of
0.06417; the mean PRK was 0.380, with a standard deviation of 0.06797.

From the previous section, to perform the Bayesian analysis, we need to specify Y, ®,
p(Y|®), the distribution of the data given the particular value of the vector ®, and p(®), the prior
distribution for the parameter vector. In our example, we are performing two parallel analyses,
and we will use subscripts to index them. Consider first the analysis of PBS. The data that we
will observe, Yg, are the number of Blue Survivors in a battle. (With parallel notation, Yy is the
number of Red Killed in a battle.) The unknown parameter is Op, the probability that an
individual Blue vehicle survives the battle. (B is the probability that an individual Red vehicle is
killed in the battle.)

For this analysis, we assume that each Blue vehicle has the same probability, 0p, of
surviving a battle, and similarly that each Red vehicle has the same probability, Og, of being
killed. This is a simplifying assumption, but one that is frequently made. Given this assumption,
the goal of our analysis is to estimate 0 and Or (the proportion of Blue Survivors and Red
Killed) and quantify our uncertainty about these estimates.

With these assumptions, p(Yp|0p) is Binomial(ng, 03), where ng is the original number of

vehicles in the battle. The mathematical expression is

p(Ysl6p) = (zg) 05”5 (1 — 65)"577B
For the Bayesian analysis, we also need to specify our prior information, p(6g), about the
probability of a Blue vehicle surviving. In particular, p(65) must be a probability density

function. A common method for specifying a prior distribution is to select a flexible distribution

family and then use prior knowledge to specify the parameters of the family.



In this case, we will use the Beta distribution. Beta distributions specify probabilities on the
interval (0,1), which is what we need since we are capturing information about a proportion. The

mathematical expression is

'(a+B)

T(OT(R) 05" (1~ 05)F "

p(6p) =

To specify the prior distribution, we need to choose o and 3.

We use the information from the CASTFOREM runs to choose o and B. One method
commonly used to choose parameters is called moment matching. The mean proportion of Blue
Survivors from CASTFOREM was 0.700, and the standard deviation was 0.06417. Suppose that
we choose o and P so that the mean of the beta distribution is 0.700 and the standard deviation is
0.06417, or as close as we can come given the mathematical expressions. In particular, the mean

and standard deviation of a beta distribution are functions of o and [3:

E[65) =ajfﬁ
apf
SDifs] = J(a+ﬁ)2(a+ﬁ 1)

Solving, we find o = 35 and B = 15. This distribution is plotted in Figure 1.

We can use the Beta(35,15) distribution as the prior distribution for 83, or we could adjust it.
For example, we may believe that combat simulations tend to underestimate the variability of
Blue Survivors as compared to actual combat situations. In that case, we might choose to change
the parameters of the prior distribution to have the same mean, but a larger standard deviation.
Choosing a prior distribution is not an “analyst free” process. Careful consideration must be
given to be sure that the data being used to develop the prior are relevant and valid, and they

must be carefully modeled in light of the field test/operational test data.
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Figure 1. Beta(35,15) distribution.
For the purposes of our analysis, we will summarize our prior information from the
CASTFOREM simulations with the Beta(35,15) distribution. Similar arguments lead to a prior

distribution for O of Beta(19,31).

Now we want to update our knowledge about Oz and O using data from our first field test.
The first AWE field test was a Blue deliberate attack conducted on 18 March 1997 as part of an
AWE Heavy Brigade rotation at the National Training Center. In this battle, we observed 70 of
166 Blue vehicles survive and 60 of 112 Red vehicles killed.

We specified the initial prior distributions on our probability of Blue surviving (Red
being killed) using beta distributions in order to take advantage of the conjugate prior
relationship and mathematical convenience of the beta distribution to the binomial distribution.
Lynch (2007) or Hoff (2009) discuss this property in detail. The simple updating rule when there

is a beta prior and a binomial data model is

Prior = Beta(a,)
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Observed count (y) = Binomial(n,0)
Posterior = Beta(ot + y, B+ n—y)
Given our data and our prior, the posterior distribution for PBS is Beta(105,111) and for
PRK is (79,83). The posterior mean for PBS, which is used as an estimate of 0y is 0.486 with
posterior standard deviation 0.03393. These values are calculated from our earlier expressions
for E[03] and SD[63]. (For Og, the posterior mean is 0.488 with posterior standard deviation
0.03915.) The mean for PBS changed from 0.7000 in the CASTFOREM runs to 0.486 in the
posterior distribution after incorporating the initial field test data, and the new standard deviation
for PBS is 0.03393, whereas the original value in the prior distribution was 0.06417. The prior
and posterior distributions for PBS are plotted in Figure 2, with the prior given as the dotted line

and the posterior as the solid line.
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Figure 2. Prior (dotted) and posterior distributions (solid) using CASTFOREM and first AWE.
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The second Blue offense AWE field test was a Blue Hasty Attack conducted on 25 March
1997 as part of an AWE Heavy Brigade rotation at the National Training Center. In this battle,
we observed 90 of 161 Blue vehicles survive and 130 of 257 Red vehicles killed. If we assume
that the data from the second field test have the same probabilities of survival for Blue and Red
forces as the first field test, then we can simply use our posterior distribution from the previous
analysis, add the additional data, and get our new posterior distribution—essentially, we are
simply using the second battle to increase our sample size. Making these assumptions, the
posterior distribution for PBS is Beta(195,182), with mean 0.517 and standard deviation
0.02570. The posterior distribution for PRK is Beta(209,210), with mean 0.499 and standard
deviation 0.02440.

We recognize that these assumptions are almost certainly invalid, and we make them only to
illustrate the simplest possible Bayesian analysis. However, as discussed when specifying prior
distributions, combining information to improve prediction and confidence in a sensible way is
not an “analyst-free” process. If these assumptions are invalid in practice, then we specify more
mathematically complex data models and prior distributions. The sequence of specify prior,
update using data to posterior distribution, consider more information, update again remains the
same, although the mathematical details will differ.

At the conclusion of the 1997 AWE field tests, additional model runs were conducted
using the JANUS model for a Blue Brigade Hasty Attack. We have summary statistics for 40
replicated JANUS runs. For the 40 replications, the starting Blue force size was 175, and the
starting Red force size was 172. There were, on average, 92 Blue casualties (83 survivors) and
112 Red casualties. The standard deviations for Blue Survivors was 12.61; for Red casualties,

15.35.
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Serious consideration must be given to what we want to do with this data. Do we want to
treat each simulated vehicle as “the same” as a vehicle in the AWE field exercise? If they are not
the same, what information do we have about how they differ? Are the simulation runs relevant
to our assessment? How? The answers to these questions determine the specifics of the Bayesian
analysis. Making the assumption that combatants in the simulation are the same as those in the
field tests, we update our posterior distribution again Beta(278,274), with mean 0.504 and
standard deviation 0.02126 for PBS. The posterior distribution for PRK is Beta(321,270), with
mean 0.543 and standard deviation 0.02440.

The final field test data used for this example are from a Blue Deliberate Attack in the
Division Capstone Exercise (DCX) after the AWE 1997 tests at the NTC. We observed 16 of
133 Blue vehicles survived and 23 of 183 Red vehicles killed. Given these observations, this
battle is clearly relevant to our assessment, but we choose not to give each observation the same
weight as in previous experiments. The reason for this is that the digitized systems experienced
problems during the exercise reducing the potential credibility of the field test data. Thus, we
choose to multiply both the sample size and the results by 0.2. This gives us the same mean, but
decreases how much we learn from this experiment. In this case, we have chosen a specific
weighting; however, using more complex statistical models, the weight can be chosen based on
data (Reese et al. (2004); Ibrahim and Chen (2000); Anderson-Cook et al. (2007)).

The prior distribution (posterior from our previous analyses) for PBS is Beta(278,274). We
update with 16*0.2 Blue vehicles survived of 133*0.2 total to find a posterior distribution of
Beta(278 + 3.2,274 + 23.4) = Beta(281.2, 297.4), which has mean 0.486 and standard deviation

0.0208. A similar computation shows a posterior distribution of Beta(325.6, 302) for PRK, with
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mean 0.519 and standard deviation 0.0199. In Figure 3,

leading to four posterior distributions.

we plot the prior and four updates
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Figure 3. Prior and four updates for posterior distributions.

Additional summaries of each stage of the Bayesian process are shown in Figures 4 and 5.

The means of the distributions of Blue Survivors and Red Killed are shown in Figure 4 after each

subsequent data set is applied to the Bayesian process. The standard deviations of the

distributions of Blue Survivors and Red Killed are shown in Figure 5 after each subsequent data

set is analyzed using the Bayesian process.

DISCUSSION

This example illustrates a very simple Bayesian analysis for combining information from

field tests and simulations. The example is not intended to illustrate how to implement the

various models that could be developed, but instead to illustrate that mathematical techniques
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exist for combining information and that careful analyst input must be applied throughout the
process. Adding additional relevant information in a principled way often improves the precision
of the estimates that we can make about quantities of interest.

As was discussed, the assumptions about Blue Survivors and Red Killed are questionable.
Likewise there has been no accounting for the obvious dependency between these two univariate
measures: the number of Blue Survivors and the number of Red Killed are not independent
random variables. One commonly used univariate measure that by its definition accounts for this
dependency is the Loss Exchange Ratio (LER) which is the ratio of Red to Blue losses. In future
work, we will consider LER, Number of Red Lost/ Number of Blue Lost. Early work by Olwell
(1997) showed that LER can be modeled very well by the Inverse Gaussian distribution which is

well described in a monograph by Chikara and Folks (1989).
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